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Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality
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(1)Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, PL-80-952 Gdańsk, Poland
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We investigate the robustness with respect to violation of local realism subsequent to entangle-
ment swapping of partially depolarised states. We consider different configurations of the process
of entanglement swapping. The strength of violation of local realism by the state obtained after
entanglement swapping, is compared with the one for the input states. We obtain a kind of super-
additivity of violation of local realism for Werner states consequent upon entanglement swapping
involving Greenberger-Horne-Zeilinger state measurements. This indicates that checking for vio-
lation of local realism, in the state obtained after entanglement swapping, can be a method for
detecting entanglement in the input state of the swapping procedure.

I. INTRODUCTION

Quantum nonseparability, in its operational sense, is
the existence of states which cannot be prepared by dis-
tant observers acting locally and without any supplemen-
tary quantum channel. So it may seem that particles
which do not share a common past (i.e., which have not
been acted on by an interaction Hamiltonian) cannot be
nonseparable (or entangled). Surprisingly however, two
particles can get entangled even if they do not share a
common past. This is achieved in entanglement swap-
ping [1, 2, 3, 4]. The phenomenon was experimentally
confirmed in [5].
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FIG. 1: Entanglement swapping between two states.

Let us first describe very briefly the phenomenon of en-
tanglement swapping. Suppose Alice and Bob share an
entangled state. Similarly Claire and Danny also share
some entangled state. See Fig. 1. Now the question is as
follows: Can it be possible that Alice’s and Danny’s par-
ticles become entangled without an interaction between
their particles?

In Refs. [1, 2, 3, 4], the authors have shown that the
answer is Yes. If their partners Bob and Claire (whose
particles are entangled with the particles of Alice and
Danny respectively) come together and make a measure-
ment in a suitable basis and communicate their measure-
ment results clasically (say, by phone call), then Alice’s
and Danny’s particles may become entangled.

A simple example of this phenomenon can be seen if
one has two singlets, 1√

2
(|01〉 − |10〉), one of which is

shared by Alice and Bob, and the other by Claire and
Danny. Now Bob and Claire make jointly a projection
measurement (on their parts of the two singlets) in the
Bell basis, which is given by (with the + sign applying
to states with odd indices)

|B1,2〉 = 1√
2
(|00〉 ± |11〉),

|B3,4〉 = 1√
2
(|01〉 ± |10〉). (1)

It is easy to check that if Bob and Claire communicate
(over a classical channel) the result of their measurement
to Alice and Danny, they will know that they share one
of the Bell states given by Eq. (1). Note, that depend-
ing on the measurement results, unitary operations σx,
σy, σz , or I may be performed by Alice (or Danny) on
her (his) qubit to obtain just a singlet. (I is the identity
operator on the qubit Hilbert space, and σx, σy , σz are
the Pauli matrices.) The particles of Alice and Danny
are completely independent, and nevertheless they share
entanglement after Bob and Claire’s Bell measurement
(and sending its outcome to them). Note that entangle-
ment swapping can be seen as a specific case of telepor-
tation [6]. In the entanglement swapping process, Bob
and Claire make a measurement on their systems and
send (teleport) the qubit (say, Bob’s subsystem) through
a channel to Danny. And after communication to Danny,
Alice and Danny share an entangled state. Actually, if
all the parties agree on the desired output state of the
swapping procedure, Bob and Claire can communicate
their results only to Danny, and Alice does not need to
know the content of the communication.

In this paper, we investigate various entanglement
swapping schemes which involve non-perfect initial
states. These will be, for simplicity, modeled as partially
depolarised states [7]. We shall also investigate to what
extent the states resulting out of the entanglement swap-
ping process violate local realism. We address the case
where the swapping itself (i.e., the measurement required
for swapping) is perfect.

The parent states considered here are the Werner mix-



2

tures of certain pure states (say |ψ〉, shared between n
partners) and the white noise [7]:

̺ = p |ψ〉 〈ψ| + (1 − p)̺noise.

The parameter p will be called here visibility. Clearly it
shows to what extent the processes that can be described
to |ψ〉 are operationally visible despite the presence of
noise. It can be associated with the notion of visibility in
multipartite interference experiments. We shall study the
relation of the visibility parameter for the initial states,
and the states after swapping. This will be done in vari-
ous configurations:

1. Chain configuration: A chain of entanglement
swappings involving initially a sequence of pairs
(sharing the parent states). Bell measurements, i.e.
measurements projecting onto the Bell states given
by Eq. (1), are performed upon two particles of
all adjacent pairs (see Fig. 2 for the case of two
entanglement swappings with three pairs). This is
described in section II.

2. Star configuration: A generalized entanglement
swapping involving initially N parent states (each
consