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...existing quantum theory must be supplemented with some prin-
ciple that tells us how to translate, or encode, the results of
measurements into a definite state description ρ̂. Note that the
problem is not to find ρ̂ which correctly describes “true phys-
ical situation”. That is unknown, and always remains so, be-
cause of incomplete information. In order to have a usable the-
ory we must ask the much more modest question: What ρ̂ best
describes our state of knowledge about the physical situation?

E. T. Jaynes [1]

Abstract. We show how the maximum entropy (MaxEnt) principle can be effi-
ciently used for a reconstruction of states of quantum systems from incomplete
tomographic data. This MaxEnt reconstruction scheme can be in specific cases sev-
eral orders of magnitude more efficient than the standard inverse Radon transfor-
mation or the reconstruction via direct sampling using pattern functions. We apply
the MaxEnt algorithm for a reconstruction of motional quantum states of neutral
atoms. As an example we analyze the experimental data obtained by the group of
C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional
quantum states of Cs atoms trapped in an optical lattice. We also reconstruct
Wigner functions of a cavity field based on a measurement of the parity operator.
We analyze in detail experimental data obtained by the group of S. Haroche at the
ENS in Paris.

6.1 Modest Question

The concept of a quantum state represents one of the most fundamental
pillars of the paradigm of quantum theory [2–4]. Contrary to its mathemat-
ical elegance and convenience in calculations, the physical interpretation of
a quantum state is not so transparent. The problem is that the quantum
state (described either by a state vector, or density operator or a phase-
space probability density distribution) does not have a well-defined objective
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status, i.e. a state vector is not an objective property of a particle. Accord-
ing to Peres (see [2], pp. 373-374): “...there is no physical evidence whatso-
ever that every physical system has at every instant a well-defined state...
In a strict interpretation of quantum theory these mathematical symbols
[i.e., state vectors] represent statistical information enabling us to compute
the probabilities of occurrence of specific events.” Once this point of view
is adopted then it becomes clear that any reconstruction of a density oper-
ator (or its mathematical equivalent) can be understood exclusively as an
expression of our knowledge about the quantum mechanical state based on a
certain set of measured data. To be more specific, any quantum-mechanical
reconstruction scheme is nothing more than an a posteriori estimation of the
density operator of a quantum-mechanical (microscopic) system based on
data obtained with the help of a macroscopic measurement apparatus [4].
The quality of the reconstruction depends on the “quality” of the mea-
sured data and the efficiency of the reconstruction procedure with the help
of which the data analysis is performed. In general, we can specify three
different situations:

• Firstly, when all system observables are precisely measured. In this case
the complete reconstruction of an initially unknown state can be per-
formed. We can call this the reconstruction on the complete observation
level. A typical example is a tomographic reconstruction of quantum states
of light as discussed in Sect. 6.2 of this chapter.

• Secondly, when just part of the system observables is precisely measured
then one cannot perform a complete reconstruction of the measured state.
Nevertheless, the reconstructed density operator still uniquely determines
mean values of the measured observables. We can denote this scheme as
reconstruction on incomplete observation levels. In this chapter we will
investigate in detail this specific situation and we will present a very effi-
cient method of reconstruction of quantum states based on the principle
of Maximum entropy (MaxEnt).

• Finally, when measurement does not provide us with sufficient information
to specify the exact mean values (or probability distributions) but only
frequencies of appearances of eigenstates of the measured observables,
then one can perform an estimation (reconstruction) using methods such
as maximum likelihood estimation (see [5]) or quantum Bayesian inference
(see, for instance, the recent review [6]).

6.2 Complete Observation Level

Providing all system observables (i.e., the quorum [2,4]) have been precisely
measured, then the density operator of a quantum-mechanical system can be
completely reconstructed (i.e., the density operator can be uniquely deter-
mined based on the available data). In principle, we can consider two different
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schemes for reconstruction of the density operator of the given quantum-
mechanical system. The difference between these two schemes is based on
the way in which information about the quantum-mechanical system is ob-
tained. The first type of measurement is such that on each element of the
ensemble of the measured states only a single observable is measured. In
the second type of measurement a simultaneous measurement of conjugate
observables is assumed. We note that in both cases we will assume ideal,
i.e., unit-efficiency, measurements. In what follows as an illustration we will
consider a specific complete observation level that is realized via a quantum
homodyne tomography of a single-mode electromagnetic field.

6.2.1 Quantum States of Light

Utilizing a close analogy between the operator for the electric component
Ê(r, t) of a monochromatic light field and the quantum-mechanical harmonic
oscillator we will consider a dynamical system that is described by a pair of
canonically conjugated Hermitean observables q̂ and p̂,

[q̂, p̂] = i�. (6.1)

Eigenvalues of these operators range continuously from −∞ to +∞. The
annihilation and creation operators â and â† can be expressed as a complex
linear combination of q̂ and p̂:

â =
1√
2�

(
λq̂ + iλ−1p̂

)
; â† =

1√
2�

(
λq̂ − iλ−1p̂

)
, (6.2)

where λ is a real parameter. The operators â and â† obey the Weyl-Heisenberg
commutation relation

[â, â†] = 1, (6.3)

and therefore possess the same algebraic properties as the operator associated
with the complex amplitude of a harmonic oscillator (in this case λ =

√
mω,

where m and ω are the mass and the frequency of the quantum-mechanical
oscillator, respectively) or the photon annihilation and creation operators of
a single mode of the quantum electromagnetic field. In this case λ =

√
ε0ω

(ε0 is the dielectric constant and ω is the frequency of the field mode) and the
operator for the electric field reads (we do not take into account polarization
of the field)

Ê(r, t) =
√

2E0
(
âe−iωt + â†eiωt

)
u(r), (6.4)

where u(r) describes the spatial field distribution and is the same in both
classical and quantum theories. The constant E0 = (�ω/2ε0V )1/2 is equal to
the “electric field per photon” in the cavity of volume V .
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6.2.2 Wigner Functions

In general, states of a quantum mechanical system are described by positive
Hermitean density operators ρ̂ = ρ̂† that act on a Hilbert space H. The
density operators ρ̂ form a convex space S. The extreme points of this state
space correspond to a manifold of all one-dimensional projectors (pure states)
acting on the given Hilbert space H. In the case of a harmonic oscillator
one can introduce a quasi-probability density distributions in a phase space
that can be associated with density operators (states) of the oscillator under
consideration. In particular, the Wigner function [7, 8] can be defined as a
particular Fourier transform of the density operator ρ̂ of a harmonic oscillator
expressed in the basis of the eigenvectors |q〉 of the position operator q̂:

Wρ̂(q, p) ≡
∫ ∞

−∞
dζ〈q − ζ/2|ρ̂|q + ζ/2〉eipζ/�. (6.5)

Alternatively, the Wigner function (WF) can be rewritten in the form

Wρ̂(q, p) =
1

2π�

∫
dp′ dq′ C(W )

ρ̂ (q′, p′) exp
[
− i

�
(qp′ − pq′)

]
, (6.6)

where the characteristic function C(W )
ρ̂ (q, p) is given by the relation

C
(W )
ρ̂ (q, p) = Tr

[
ρ̂D̂(q, p)

]
. (6.7)

The displacement operator D̂(q, p) in terms of the position and the momen-
tum operators reads

D̂(q, p) = exp
[
i

�
(q̂p− p̂q)

]
. (6.8)

The Wigner function can be interpreted as the quasi-probability density
distribution through which a probability can be expressed to find a quantum-
mechanical system (harmonic oscillator) around the “point” (q, p) of the
phase space. With the help of the Wigner function Wρ̂(q, p) the position
and momentum probability distributions wρ̂(q) and wρ̂(p) can be expressed
from Wρ̂(q, p) via marginal integration over the conjugated variable (in what
follows we assume λ = 1)

wρ̂(q) ≡
1√
2π�

∫
dpWρ̂(q, p) =

√
2π�〈q|ρ̂|q〉, (6.9)

where |q〉 is the eigenstate of the position operator q̂. The marginal probability
distribution Wρ̂(q) is normalized to unity, i.e.,

1√
2π�

∫
dq wρ̂(q) = 1. (6.10)
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Fig. 6.1. The Wigner function of the even coherent state with α = 2.

As an illustration, let us consider a Wigner function of a specific super-
position of two coherent states:

|αe〉 = N1/2
e (|α〉+ | − α〉) ; N−1

e = 2
[
1 + exp(−2|α|2)

]
, (6.11)

which is called the even coherent state [9]. The coherent state |α〉 is defined
as usually, |α〉 = D̂(q̄, p̄)|0〉 where |0〉 is the vacuum state of the harmonic
oscillator. The parameter α = αx + iαy is defined via the relations q̄ =√

2�αx/λ and p̄ =
√

2�αyλ. The Wigner function of the coherent state |α〉〉
has a Gaussian form

W|α〉(q, p) =
1

σqσp
exp

[
− 1

2�

(q − q̄)2
σ2
q

− 1
2�

(p− p̄)2
σ2
p

]
, (6.12)

where

σ2
q =

1
2λ2 and σ2

p =
λ2

2
. (6.13)

If we assume α to be real, then the Wigner function of the even coherent
state reads

W|αe〉(q, p) = Ne
[
W|α〉(q, p) +W|−α〉(q, p) +Wint(q, p)

]
; (6.14)

where W|±α〉(q, p) is the WF of coherent states | ± α〉. The interference part
of the Wigner function (6.14) is given by the relation

Wint(q, p) =
2

σqσp
exp

[
− q2

2�σ2
q

− p2

2�σ2
p

]
cos

(
q̄p

�σqσp

)
, (6.15)

We plot the Wigner function of the even coherent state in Fig. 6.1. From the
figure it is clearly seen that the interference term (6.15) results in oscillations
of the Wigner function around the origin of the phase space.
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6.2.3 Quantum Homodyne Tomography

The relation (6.9) for the probability distribution wρ̂(q) of the position op-
erator q̂ can be generalized to the case of the distribution of the rotated
quadrature operator x̂θ. This operator is defined as

x̂θ =

√
�

2
[
âe−iθ + â†eiθ

]
, (6.16)

and the corresponding conjugated operator x̂θ+π/2, such that [x̂θ, x̂θ+π/2] =
i�, reads

x̂θ+π/2 =

√
�

i
√

2

[
âe−iθ − â†eiθ

]
. (6.17)

The position and the momentum operators are related to the operator x̂θ as,
q̂ = x̂0 and x̂π/2 = p̂. The rotation (i.e., the linear homogeneous canonical
transformation) given by (6.16) and (6.17) can be performed by the unitary
operator Û(θ):

Û(θ) = exp
[
−iθâ†â

]
, (6.18)

so that

x̂θ = Û†(θ)x̂0Û(θ); x̂θ+π/2 = Û†(θ)x̂π/2Û(θ). (6.19)

Alternatively, in the vector formalism we can rewrite the transformation (6.19)
as (

x̂θ
x̂θ+π/2

)
= F

(
q̂
p̂

)
; F =

(
cos θ sin θ
− sin θ cos θ

)
. (6.20)

Eigenvalues xθ and xθ+π/2 of the operators x̂θ and x̂θ+π/2 can be ex-
pressed in terms of the eigenvalues q and p of the position and momentum
operators as:

(
xθ

xθ+π/2

)
= F

(
q
p

)
;

(
q
p

)
= F−1

(
xθ

xθ+π/2

)
;

F−1 =
(

cos θ − sin θ
sin θ cos θ

)
, (6.21)

where the matrix F is given by (6.20) and F−1 is the corresponding inverse
matrix. It has been shown by Ekert and Knight [10] that Wigner functions are
transformed under the action of the linear canonical transformation (6.20)
as:

Wρ̂(q, p) → Wρ̂(F−1(xθ, xθ+π/2))
= Wρ̂(xθ cos θ − xθ+π/2 sin θ;xθ sin θ + xθ+π/2 cos θ), (6.22)
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which means that the probability distribution wρ̂(xθ, θ) =
√

2π�〈xθ|ρ̂|xθ〉 can
be evaluated as

wρ̂(xθ, θ) =
1√
2π�

∫ ∞

−∞
dxθ+π/2

× Wρ̂(xθ cos θ − xθ+π/2 sin θ;xθ sin θ + xθ+π/2 cos θ). (6.23)

As shown by Vogel and Risken [11] (see also [12–15]) the knowledge of
wρ̂(xθ, θ) for all values of θ (such that [0 < θ ≤ π]) is equivalent to the knowl-
edge of the Wigner function itself. This Wigner function can be obtained from
the set of distributions wρ̂(xθ, θ) via the inverse Radon transformation:

Wρ̂(q, p) =
1

(2π�)3/2

∫ ∞

−∞
dxθ

∫ ∞

−∞
dξ |ξ|

×
∫ π

0
dθ wρ̂(xθ, θ) exp

[
i

�
ξ(xθ − q cos θ − p sin θ)

]
. (6.24)

We stress that the transformation (6.24) is a “deterministic” inverse trans-
formation with the help of which the complete knowledge about the state
encoded in the marginal distributions wρ̂(xθ, θ) is rewritten in a form of the
Wigner function.

This reconstruction scheme has been used by Raymer and his coworkers
[16,17]; see also chapter by Raymer and Beck of this volume for more details.
In their experiments the Wigner functions of a coherent state and a squeezed
vacuum state have been reconstructed from tomographic data.

Quantum-state tomography can be applied not only to optical fields but
also for reconstruction of other physical systems. In particular, Janicke and
Wilkens [18] have suggested that Wigner functions of atomic waves can be
tomographically reconstructed. Kurtsiefer et al. [19] have performed exper-
iments in which Wigner functions of matter wave packets have been recon-
structed. Yet another example of the tomographic reconstruction is a recon-
struction of Wigner functions of vibrational states of trapped atomic ions
theoretically described by a number of groups [20] and experimentally mea-
sured by Leibfried et al. [21]. Vibrational motional states of molecules have
also been reconstructed by this kind of quantum tomography by Dunn et
al. [22].

The problem with the inverse Radon transformation is that it does not
take into account the possibility of a finite number of measured distributions.
As we will show later, in the case of incomplete tomographic data the trans-
formation (6.24) can lead to unphysical reconstructions (e.g. non-positive
density operators). In what follows we briefly review a quantum tomogra-
phy scheme that is based on the sampling via the pattern functions which is
equivalent to the inverse Radon transformation.
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6.2.4 Quantum Tomography via Pattern Functions

In a sequence of papers D’Ariano et al. [14], Leonhardt et al. [23] and Richter
[24] have shown that Wigner functions can be very efficiently reconstructed
from tomographic data with the help of the so-called pattern functions. This
reconstruction procedure is more efficient than the usual Radon transforma-
tion [25]. To be specific, D’Ariano et al. [14] and Kühn et al. [15] have shown
that the density matrix ρmn in the Fock basis can be reconstructed directly
from the tomographic data, i.e. from the quadrature-amplitude “histograms”
(probabilities), w(xθ, θ) via the so-called direct sampling method when

ρmn =
∫ π

0

∫ ∞

−∞
w(xθ, θ)Fmn(xθ, θ) dxθ dθ, (6.25)

where Fmn(xθ, θ) is a set of specific sampling functions (see below). Once the
density matrix elements are reconstructed with the help of (6.25) then the
Wigner function of the corresponding state can be directly obtained using
the relation

Wρ̂(q, p) =
∑
m,n

ρmnW|m〉〈n|(q, p), (6.26)

where W|m〉〈n|(q, p) is the Wigner function of the operator |m〉〈n|.
A serious problem with the direct sampling method as proposed by

D’Ariano et al. [14] is that the sampling functions Fmn(xθ, θ) are difficult
to compute. Later D’Ariano, Leonhardt and Paul [23,26] have simplified the
expression for the sampling function and have found that it can be expressed
as

Fmn(xθ, θ) = fmn(xθ) exp [i(m− n)θ] , (6.27)

where the so-called pattern function “picks up” the pattern in the quadrature
histograms (probability distributions) wmn(xθ, θ) that just match the corre-
sponding density-matrix elements. Leonhardt et al. [25] have shown that the
pattern function fmn(xθ) can be expressed as derivatives

fmn(x) =
∂

∂x
gmn(x), (6.28)

of functions gmn(x) that are given by the Hilbert transformation

gmn(x) =
P
π

∫ ∞

−∞

ψm(ζ)ψn(ζ)
x− ζ dζ, (6.29)

where P stands for the principal value of the integral and ψn(x) are the
real energy eigenfunctions of the harmonic oscillator, i.e. the normalizable
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solutions of the Schrödinger equation(
−�

2

2
d2

dx2 +
x2

2

)
ψn(x) = �(n+ 1/2)ψn(x), (6.30)

(we assume m = ω = 1). Further details of possible applications and discus-
sion devoted to numerical procedures of the reconstruction of density opera-
tors via the direct sampling method can be found in [25].

6.3 Maxent Principle and Observation Levels

The state of a quantum system can always be described by a statistical den-
sity operator ρ̂. Depending on the system preparation, the density operator
represents either a pure quantum state (complete system preparation) or a
statistical mixture of pure states (incomplete preparation). The degree of de-
viation of a statistical mixture from the pure state can be best described by
the uncertainty measure η[ρ̂] (see [27,28])

η[ρ̂] = −Tr(ρ̂ ln ρ̂). (6.31)

The uncertainty measure η[ρ̂] possesses the following properties:
1. In the eigenrepresentation of the density operator ρ̂

ρ̂ |rm〉 = rm|rm〉, (6.32)

we can write

η[ρ̂] = −
∑
m

rm ln rm ≥ 0, (6.33)

where rm are eigenvalues and |rm〉 the eigenstates of ρ̂.
2. For uncertainty measure η[ρ̂] the following inequality holds:

0 ≤ η[ρ̂] ≤ lnN, (6.34)

where N denotes the dimension of the Hilbert space of the system and η[ρ̂]
takes its maximum value when

ρ̂ =
1̂

Tr1̂
=

1̂
N
. (6.35)

In this case all pure states in the mixture appear with the same probability
equal to 1/N . If the system is prepared in a pure state then it holds that
η[ρ̂] = 0.
3. It can be shown with the help of the Liouville equation

∂

∂t
ρ̂(t) = − i

�
[Ĥ, ρ̂(t)], (6.36)

that in the case of an isolated system the uncertainty measure is a constant
of motion, i.e.,

dη(t)
dt

= 0. (6.37)
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6.3.1 MaxEnt Principle

When instead of the density operator ρ̂, expectation values Gν of a set O of
operators Ĝν (ν = 1, . . . , n) are given, then the uncertainty measure can be
determined as well. The set of linearly independent operators is referred to
as the observation level O [29, 30]. The operators Ĝν that belong to a given
observation level do not commutate necessarily. A large number of density
operators that fulfill the conditions

Tr ρ̂{Ĝ} = 1, (6.38)

Tr (ρ̂{Ĝ}Ĝν) = Gν , ν = 1, 2, ..., n;

can be found for a given set of expectation values Gν = 〈Ĝν〉. That is, the
conditions (6.38) specify a set C of density operators, which has to be consid-
ered. Each of these density operators ρ̂{Ĝ} can possess a different value of the
uncertainty measure η[ρ̂{Ĝ}]. If we wish to use only the expectation values Gν
of the chosen observation level for determining the density operator, we must
select a particular density operator ρ̂{Ĝ} = σ̂{Ĝ} in an unbiased manner. Ac-
cording to the Jaynes principle of the Maximum Entropy [29–34] this density
operator σ̂{Ĝ} must be the one that has the largest uncertainty measure

ηmax ≡ max
{
η[σ̂{Ĝ}]

}
(6.39)

and simultaneously fulfills constraints (6.38). As a consequence of (6.39) the
following fundamental inequality holds

η[σ̂{Ĝ}] = −Tr(σ̂{Ĝ} ln σ̂{Ĝ}) ≥ η[ρ̂{Ĝ}] = −Tr(ρ̂{Ĝ} ln ρ̂{Ĝ}) (6.40)

for all possible ρ̂{Ĝ} that fulfill (6.38). The variation determining the maxi-
mum of η[σ̂{Ĝ}] under the conditions (6.38) leads to a generalized canonical
density operator [29–31,33]

σ̂{Ĝ} =
1

Z{Ĝ}
exp (−

∑
ν

λνĜν); (6.41)

Z{Ĝ}(λ1, ..., λn) = Tr[exp(−
∑
ν

λνĜν)], (6.42)

where λn are the Lagrange multipliers and Z{Ĝ}(λ1, . . . λn) is the general-
ized partition function. By using the derivatives of the partition function we
obtain the expectation values Gν as

Gν = Tr(σ̂{Ĝ}Ĝν) = − ∂

∂λν
lnZ{Ĝ}(λ1, ..., λn), (6.43)
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where in the case of noncommuting operators the following relation has to
be used

∂

∂a
exp[−X̂(a)] = exp[−X̂(a)]

1∫

0

exp[µX̂(a)]
∂X̂(a)
∂a

exp[−µX̂(a)] dµ. (6.44)

By using (6.43) the Lagrange multipliers can, in principle, be expressed as
functions of the expectation values

λν = λν(G1, ..., Gn). (6.45)

We note that (6.43) for Lagrange multipliers do not always have solutions
which lead to physical results, which means that in these cases states of
quantum systems cannot be reconstructed on a given observation level.

The maximum uncertainty measure regarding an observation level O{Ĝ}
will be referred to as the entropy S{Ĝ}

S{Ĝ} ≡ ηmax = −Tr(σ̂{Ĝ} ln σ̂{Ĝ}). (6.46)

This means that to different observation levels different entropies are related.
By inserting σ{Ĝ} [cf. (6.41)] into (6.46), we obtain the following expression
for the entropy

S{Ĝ} = lnZ{Ĝ} +
∑
ν

λνGν . (6.47)

By making use of (6.45), the parameters λν in the above equation can be
expressed as functions of the expectation values Gν and this leads to a new
expression for the entropy

S{Ĝ} = S(G1, ..., Gn). (6.48)

We note that using the expression

dS{Ĝ} =
∑
ν

λνdGν , (6.49)

which follows from (6.43) and (6.47) the following relation can be obtained

λν =
∂

∂Gν
S(G1, ..., Gn). (6.50)

6.3.2 Linear Transformations Within an Observation Level

An observation level can be defined either by a set of linearly independent
operators {Ĝν}, or by a set of independent linear combinations of the same
operators
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Ĝ′
µ =

∑
ν

cµνĜν . (6.51)

Therefore, σ̂ and S are invariant under a linear transformation:

σ̂′
{Ĝ′} =

exp(−
∑
µ
λ′
µĜ

′
µ)

Tr exp(−
∑
µ
λ′
µĜ

′
µ)

= σ̂{Ĝ}. (6.52)

As a result, the Lagrange multipliers transform contravariantly to (6.51), i.e.,

λ′
µ =

∑
ν

c′µνλν , (6.53)

∑
µ

c′νµcµρ = δνρ . (6.54)

6.3.3 Extension and Reduction of the Observation Level

If an observation level O{Ĝ} ≡ Ĝ1, . . . , Ĝn is extended by including further

operators M̂1, . . . , M̂l, then additional expectation values M1 = 〈M̂1〉, . . . ,
Ml = 〈M̂l〉 can only increase the amount of available information about the
state of the system. This procedure is called the extension of the observation
level (from O{Ĝ} to O{Ĝ,M̂}) and is associated with a decrease of the entropy.
More precisely, the entropy S{Ĝ,M̂} of the extended observation level O{Ĝ,M̂}
can be only smaller or equal to the entropy S{Ĝ} of the original observation
level O{Ĝ},

S{Ĝ,M̂} ≤ S{Ĝ} . (6.55)

The generalized canonical density operator of the observation level O{Ĝ,M̂}

σ̂{Ĝ,M̂} =
1

Z{Ĝ,M̂}
exp

(
−

n∑
ν=1

λνĜν −
l∑
µ=1

κµM̂µ

)
, (6.56)

with

Z{Ĝ,M̂} = Tr

[
exp

(
−

n∑
ν=1

λνĜν −
l∑
µ=1

κµM̂µ

)]
, (6.57)

belongs to the set of density operators ρ̂{Ĝ} fulfilling (6.38). Therefore, (6.56)
is a special case of (6.41). Analogously to (6.43) and (6.45), the Lagrange
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multipliers can be expressed by functions of the expectation values

λν = λν(G1, ..., Gn,M1, ...,Ml),
κµ = κµ(G1, ..., Gn,M1, ...,Ml). (6.58)

The sign of equality in (6.55) holds only for κµ = 0. In this special case
the expectation values Mµ are functions of the expectation values Gν . The
measurement of observables M̂µ does not increase information about the
system. Consequently, ρ̂{Ĝ,M̂} = ρ̂{Ĝ} and S{Ĝ,M̂} = S{Ĝ}.

We can also consider a reduction of the observation level if we decrease
the number of independent observables that are measured, e.g., O{Ĝ,M̂} →
O{Ĝ}. This reduction is accompanied by an increase of the entropy due to
the decrease of the information available about the system.

6.3.4 Wigner Functions on Different Observation Levels

With the help of a generalized canonical density operator σ̂{Ĝ} we define the
Wigner function in the ξ phase space at the corresponding observation level
as

W{Ĝ}(ξ) =
1
π

∫
d2ηTr

[
D̂(η)σ̂{Ĝ}

]
exp (ξη∗ − ξ∗η) . (6.59)

Analogous expression can be found for the Wigner function in the (q, p) phase
space.

6.3.5 MaxEnt Principle and Laws of Physics

It has been pointed out by Jaynes in his Brandeis lectures [1] that there is
a strong formal resemblance between the MaxEnt formalism and the rules
of calculations in statistical mechanics and thermodynamics. Simultaneously
he has emphasized that the MaxEnt principle “has nothing to do with the
laws of physics”3. To be more specific it is worth citing a paragraph from
the Jaynes’ Brandeis lectures (see p. 183 of these lectures [1]): “Conventional
quantum theory has provided an answer to the problem of setting up initial
state descriptions only in the limiting case where measurements of a “com-
plete set of commuting observables” have been made, the density matrix ρ̂(0)
then reducing to the projection operator onto a pure state ψ(0) which is the
appropriate simultaneous eigenstate of all measured quantities. But there is
almost no experimental situation in which we really have all this information,
and before we have a theory able to treat actual experimental situations, ex-
isting quantum theory must be supplemented with some principle that tells us
3 In fact, this is the reason why the MaxEnt principle is applicable in so many

fields of human activities, for instance we can mention economy or sociology (for
more details see the book by Kapur and Kevasan [32]).
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how to translate, or encode, the results of measurements into a definite state
description ρ̂(0). Note that the problem is not to find ρ̂(0) which correctly
describes “true physical situation”. That is unknown, and always remains so,
because of incomplete information. In order to have a usable theory we must
ask the much more modest question: What ρ̂(0) best describes our state of
knowledge about the physical situation? ”.

In other words, the MaxEnt principle is the most conservative assignment
in the sense that it does not permit one to draw any conclusions not warranted
by the data. From this point of view the MaxEnt principle has a very close
relation (or can be understood as the generalization) of the Laplace’s principle
of indifference [35] which states that where nothing is known one should
choose a constant valued function to reflect this ignorance. Then it is just
a question of how to quantify a degree of this ignorance. If we choose an
entropy to quantify the ignorance, then the relation between the Laplace’s
indifference principle and the Jaynes principle of the Maximum Entropy is
transparent, i.e. for a constant-valued probability distribution the entropy
takes its maximum value.

We can conclude that a measurement itself is a physical process and is
governed by the laws of physics. On the other hand formal procedures by
means of which we reconstruct information about the system from the mea-
sured data are based on certain principles that cannot be directly expressed
in terms of the physical laws.

6.3.6 Quantum Tomography via MaxEnt Principle

The probability density distribution wρ̂(xθ) [see (6.23)] for rotated quadra-
tures x̂θ can be represented as a result of the measurement of the continuous
set of projectors |xθ〉〈xθ|. Based on the measurement of the distributions
wρ̂(xθ) for all values of θ ∈ [0, π] we can formally “reconstruct” the density
operator according to the formula

ρ̂
ME

=
1
Z0

exp
[
−
∫ π

0
dθ

∫ ∞

−∞
dxθ |xθ〉〈xθ|λ(xθ)

]
, (6.60)

where the Lagrange multipliers λ(xθ) are given by an infinite set of equations

wρ̂(xθ) =
√

2π�〈xθ|ρ̂ME
|xθ〉; ∀xθ ∈ (−∞,∞). (6.61)

If the distributions wρ̂(xθ) are measured for all values of xθ and all angles θ
then the density operator ρ̂

ME
is reconstructed precisely and is equal to the

density operator obtained with the help of the inverse Radon transformation
(or with the help of the pattern functions).

In practical experimental situations (see the experiments by Raymer et
al. [16] and by Mlynek et al. [19]) it is impossible to measure the distri-
butions wρ̂(xθ) for all values of xθ and all angles θ. What is measured are
distributions (histograms) for finite number Nθ quadrature angles θ and the
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finite number Nx of bins for quadrature operators. This means that practi-
cal experiments are associated with an observation level specified by a finite
number of observables

Q̂nm = |x(n)
θm
〉〈x(n)

θm
| (6.62)

with number of quadrature angles equal to Nθ and the number of bins for
each quadrature equal to Nx. These observables in the Fock basis can be
represented as

(
Q̂nm

)
k1,k2

= ψ�k1(xn)ψk2(xn) exp[iθm(k1 − k2)], (6.63)

where θm is the quadrature phase, xn is eigenvalue of the quadrature opera-
tor and ψk(x) is the wave function of the kth energy eigenstate (Fock state)
of the harmonic oscillator. We can therefore assume that from the measure-
ment of the observables Q̂nm the mean values Qnm are determined (these
mean values correspond to “discretized” quadrature distributions). In addi-
tion, it is usually the case that the mean photon number of the state is known
(measured) as well.

The operators Q̂nm together with n̂ form a specific observation level cor-
responding to the incomplete tomographic measurement. In this case we can
express the generalized canonical density operator in the form

ρ̂
ME

=
1
Z

exp

(
−λ0n̂−

Nx∑
n=1

Nθ∑
m=1

λn,m|x(n)
θm
〉〈x(n)

θm
|
)

(6.64)

The knowledge of the mean photon number is essential for the MaxEnt recon-
struction because it formally regularizes the MaxEnt reconstruction scheme
(the generalized partition function is finite in this case).

6.4 Numerical Implementation

Let us summarize what is supposed to be known as a result of the measure-
ment - these are the measured mean valuesQnm and n of the observables Q̂nm
and n̂, respectively. Further, the experimental setup gives us the numbers Nθ
and Nx as well as the size ∆x of quadrature bins. These last two numbers
specify the range of measured quadratures −Nx∆x/2 ≤ x ≤ Nx∆x/2.

In addition to these “experimental” parameters we have to specify also the
dimensionality Nmax of the Hilbert space in which we reconstruct the density
operator. In the case of the MaxEnt reconstruction Nmax has to be chosen so
that the “truncation” of the Hilbert space does not affect the reconstruction
of the state of original light field (i.e. Nmax � n so that the reconstructed
state “fits” into the truncated Hilbert space).



204 Vladimı́r Bužek

To perform the reconstruction we have to determine the Lagrange mul-
tipliers λn,m in the expression for the generalized canonical density opera-
tor (6.64). These multipliers are given by the constraints (6.38) and numeri-
cally can be determined via the minimization of a deviation function∆Q with
respect to the measured mean photon number n̄ and the set of histograms
Q̄nm = Tr{ρ̂Q̂nm}:

∆Q = (n̄− Tr {ρ̂
ME
n̂})2 +

Nθ,Nx∑
n,m=1

(
Q̄nm − Tr

{
ρ̂

ME
Q̂nm

})2
. (6.65)

The trace is performed within the truncated Hilbert space specified by the
parameter Nmax. When ∆Q = 0 the Lagrange multipliers are determined
precisely and the reconstructed density operator ρ̂

ME
ideally satisfies the

mean values of measured observables.
In order to find the minimal value of the function ∆Q and to determine

the Lagrange multipliers we utilize the Levenberg-Marquardt algorithm with
a finite difference Jacobian (see a standard routine from the IMSL library,
Visual Numerics, Inc., http://www.vni.com).

Once the Lagrange multipliers are specified, then, using the expression
for the generalized canonical density operator (6.64), we can plot the cor-
responding Wigner function. The fidelity of the reconstruction is given by
three parameters. Firstly, it is the minimal value of the function ∆Q that
determines the deviation between the measured mean values of the observ-
ables and the corresponding mean values evaluated from the reconstructed
density operator. Secondly, if it is a priori known that the measured system
is prepared in a pure state then the von Neumann entropy S of the density
operator ρ̂

ME
is a measure of the fidelity of the reconstruction. Specifically,

if the entropy is equal to zero then the pure state is perfectly reconstructed.
Thirdly, if we want to test the reconstruction scheme we can compare the
reconstructed density operator with the known original ρ̂. In this case we can
use the measure

∆ρ =
Nx,Nθ∑
m,n

|(ρ̂)mn − (ρ̂
ME

)mn|2 . (6.66)

Let us test the MaxEnt reconstruction scheme and assume the mean values
of the observables Q̂mn to be given by the even coherent state (6.11) with the
real amplitude α = 2 (we plot the Wigner function of this state in Fig. 6.2a).

Let us further assume just two quadrature angles Nθ = 2 corresponding
to the measurement of the position and the momentum of the harmonic os-
cillator. The total number of bins for each quadrature is taken to be Nx = 40
with the size of the bin equal to ∆x = 0.2 (we assume � = 1), which corre-
sponds to the measurement of the quadrature distributions on the interval
〈−4, 4〉. For the given mean photon number (n̄ 	 4) it is enough to consider
the Hilbert space of the dimension Nmax = 20. The even coherent state with
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Fig. 6.2. (a) The Wigner function of the even coherent state with α = 2. (b)
Reconstruction of the Wigner function via the MaxEnt principle from two marginal
distributions (Nθ = 2) for the position and momentum. The measured marginal
distributions are divided into Nx = 40 bins of the width ∆x = 0.2 covering the
interval 〈−4, 4〉. The fidelity of the reconstruction is ∆Q = 5.4 × 10−12 and ∆ρ =
1.0 × 10−8, the corresponding entropy is S ≈ 10−6. (c) Optical tomography via
the direct sampling using pattern functions with Nθ = 2 and with an artificial
truncation at Nmax = 4. This value of Nmax is chosen such that the deviation ∆Q
is minimized. In this case ∆Q � 9.17 and ∆ρ � 3.7. The reconstructed Wigner
function is unphysical because the corresponding density operator has negative
probabilities for odd Fock states (P1 ≈ −0.35, P3 ≈ −0.54). (d) The result of the
tomography can be improved when the number of quadratures is larger. For Nθ = 4
and the truncation at Nmax = 6 we can improve the fidelity of the reconstruction
(∆Q � 1.33 and ∆ρ = 0.51) but it is still unphysical because P1 ≈ −0.1.

α = 2 can be very well approximated as a superposition of even number states
up to n = 8 (the higher number states are occupied with 1% probability), so
Nmax = 20 is a very good truncation.

With these values of the parameters we have performed the reconstruction
of the state via the MaxEnt principle. Using the minimization procedure we
have achieved the deviation with respect to the “experimental” data ∆Q =
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5.4 × 10−12. The difference between the reconstructed density operator and
the original measured in terms of (6.66) in this particular case is ∆ρ = 1.0×
10−10. We see that the reconstruction is indeed very precise even for a very
small number of experimental data. A high quality of the reconstruction is
indicated by the corresponding value of the von Neumann entropy S ≈ 10−6.
We plot the reconstructed Wigner function in Fig. 6.2b. From this figure we
see that the reconstruction and the original are essentially identical. We also
note that the quality of the reconstruction practically does not depend on
the choice of Nmax when this is larger than some minimal value related to n̄
(in our case for Nmax > 12 the reconstruction is almost perfect but even for
Nmax = 8 the fidelity is very high).

In order to illustrate the MaxEnt reconstruction scheme for statistical
mixtures we will consider briefly a statistical mixture described by the density
operator

ρ̂ =
1
2
|α〉〉〈〈α|+ 1

2
| − α〉〉〈〈−α| (6.67)

with the real amplitude α = 2. The Wigner function of this state is plotted
in Fig. 6.3a. In the Fig. 6.3b we plot the reconstructed Wigner function
under the same conditions as the Fig. 6.2b, i.e. Nθ = 2, Nx = 40, ∆x = 0.2
and Nmax = 20. The two measured quadratures are the position and the
momentum. We see from the figure that the reconstruction is almost perfect.
For this reconstruction we have ∆Q = 1.4× 10−8 and ∆ρ = 1.1× 10−8. The
corresponding entropy S = 0.694 is close to ln 2.

Here we note that the size of the bin ∆x does not play a significant role
in the reconstruction via the MaxEnt principle. We will discuss this issue in
more detail below, but now we concentrate our attention on the role of the
number Nθ of quadrature angles.

6.4.1 Minimal Number of Measured Quadratures

The two quadratures q̂ = x̂θ=0 and p̂ = x̂θ=π/2 are sufficient for a reconstruc-
tion of the even coherent state when α is real (this corresponds to specific
a priori information about the state). If we consider the most general case,
when α is complex, then the reconstruction based on the measurement of
just two quadratures is not very good (in what follows, instead of choosing
the complex α we will use correspondingly rotated quadratures).

Firstly, let us consider a reconstruction of the even coherent state with
the real amplitude α based on the measurement of two rotated quadratures
which are not mutually orthogonal (see Fig. 6.4). In particular, let us assume
x̂θ=0 and x̂θ=π/8. Other settings are the same as in Fig 6.2b. We plot the
reconstructed Wigner function in Fig. 6.4a.

It is very similar to the Wigner function of the statistical mixture (which
is also indicated by the value of the corresponding von Neumann entropy close
to ln 2). The reason is that the type of the measurement considered in the



6 Quantum Tomography via MaxEnt Principle 207

-4
-2

0
2

4

p

-4 -2 0 2 4

q

0

0.1

0.2

W
(p

,q
)

-4
-2

0
2

4

p

-4 -2 0 2 4

q

0

0.1

0.2

W
(p

,q
)

��� ���

-4
-2

0
2

4

p

-4 -2 0 2 4

q

0

0.1

0.2

W
(p

,q
)

-4
-2

0
2

4

p

-4 -2 0 2 4

q

0

0.1

0.2

W
(p

,q
)

��� ���

Fig. 6.3. (a) The Wigner function of the mixture of two coherent states with
α = ±2. (b) The reconstruction of the Wigner function via the MaxEnt principle
based on the measurement of marginal distributions for the position and the mo-
mentum (Nθ = 2). The measured marginal distributions are divided into Nx = 40
bins of width ∆x = 0.2 covering the interval 〈−4, 4〉. The fidelity of the reconstruc-
tion is ∆Q = 1.4 × 10−8 and ∆ρ = 1.1 × 10−8, with entropy S = 0.694. (c) The to-
mography via pattern functions with Nθ = 4 and Nmax = 8 for which the minimum
deviation ∆Q = 0.71 is obtained. The fidelity of the reconstruction is ∆ρ = 0.17.
The reconstructed density operator is unphysical. (d) For the larger number of
quadratures Nθ = 8 with Nmax = 8 we obtain ∆Q = 0.13 and ∆ρ = 0.023. The
reconstructed Wigner function still exhibits some fictitious interference structure.

example does not provide us with enough information about the interference
pattern in the phase space (the two measured quadratures are “too” close).

Our next example is the case when the two measured quadratures are
mutually orthogonal, but are rotated with respect to the position and the
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-4
-2

0
2

4
p

-4
-2

0
2

4

q

0

0.1

0.2

W
(p

,q
)

-4
-2

0
2

4
p

-4
-2

0
2

4

q

0

0.1

0.2

W
(p

,q
)

��� ���

Fig. 6.4. The Wigner function of the even coherent state α = 2 reconstructed via
MaxEnt principle from two particular marginal distributions (Nθ = 2). In (a) we
consider two rotated quadratures for θ = 0 and θ = π/8. The reconstruction leads
to a statistical mixture of two coherent states. The fidelity of the reconstruction is
∆Q ≈ ×10−6, ∆ρ = 0.49, and the entropy is S = 0.7. (b) The choice of “measure-
ment angles” θ = π/8, π/2+π/8 leads to a mixture with ∆Q ≈ ×10−7, ∆ρ = 0.60,
and the entropy is S = 1.31. Other settings (the number of bins and their width)
are the same as in Fig. 6.2.

momentum. Specifically, x̂θ=π/8 and x̂θ=π/2+π/8 and other settings are the
same as in Fig 6.2b. We plot the reconstructed Wigner function in Fig. 6.4b.
In this Wigner function we see some interference pattern but the information
from the measurement does not allow us to perform a reliable reconstruction
(∆Q ≈ 10−7, ∆ρ = 0.60, and S = 1.31). We can observe some “fictitious”
peaks in the reconstructed Wigner function.

To improve the fidelity of the reconstruction we have to consider larger
numbers of the rotated quadratures. In fact, it is our empirical experience
that three rotated quadratures (Nθ = 3) are always sufficient to perform a
very reliable MaxEnt reconstruction of an arbitrary unknown state. We have
not found yet a rigorous proof for this empirical observation.

6.4.2 Comparison with the Reconstruction via Direct Sampling

It has been shown by Leonhardt et al. [25] that for a reliable reconstruction
via direct sampling with the help of the pattern functions two conditions have
to be satisfied:

Nθ = Nmax

∆x < π/2
√

2Nmax + 1. (6.68)

This means that the truncation of the Hilbert space in which the recon-
structed density operator is defined specifies how many quadrature an-
gles have to be considered as well as it puts some restriction on the size
of the bin.
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The Role of Nθ

We start with the analysis of the first condition. In our case of the even coher-
ent state with α = 2 we have to consider at least Nmax = 8. Consequently,
following Leonhardt we would have to consider a measurement of Nθ = 8
quadratures. In this case the precision of reconstruction is ∆Q = 0.13 and
∆ρ = 0.03 which is reasonable, but much smaller than in the case of the
MaxEnt reconstruction. It is important to remember that any deviation of
Nθ from Nmax causes a dramatic deterioration of the reconstruction scheme
(for more details see [25, 36]). In particular, for Nmax > Nθ higher “ghost”
Fock states appear in the reconstructed density matrix. This effect of alias-
ing (see [36]) is caused by the fact that in the sampling method the matrix
elements ρmn with (m− n)modNθ cannot be distinguished.

To see the effect of an insufficient number of phases for the sampling via
pattern functions we plot in Fig. 6.2 the results for Nθ = 2 [see (c)] and
Nθ = 4 [see (d)] marginal distributions. In both cases we chose Nmax such
that the parameter ∆Q (deviation from the measured data) is minimized. In
particular, for Nθ = 2 using the numerical search we have found that ∆Q
is minimized for Nmax = 4 when ∆Q = 9.17 and ∆ρ = 3.7. However, the
reconstructed density operator is unphysical – we obtain negative probabili-
ties of odd Fock states: P1 = −0.35, P3 = −0.54. The corresponding Wigner
function is plotted in Fig. 6.2c. Analogously, for Nθ = 4 we have found the
optimal truncation to be Nmax = 6. In this case ∆Q = 1.33 and ∆ρ = 0.51.
The fidelity of the reconstruction is now better, but it still gives us an un-
physical result with P1 = −0.1 (the corresponding Wigner function is plotted
in Fig. 6.2d). We have checked that higher values of Nmax significantly dete-
riorate the quality of reconstructions. Comparing the sampling method with
the result of the MaxEnt approach we see the great advantage of the latter
for a small number of quadrature phases.

Analogous results are obtained also for statistical mixtures (see Fig. 6.3).
Specific values for the fidelities of the reconstruction are given in the figure
caption.

The Role of Nx

In addition to the required resolution of bins, i.e. ∆x < π/2
√

2Nmax + 1, the
sampling via pattern functions is also very sensitive with respect to the size of
the interval on which the marginals are measured. To apply the sampling via
pattern functions marginal distributions have been measured on the whole
interval where they take non-zero values. The importance of the distribution
“tails” of the marginals can be illustrated on the example of the even coherent
state. Let us consider the size of the bin (i.e. the resolution) to be ∆x = 0.2
and let us change the values of Nx.

In Fig. 6.5 we plot the reconstructed Wigner functions which are obtained
from the incomplete marginal distributions via the MaxEnt [(a)-(b)] and via
the sampling [(c)-(f)] reconstruction schemes.
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Fig. 6.5. The reconstruction of the Wigner function of the even coherent state
with α = 2. (a) The reconstruction via the MaxEnt principle with two marginal dis-
tributions (Nθ = 2) for the position and the momentum. The “measured” marginal
distributions are divided into Nx = 20 bins of width ∆x = 0.2 covering the interval
〈−2, 2〉. The fidelity of the reconstruction is ∆Q = 2 × 10−15 and ∆ρ = 2 × 10−10

which is comparable with Fig. 6.2b (where Nx = 40 corresponding to x ∈ 〈−4, 4〉).
(b) This is the same example as (a) except Nx = 10, i.e. x ∈ 〈−1, 1〉. The quality of
the reconstruction decreases to∆Q = 3×10−15 and∆ρ = 0.029. (c)-(f) Reconstruc-
tion via pattern functions with Nθ = 20 and Nmax = 20. The marginals are taken
within the intervals (c) 〈−4, 4〉 [∆Q = 0.05, ∆ρ = 0.002]; (d) 〈−3, 3〉 [∆Q = 0.88,
∆ρ = 0.154]; (e) 〈−2, 2〉 [∆Q = 8.6, ∆ρ = 1.01]; (f) 〈−1, 1〉 [∆Q = 47.7, ∆ρ = 5.82].
We see that the shorter the interval on which the quadrature distribution is mea-
sured the less reliable the reconstruction is.
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In Fig. 6.5a we plot the reconstruction via the MaxEnt principle with two
marginal distributions (Nθ = 2). The “measured” marginal distributions are
divided into Nx = 20 bins of width ∆x = 0.2 covering the interval 〈−2, 2〉.
The quality of the reconstruction is ∆Q = 2 × 10−15, ∆ρ = 2 × 10−10, and
S ≈ 10−8 which is comparable with Fig. 6.2b when Nx = 40 and x ∈ 〈−4, 4〉.
We see that even though the interval on which the marginal distributions
are measured is shorter by the factor two the fidelity of reconstruction is
not affected. In Fig. 6.5b we plot the reconstructed Wigner function under
the same conditions except Nx = 10, i.e. x ∈ 〈−1, 1〉. The quality of the
reconstruction decreases to ∆Q = 3× 10−15, ∆ρ = 0.029, and S = 0.20, but
still is rather reliable.

In Figs. 6.5c-f we present results of the reconstruction via direct sampling.
We assume Nθ = 20 and Nmax = 20. That is, we consider significantly more
data than in the previous two cases. Nevertheless, results of the reconstruc-
tion are much worse. Specifically, let us assume the marginal distributions to
be taken within the intervals (c) 〈−4, 4〉 which results in the reconstruction
with the fidelity ∆Q = 0.05 and ∆ρ = 0.002. Analogously, (d) 〈−3, 3〉 with
∆Q = 0.88, ∆ρ = 0.154; (e) 〈−2, 2〉 with ∆Q = 8.6, ∆ρ = 1.01; (f) 〈−1, 1〉
with ∆Q = 47.7, ∆ρ = 5.82. We conclude that the shorter the interval on
which the quadrature distribution is measured the less reliable the recon-
struction is. From Fig. 6.5 it is seen that the sampling via pattern functions
can reconstruct only a structure within a measured region of the phase space.

From above we can conclude, that for a reliable use of the reconstruction
via the direct sampling we have to measure a sufficient number of quadrature
distributions (Nθ = Nmax) on the whole interval of x. On the contrary, with
the MaxEnt approach we need just a small number of quadrature distributions
and the interval on which the distributions are measured can be rather small.
We have also analyzed the situation when the distributions are measured on
the interval which is not symmetric with respect to the origin of the phase
space. In this case the MaxEnt scheme works very reliably while the direct
sampling fails completely.

The MaxEnt reconstruction scheme can be applied for various quantum
systems. In particular, in what follows we will analyze how vibrational states
of trapped neutral atoms can be reconstructed.

6.5 Reconstruction of Motional States of Neutral Atoms

In atomic optics a highly coherent control of motional degrees of freedom has
been achieved for neutral atoms [37,38]. In order to verify the degree (fidelity)
of coherent control over motional degrees of freedom of neutral atoms one
can consider a reconstruction of their motional states from measured data.
In what follows we will perform this type of analysis.

Recently, experimental manipulations of motional quantum states of neu-
tral atoms have been reported by the group of C. Salomon in Paris [37, 38].
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Cold Cs atoms can be cooled into specific quantum states of a far detuned
1D optical lattice. The optical lattice is induced by the interference of two
laser beams. Along the vertical z axis a periodic potential of “harmonic”
microwells is produced with a period of 665 nm and with an amplitude of
about 0.2 µK [38]. The vertical oscillation frequency in a microwell at the
center of the trap is ωz/2π = 85 kHz. The corresponding ground state has
the rms size ∆z0 =

√
�/2mωz ≈ 21 nm and ∆p0/m =

√
�ωz/2m ≈ 11 mm/s

is its rms velocity width. The trapped cloud of neutral Cs atoms has a nearly
Gaussian shape with a vertical rms size ∆ξ0 = 53 µm. With the help of de-
terministic manipulations the neutral atoms can be prepared in non-classical
1D motional states along the vertical axis such as squeezed states, number
states, or specific superpositions of number states [38]. The measurement of
the prepared quantum state ρ̂ is performed as follows: The system is evolved
within the harmonic potential during the time τ . Then the lasers are turned
off and the system undergoes the ballistic expansion (BE). After the time of
flight T = 8.7 ms a 2D absorption image of the cloud is taken in 50 µs with a
horizontal beam [38]. Integration of 2D absorption images in the horizontal
direction gives us the spatial distribution along the vertical z axis. Therefore
we will consider only a 1D quantum-mechanical system along the vertical
axis.

To confirm that a desired quantum state has been obtained (engineered)
one can compare the spatial distributions along the vertical axis with the
predicted ones. The coincidence of these spatial distributions is a necessary
but not the sufficient requirement. A complete verification of the fidelity of
the preparation of desired quantum states requires a quantum state recon-
struction procedure. In order to perform this task we adopt the MaxEnt
principle [30]. To do so we utilize a close analogy between quantum homo-
dyne tomography [12] and the BE absorption imaging for the case of the
point-like cloud (with the rms size equal to zero).

6.5.1 Motional States of Atoms via MaxEnt Principle: Formalism

In the quantum homodyne tomography the probability distributions are mea-
sured for the rotated quadrature operators x̂θ. The annihilation and cre-
ation operators of motional quanta, â and â†, are related to the position
and momentum operators, ẑ and p̂, via expressions ẑ = 1√

2
(â + â†) and

p̂ = 1√
2
i(â− â†), respectively. The angle θ of the quadrature operator corre-

sponds to ωzτ and vertical “cuts” of the absorption images (taken after the
BE) can be associated with quadrature probability distributions. However,
for a real physical situation with a nonzero rms size of the cloud the vertical
“cuts” of absorption images correspond to a coarse-grained quadrature prob-
ability distributions. In particular, the vertical cuts of measured absorption
images (taken in 2D) give us (after integration along the horizontal direction)
the spatial distribution along the vertical axis. The spatial distribution along
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the vertical z axis can be expressed as (in order to reflect a different phys-
ical origin of the system under consideration in this section we will denote
observables as F̂ instead of Q̂ that has been used in Sect. 6.4)

F τ (z) = T−1
∫
F0(ξ0)Pτ ((z − ξ0)/T )dξ0 , (6.69)

where F0(ξ0) is the initial spatial distribution of the cloud in the z-direction
(i.e., a Gaussian distribution with the rms size ∆ξ0). The function Pτ (v)
denotes the velocity probability distribution of the measured quantum state
which has been evolved for time τ in the harmonic potential before the BE,
i.e.

Pτ (v) = |〈v|ψ(τ)〉|2, |ψ(τ)〉 = Û(τ)|ψ(0)〉. (6.70)

Here Û(τ) = exp(−iĤτ/�) represents the time-evolution operator for the
harmonic oscillator with the Hamiltonian Ĥ = p̂2/2m +mω2

z ẑ
2/2. Now we

can treat the measured “cuts” as the mean values of specific observables:
F τ (z) = Tr [ρ̂F̂τ (z)]. In practice just a few discrete times τj (j = 1, . . . , Nτ )
are considered and the z coordinate is discretized into the bins zk (k =
−Nz, . . . , Nz) of a given resolution ∆z. The set of operators that enters the
equation for the MaxEnt reconstruction then takes the form

F̂τj (zk) = T−1
∫
F0(ξ0)Û†(τj)

∣∣∣∣zk − ξ0T

〉〈
zk − ξ0
T

∣∣∣∣Û(τj)dξ0 , (6.71)

where (j = 1, . . . , Nτ ; k = −Nz, . . . , Nz). We have already commented in
Sect. 6.3 that the operator of mean phonon number n̂ is added to the set
of observables {F̂τj (zk)}. Knowledge of the mean excitation number n̄ is es-
sential in the case of an incomplete set of observables [30]. Knowledge of the
mean excitation number leads to a natural “truncation” of the Hilbert space.
The inclusion of the mean phonon number into the MaxEnt reconstruction
scheme does not represent its limitation as the mean energy represents one
of basic characteristics of any system that should be inferred from the mea-
surement.

The experimental “cuts” of the BE absorption images [F̂τj (z)] can be
taken at few selected times, for example ωzτj = 0, π/4, π/2, 3π/4 (Nτ = 4).
To perform the reconstruction we have to determine the Lagrange multipliers
{λj,k} and λn associated with {F̂τj (zk)} and n̂, respectively, in the expression
for the generalized canonical density operator. The Lagrange multipliers can
be determined via the minimization of a deviation function ∆F with respect
to the measured data, i.e.

∆F =
∑
j,k

wj,k

{
F τj (zk)− Tr

(
ρ̂rF̂τj (zk)

)}2

+ wn̄ {n̄− Tr (ρ̂rn̂)}2 . (6.72)
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Here {wj,k} and wn̄ represent positive weight factors for particular observ-
ables. Without any prior knowledge about the state, for simplicity we can
take wi,j = 1. The weight factor wn̄ associated with the mean phonon num-
ber can be chosen according to our preference either to fit better the “cuts”
of the BE images or the mean phonon number. In the case of the perfect
measurement and the complete reconstruction the result has to be indepen-
dent of the choice of the weight factors (in this case we can take wn̄ = 1).
The weight factors could also be associated with the prior information about
the dispersion of the measured observables. In particular, the weight factors
can be taken as wν ∼ σ−2

ν to reflect the knowledge of variances σν for the
measured observables Ĝν . When the mean values of the observables for the
MaxEnt estimate ρ̂r fit within desired interval Gν ±σν then contributions of
the observables to the deviation function ∆F are of the same order (∼ 1).
However, in our case we do not assume the knowledge of variances for the
measured discretized probability distributions (taking wν = 1).

Once the Lagrange multipliers are numerically fitted, the result of the
reconstruction – the generalized canonical density operator ρ̂r – can be visu-
alized, for example, via the corresponding Wigner function.

6.5.2 Numerical Simulation of MaxEnt Tomography

To test our reconstruction procedure let us consider the reconstruction of the
Wigner function of the motional quantum state |ψ(0)〉 = (|0〉 + |1〉)/

√
2 of

Cs atoms trapped in the optical lattice. This kind of state has been demon-
strated in recent experiments [38]. We assume the following setup parameters:
ωz/2π = 80 kHz, the rms size of the ground state ∆z0 = 22 nm, the rms ve-
locity width ∆p0/m = 11 mm/s and the rms width of the cloud of the atoms
about 60 µm. Before BE (with BE time T = 8.7 ms) the atoms evolve within
the harmonic trapping potential for τ = 0, 1.6, 3.2, 4.8 µs. As the input for
the reconstruction via the MaxEnt principle four vertical “ideal” cuts of the
BE absorption images are taken as shown in Fig. 6.6(b).

In addition, for the phonon number operator n̂, which is included in the
set of measured observables (see discussion above), we assume the mean value
n̄ = 0.5. The result of the ideal reconstruction is shown in Fig. 6.6. The fidelity
of the measured and the reconstructed quantum states is close to unity, which
means a perfect reconstruction with ∆F = 10−10, entropy S = 10−7, ∆ρ =
10−8 has been achieved. Here ∆ρ =

∑
m,n |(ρ̂− ρ̂r)mn|2 denotes a deviation

of the original and reconstructed density operators.
Obviously, in a real measurement the measured values are always fluctuat-

ing around the exact ones due to an experimental noise. Therefore we simulate
a non-ideal measurement introducing random fluctuations to the measured
values of observables. It means that instead of the ideal values F τj (zk) we
use for the MaxEnt reconstruction procedure the fluctuating (“noisy”) values

F
′
τj (zk) = F τj (zk) + ηξj,k

(
F τj (zk)

)1/2
. (6.73)
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Fig. 6.6. (a) Numerical simulation of the reconstruction of the Wigner function
of the motional quantum state (|0〉 + |1〉)/√2 of Cs atoms trapped in the optical
lattice (assuming ωz/2π = 80 kHz, the rms size of the ground state ∆z0 = 22
nm and the rms velocity width ∆p0/m = 11 mm/s). For the reconstruction via
the MaxEnt principle four vertical cuts of the absorption images (with BE time
T = 8.7 ms) have been taken (b). The histograms correspond to the measured data
while the solid lines are obtained from the reconstructed Wigner function (i.e. they
correspond to reconstructed marginal distributions). Before BE the atoms evolve
within the trapping potential for the times τ = 0, 1.6, 3.2, 4.8 µs. In addition, the
mean number of motional quanta n̄ = 0.5 and the rms width of the cloud of the
atoms about 60 µm have been assumed.
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Here η is a relative-error parameter that characterizes the quality of the
measurement and {ξj,k} represents a Gaussian noise for observables. The
result of the reconstruction is shown in Fig. 6.7 for η = 0.1. Noisy mean values
of the observables are shown in Fig. 6.7(b). Inspite of a significant relative
error, the reconstruction is almost perfect, with the fidelity of the measured
and the reconstructed states still close to one (∆F = 0.16, entropy S = 0.01,
∆ρ = 0.05). The minimum value of the deviation function ∆F = 0.16 can
serve also as a measure of the imperfection of the given measurement (due
to a technical noise) [39].

A typical non-classical state that we can utilize for a further test is the
even coherent state Ne(|α〉 + | − α〉) [9]. We have presented a numerical
simulation of the reconstruction of this state in Fig. 6.8. For the amplitude
α =

√
2 we obtained ∆F = 10−8, the entropy S = 0.026 and ∆ρ = 10−4

(under assumption that the exact mean phonon number n̄ = 1.928 is known).
In the case of the imperfect measurement with η = 0.1 the reconstruction
leads to ∆F = 0.14, entropy S = 0.13, and ∆ρ = 0.06 for n̄ = 2.09. The
fidelity of the reconstructed and the measured states is, in this case, also
close to one.

In order to model a technical noise in the measurement we have considered
Gaussian fluctuations proportional to the square root of the mean values. It
means that tails of the “cuts” of BE images do not introduce a significant
error [compare Figs. 6.8(b) and 6.9(b)]. However, in the current measurements
the situation seems to be different and the fluctuations do not decrease with
the amplitude of the expected values.

The fundamental question in the context of the MaxEnt reconstruction
of states from incomplete tomographic data is whether the quality of the
reconstruction can be improved using additional data from subsequent time
moments τ and how many such time moments τ are required for the complete
reconstruction of the unknown state ρ̂. As we have shown in Sect. 6.4 for the
efficient quantum tomography just three quadrature distributions are suffi-
cient for a complete reconstruction using the MaxEnt principle (in the case
of the perfect measurement). This corresponds to the ideal case without the
spatial dispersion of the cloud of atoms, i.e. the choice with ωzτj = 0, π/4, π/2
(Nτ = 3) is sufficient for ∆ξ0 → 0. Obviously, in experiments with neutral
atoms the spatial size of the atomic cloud is nonzero. However, in the case
of the ideal measurement three BE absorption images associated with three
“rotations” ωzτj are still sufficient for a complete reconstruction of tested ex-
amples of quantum states. On the other hand, it seems that for higher mean
phonon numbers the spatial distributions along the vertical axis that are di-
rectly determined from absorption images should be known with improving
precision (and on a wider interval of values as well). In the above examples
we have considered for convenience BE images for four “rotations” (Nτ = 4)
which results in a very good reconstruction.
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Fig. 6.7. (a) Numerical simulation of the reconstruction of the Wigner function
of the atomic motional quantum state (|0〉 + |1〉)/√2 for the same settings as in
Fig. 6.6. (b) Four vertical cuts of the absorption images taken for reconstruction
are fluctuating randomly around their ideal values shown in Fig. 6.6(b) with the
relative error η = 0.1. The histograms correspond to the measured data while the
solid lines are obtained from the reconstructed Wigner function. In addition, the
mean phonon number n̄′ = 0.6 has been considered.
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Fig. 6.8. Numerical simulation of the reconstruction of the Wigner function of
the motional quantum state Ne(|α〉 + | − α〉) with α =

√
2 in the case of the ideal

measurement. The mean number of motional quanta n̄ = 1.928. Other settings are
the same as in Fig. 6.6.
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Fig. 6.9. Numerical simulation of the reconstruction of the Wigner function of
the motional quantum state Ne(|α〉 + | − α〉) with α =

√
2 in the case of noisy

measurement with η = 0.1. The “measured” mean number of the motional quanta
n̄′ = 2.09. Other settings are the same as in Fig. 6.7.
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6.5.3 Reconstruction from Experimental Data

In what follows we will apply the MaxEnt reconstruction scheme to the data
obtained at the ENS in Paris [40]. Firstly we note that the unknown quantum
state should belong to a Hilbert subspace that can be determined easily. Thus
we can limit ourselves to the subspace spanned by Fock (number) states
|0〉, |1〉, . . . |N − 1〉. The upper bound on the accessible phonon number N is
given by experimental limitations such as, a feasible depth of microwells of
the optical lattice and the validity of the harmonic potential approximation.
For recent experiments N has been typically of the order of 10. This value is
large enough to demonstrate the preparation of many non-classical states but
on the other hand excludes highly squeezed states from coherent processing.

Let us consider the experimental arrangement used in Paris [40] with the
parameters: ωz/2π = 80 kHz, the rms size of the ground state ∆z0 = 22
nm, the rms velocity width ∆p0/m = 11 mm/s, the rms width of the cloud
of the atoms about 60 µm and BE time T = 8.7 ms. Initially the atoms
are prepared in a well-defined motional state |ψ0〉 (e.g. in the vacuum state
|0〉). Then the optical lattice is switched off for the time period t1 during
which the atoms evolve freely towards the state |ψ1〉 = exp(−it1p̂2/2m)|ψ0〉.
Next, the optical lattice is again switched on for the time τ during which
the atoms evolve within the harmonic trapping potential. The measurement
is performed after the BE time. The first two stages can be considered as
the preparation of the state |ψ1〉. After its “rotation” by ωzτ (within the
phase space of the harmonic oscillator) and the subsequent BE the absorption
images are taken.

The considered data are for the initial vacuum state which means that
under ideal conditions a squeezed state |ψ1〉 = exp(−it1p̂2/2m)|0〉 should be
prepared. The vertical spatial distributions obtained from the measured 2D-
absorption images are discretized into pixels (bins) with the pixel width 5.45
µm. The optical density of each pixel is averaged in the horizontal direction
in which the absorption images are divided into 50 rows, each 3.9 µm wide
(these rows cover the size of the cloud in the horizontal direction). For the
reconstruction via the MaxEnt principle four vertical spatial distributions
for “rotation” times τ = 0, 1.6, 3.2 and 4.8 µs are taken. The selected times
roughly correspond to rotations within the phase space by ωzτ = 0, π/4, π/2
and 3π/4, respectively. Unfortunately, the mean excitation number n̂ for mea-
sured state |ψ1〉 was not measured explicitly in the experiment, therefore we
have to estimate it as follows: During the free expansion period the rms size
of the cloud increases by ∆x = p0τ1/m. The corresponding increase of the
potential energy 1

2mω
2
z(∆x)

2 in units �ωz gives us the increase of the number
of excitation quanta with respect to the initial state |ψ0〉. For τ1 = 4 µ and
the initial vacuum it means n̄ ≈ 1. Experiments can be realized also for higher
τ1. For example, τ1 = 8 µ leads to n̄ ≈ 4. However, as mentioned above, such
“squeezed” states with a significant contribution of higher phonon number
states violate the underlying harmonic approximation for the potential. To
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keep a coherent control an anharmonic part of the potential has to be taken
into account.

The result of the reconstruction via the MaxEnt principle is shown in
Fig. 6.10. The deviation of the fitted and measured values is ∆F = 0.09
and the entropy of the reconstructed state is S = 1.0. It means that the
reconstructed state is a statistical mixture. We see a two peak structure that
suggests that there is a mixture of two squeezed states coherently displaced
from each other. It is caused by the fact that the vertical center of the cloud
was not fixed in the experiment and it has to be determined by our fit for
each measured BE absorption image separately. Assuming a priori knowledge
that the Wigner function has a symmetric shape with respect to the origin
of the phase space (i.e. there is no coherent amplitude) a Gaussian fit can be
used to determine the center of the cloud for each vertical distribution. For
states with a non-zero coherent amplitude the center of the cloud should be
fixed already in the experiment.

It turns out that the reconstruction results do not describe the squeezed
vacuum state as was originally expected [40]. The main reason is that the
mean phonon number was not measured directly in the experiment. It can
be inferred only indirectly from the ideal case without any incoherence dur-
ing preparation or measurement. As we discussed above, it is essential to
include the information about the mean number of vibrational quanta into
the MaxEnt reconstruction scheme. In optical tomography the analogous in-
formation about mean photon number can be obtained from distributions of
two “orthogonal” quadratures. In our case it could correspond to two absorp-
tion images such that ωz(τj − τk) = π/2. However, it would require a precise
timing of the evolution within the harmonic trapping potential. Therefore the
mean number of vibrational quanta should be determined in an independent
measurement.

Another problem arises from a slow convergence of anti-squeezed spatial
distributions that are derived directly from the measured absorption images.
In particular, the convergence of tails is too slow for those “rotations” that
correspond to anti-squeezed phases, i.e. τ = 1.6, 4.8 µs [see Fig. 6.10(b)]. The
slow convergence is reflected by the presence of non-negligible backgrounds
for Gaussian fits to these spatial distributions. If we eliminate (subtract)
these backgrounds from the measured distributions the MaxEnt reconstruc-
tion gives almost the same Wigner function as in Fig. 6.10(a) but with a
highly reduced deviation function ∆F = 0.02 (comparing to ∆F = 0.09 in
Fig. 6.10). Such background in these absorption images can be caused by
an incoherence associated with a violation of the the harmonic approxima-
tion. In fact, in our analysis we have neglected the change of the oscillation
frequency along the z-axis. In recent experiments, the oscillation frequency
decreases 10% from ωz for microwells at the edge of the initial cloud.

In this section we have applied the MaxEnt scheme for a reconstruction of
motional quantum states of neutral atoms. As an example we have analyzed
the experimental data obtained by the group of C. Salomon at the ENS in
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Fig. 6.10. The Wigner function reconstructed from the experimental data ob-
tained at the ENS, Paris. The experimental setting is the same as for Fig. 6.6.
From the experimental data we have inferred the mean number of motional quanta
n̄ ≈ 1.0, while the reconstructed value is n̄′ ≈ 1.1. Deviation of the measured and
predicted values of observables is ∆F = 0.09 and entropy of the reconstructed mix-
ture state is S = 1.0. Subtraction of a background from the measured marginals
gives almost the same Wigner function and reduces significantly a difference be-
tween measured and reconstructed marginals.
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Paris and we reconstruct the Wigner function of motional quantum states of
Cs atoms trapped in the optical lattice. In our analysis we have neglected
the change of the oscillation frequency along z axis in recent experiments.
The dispersion of the oscillation frequency is of the order of a few percent.
This source of errors can significantly affect the quality of a quantum state
preparation and its reconstruction. In addition, only up to the first 10 bound
states of microwells of the optical lattice can be approximated by a harmonic
potential. It implies limits on coherent manipulations of quantum states. It
means that states with a significant contribution of higher number (Fock)
states cannot be prepared and manipulated in a controlled way.

6.6 Direct Measurement of Wigner Functions
of Single Mode Fields in Cavities

We have shown in previous sections that Wigner functions of bosonic fields
can be reconstructed from the tomographic data either via the inverse Radon
transformation or using the method of pattern functions. In the case where
the experimental data are not complete both these procedures can be sub-
stituted by a very efficient method of reconstruction based on the MaxEnt
principle. Recently several groups have discussed the possibility of performing
a reconstruction of Wigner functions of bosonic fields based on other tomo-
graphic measurements. Specifically, Englert et al. [41] have shown that the
Wigner function can be measured directly via a measurement of the parity
operator of the bosonic field. This method has been further developed by Lut-
terbach and Davidovich [42]. The essence of the method is based on a simple
relation between the value of the Wigner function W (α) at a phase-space
point α and the mean value of the parity operator P̂ :

W (α) = 2Tr
[
D̂(−α)ρ̂D̂(α)P̂

]
, (6.74)

where the D̂(α) = exp(αâ† − α∗â) is displacement operator [see also (6.8)]
and the field parity operator P̂ is defined as

P̂ = exp
[
iπ â†â

]
. (6.75)

This operator acts on a Fock state |n〉 as P̂ |n〉 = (−1)n|n〉. With this nor-
malization, −2 ≤W ≤ 2 and

∫
W (α) dα = π (see also Sect. 6.2.2).

Lutterbach and Davidovich have shown that if the single-mode field in the
state ρ̂ is stored in a cavity C and if it can be shifted (displaced) by injecting
in C a coherent field with an amplitude −α, then one can perform a measure-
ment of the parity operator P̂ on the resulting field ρ̂(α) = D̂(−α)ρ̂D̂(α).
Repeating this measurement many times for each value of α, one obtains a
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value of the Wigner function at the given phase-space point α

W (α)
2

= Tr
[
ρ̂(α) P̂

]
= 〈P̂ 〉 =

∞∑
n=0

(−1)nρnn(α) . (6.76)

In order to measure the mean value of the parity operator 〈P̂ 〉 in the
cavity it is enough to send across the cavity a sequence of two-level atoms
with a known velocity. The transition between two levels (denoted as |e〉 and
|g〉, respectively) of each atom is slightly de-tuned from the resonance with
the cavity mode (the frequency mismatch is denoted as ∆). When the cavity
mode is in a Fock state |n〉 the atomic transition frequency is light shifted at
the center of the cavity by Ω2n/2∆ where Ω is the resonant vacuum Rabi
frequency (see for instance [43]). The frequency mismatch ∆ is chosen so that
a single-photon process produces a π-phase shift on an |e〉 → |g〉 transition
during the atom-cavity interaction time (that is dictated by the velocity of
the atom).

As shown by Lutterbach and Davidovich this phase shift can be deter-
mined (measured) by the Ramsey interferometry [44] by subjecting each atom
to two resonant π/2 pulses that mix |e〉 and |g〉 levels of the atom before and
after the interaction with the cavity field. The probability pe (pg) to detect
the atom at the exit from the cavity in the state |e〉 (|g〉) exhibits modulations
with respect to the phase φ of the interferometer. For a cavity that has been
prepared in the vacuum state |0〉 and a proper choice of the phase reference
the probability pe oscillates as pe(φ) = (1+cosφ)/2. The phase shift induced
by the n-photon field is nφ. Correspondingly, the probability to find an atom
in the exited state |e〉 when the cavity mode is displaced by α reads

pe(φ, α) =

[
1 +

∞∑
n=0

(−1)nρn,n(α) cosφ

]
/2

=
[
1 + 〈P̂ 〉 cosφ

]
/2 . (6.77)

From above we see that the Wigner function at the phase-space point α is
directly related to the fringes contrast c(α):

W (α) = 2〈P̂ 〉 = 2c(α)
= 2 [pe(0, α)− pe(π, α)] . (6.78)

In other words the Wigner function of the cavity field is determined from
the expectation values of a measurement performed on the atom after its
interaction with the displaced cavity mode. The attractive feature of this
procedure is that there is no need to perform any further inversion procedure
to determine the value of the Wigner function at the given phase-space point.
On the other hand, to determine the complete Wigner function one has to
“scan” the whole phase space, i.e. one has to displace the original cavity mode
with a continuum set of values of α.
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The group of Serge Haroche from the ENS in Paris has recently re-
ported [45] experimental realization of the Lutherbach-Davidovich method.
The experiment itself has been very challenging since a large dispersive phase
shift per photon had to be achieved. In addition the measurement itself has to
be performed in a time that is shorter than the field damping time. Technical
details of the experiment and the description of the cavity QED setup can be
found in [45] and [46], respectively. In what follows we will utilize the data
obtained in the experiment. In particular, Haroche et al. have performed the
direct measurement of the Wigner function for the vacuum state and the one-
photon Fock state. In their experiment only a finite set of the values W (α) of
the Wigner function for real non-negative α have been measured. In Fig. 6.11
data from the measurement of the Wigner function of a vacuum cavity field
are presented. Analogously, in Fig. 6.12 data from the measurement of the
Wigner function of a single-photon Fock state of the cavity field are shown.

Given the experimental data and a priori knowledge that the cavity mode
is initially prepared in a phase-insensitive state, one might conclude that the
experimental data presented in Figs. 6.11 and 6.12 correspond to the vacuum
state and the one-photon Fock state of the cavity field. Nevertheless, a conser-
vative approach is more appropriate, that is the reconstruction of the Wigner
function has to be warranted only by experimental data (i.e., the mean val-
ues of the parity operator for given values of α) and no further assumptions
should be made. Under this circumstance, we can utilize the reconstruction
scheme based on the principle of Maximum Entropy as described in previous
sections of this chapter. Here the observables are the displaced parity opera-
tors D̂(α)P̂ D̂†(α) for various discrete values of real non-negative parameter
α. In order to use the MaxEnt reconstruction scheme as discussed in Sect. 6.3
we also have to know the mean-value of the photon number operator of the
cavity field. Unfortunately, this operator has not been measured in the ex-
periment, so this number is only estimated from the experimental data. With
these inputs we can perform the reconstruction of Wigner function.

In Fig. 6.13 we present a reconstruction of the Wigner function of the
cavity mode based on the experimental data presented in Fig. 6.11.

The reconstructed Wigner function is asymmetric since the data obtained
from the measurement do not warrant any phase symmetry. The mean-
photon number is not a direct observable, it is not a constraint in the Max-
Ent reconstruction scheme. From the reconstructed Wigner function one ob-
tains the mean-photon number n̄ 	 0.3 and the photon number distribution
Pn 	 {0.88, 0.07, 0.00, . . . }.

In principle one can assume that the measured data are rotationally in-
variant. That is, if in the direction of other rotated quadrature the same mean
values of the displaced parity operator are measured, then utilizing this ad-
ditional (though not warranted by the measured data) information we can
use the MaxEnt principle again and perform the reconstruction with these
additional mean-values of the “measured” parity operators. In Fig. 6.14 we
present the reconstruction of the Wigner function under the assumption that
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Fig. 6.11. Results of the measurement of a set of values W (α) of the Wigner
function of a single-mode cavity field. (a) Ramsey fringes for an injected amplitude
α = 0. Probability pe for detecting the atom in the state |e〉 as a function of the
Ramsey interferometer phase φ/π. Dots are experimental with error bars reflecting
the variance of the binomial detection statistics. The solid curve is a sine fit. (b)
and (c) Ramsey fringes for α = 0.57 and α = 1.25, respectively. (d) Dots represent
experimentally measured values of the Wigner function versus the phase-space pa-
rameter α with error bars reflecting the uncertainty in the Ramsey fringes fit. The
solid line represents a theoretical fit performed by Haroche et al.. (e) Corresponding
photon number distribution. The figure is shown with the kind permission of J.M.
Raimond.
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Fig. 6.12. Results of the measurement of a set of values W (α) of the Wigner
function of a single-mode cavity field. Here a single-photon field has been initially
prepared in the cavity. (a) Ramsey fringes for an injected amplitude α = 0. Prob-
ability pe for detecting the atom in the state |e〉 as a function of the Ramsey
interferometer phase φ/π. Dots are experimental with error bars reflecting the vari-
ance of the binomial detection statistics. The solid curve is a sine fit. (b) Ramsey
fringes for α = 0.81. (c) Dots do represent experimentally measured set of values of
the Wigner function versus the phase-space parameter α with error bars reflecting
the uncertainty on the Ramsey fringes fit. The solid line represents a theoretical fit
performed by Haroche et al.. (d) Inferred photon number distribution. The figure
is shown with the kind permission of J.M. Raimond.
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Fig. 6.13. The Wigner function for the vacuum-like state (with the mean photon
number n̄ = 0.22 determined from the measured data) reconstructed via the Max-
Ent principle. The measured observable - the shifted parity operator - corresponds
to the direct measurement of the Wigner function W (xj , 0) at {xj , j = 1, ..., 10}.
Here I denote xj = α.

the same set of values of the Wigner functions has been measured for 16 val-
ues of angles of rotation. It is interesting to note, that from the reconstructed
Wigner function one obtains the mean-photon number n̄ 	 0.285 and the
photon number distribution is equal to Pn 	 {0.835, 0.084, 0.042, 0.039 . . . }.
That is, from the MaxEnt reconstruction scheme under the given assump-
tions we obtain a non-zero probability of occupation of the Fock state |3〉 that
has not been considered by the authors of the experiment (see [45]). In the
figure we also plot the distributionW (x, 0) that is obtained from the MaxEnt
reconstruction scheme and we compare it with the experimental data (dis-
played as !). We see that the MaxEnt scheme very nicely reconstructs the
Wigner function of the cavity mode. This state is not exactly the vacuum,
but rather a thermal mixture at a very low temperature.

Let us consider the reconstruction of the Wigner function based on the
experimental data presented in Fig. 6.12.

This reconstructed Wigner function is asymmetric (see Fig. 6.15) since
the data obtained from the measurement do not warrant any phase symme-
try. The mean-photon number is not a direct observable, it is not a constraint
in the MaxEnt reconstruction scheme. From the reconstructed Wigner func-
tion one obtains the mean-photon number n̄ 	 0.82 and the photon number
distribution Pn 	 {0.28, 0.70, 0.00, . . . }.

We can again make an assumption about the fact that the displaced par-
ity operator is measured for different values of the phase-space rotations (i.e.
down different rotated quadratures). In this case we can extend the obser-
vation level and perform a new reconstruction via the MaxEnt principle. In
Fig. 6.16 we assume that the displaced parity operator has been measured
for 20 values of phases. That is, we consider 20 rotations of the original dis-
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Fig. 6.14. The Wigner function for the vacuum-like state (with the “measured”
mean value of the photon number n̄ = 0.22) reconstructed via the MaxEnt principle.
The measured observable - the shifted parity operator - corresponds to the direct
measurement of the Wigner function W (xj , 0) at {xj , j = 1, ..., 10}. We consider the
same setting as in Fig. 6.13 but we perform a reconstruction under the assumption
that the distribution W (xj , φn) has been measured for 16 values of the angles, i.e.
φn = nπ/8. In the figure we also plot the distribution W (x, 0) that is obtained from
the MaxEnt reconstruction scheme and we compare it with the experimental data
(displayed as �).

tribution W (xj , 0). For pedagogical purposes we will consider two situations:
first we consider these 20 angles to be chosen randomly. In the second case
the angles are regular, with φn = nπ/10.

Intuitively it is clear that once we extend the observation level, i.e. we
increase the number of angles for which the displaced parity operator is mea-
sured, we should obtain a better reconstruction. This is nicely illustrated in
the lower picture in Fig. 6.16 that really reminds the Wigner function of the
single-photon Fock state. The difference between the upper and lower figures
is only in the distribution of phases. In the upper case phases are random
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Fig. 6.15. The Wigner function for the single-photon-like state (with the “mea-
sured” meanvalue of the photon number n̄ = 0.79) reconstructed via MaxEnt prin-
ciple. The measured observable - the shifted parity operator - corresponds to the
direct measurement of the Wigner function W (xj , 0) at {xj , j = 1, ..., 10}.

in the lower case phases are regular. So the question is why there is such
a difference between the two figures that has been obtained from the same
experimental data and using the same reconstruction scheme. The reason is
purely numerical. In the case of random phases the dimension of the Hilbert
space that is used for the MaxEnt reconstruction has to be larger. The os-
cillations of the reconstructed Wigner function in the top figure have their
origin in a wrong assumption about the dimension of the Hilbert space that
has to be considered in the reconstruction (see discussion in Sect. 6.4). This
example illustrates that one has to be very careful with handling the data.

Finally, in Fig. 6.17 we present a comparison between the reconstructed
distribution W (x, 0) and measured values of W (xj , 0) obtained in the mea-
surement.

6.7 Conclusions

We have shown that the reconstruction of Wigner functions from incomplete
tomographic data can be very reliably performed with the help of the Jaynes
principle of the Maximum Entropy. He have presented a generalized canonical
density operator that is suitable for the incomplete tomographic data. We
have implemented a numerical procedure with the help of which the MaxEnt
reconstruction can be performed. We have compared the MaxEnt scheme
with the sampling via pattern functions. The comparison is very clear - the
MaxEnt approach is much more efficient. It requires less data, it gives the
reconstruction with much higher fidelity and is more stable with respect to the
choice of parameters such as the size of the quadrature bin, or the interval on
which the quadrature distributions are measured. Our empirical experience
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Fig. 6.16. The Wigner function for the one-photon Fock state (with the “mea-
sured” mean value of the photon number n̄ = 0.79) reconstructed via the MaxEnt
principle. The measured observable - the shifted parity operator - corresponds to
the direct measurement of the Wigner function W (xj , 0) at {xj , j = 1, ..., 10}.
The reconstruction of the Wigner function is performed under the assumption that
the distribution W (xj , φn) has been measured for 20 values of the phase, while
W (xj , φm) = W (xj , φn). The upper figure corresponds to the situation when the
angles have been chosen randomly, the bottom figure corresponds to the regular
case when φn = nπ/10.

shows that three rotated quadratures are always sufficient to perform a very
reliable MaxEnt reconstruction of an arbitrary unknown state.

In this chapter the method has been demonstrated on two sets of ex-
perimental data. Firstly, we have reconstructed vibrational states of neutral
atoms. Secondly, we have performed a reconstruction of a single-mode elec-
tromagnetic field inside a high-Q cavity. In both these examples the efficiency
of the proposed method is clearly seen. Recently, our method based on the
Jayne’s principe of maximum entropy has been applied (see [47]) for the tomo-
graphic reconstruction of a complete internuclear quantum state, represented
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Fig. 6.17. The distribution W (x, 0) that is obtained from the MaxEnt reconstruc-
tion scheme of the Fock state |1〉 under two assumptions. The number of angles for
which the distribution W (xj , φn) is 8 (dotted line) and 20 (solid line). We compare
these distributions with the experimental data (displayed as �).

by the Wigner function, of a dissociating I2 molecule based on femtosecond
time resolved position and momentum distributions of the atomic fragments.
These examples illustrates versatility of the MaxEnt reconstruction scheme
and its efficiency it situations when mean values of a restricted set of observ-
ables have been measured.
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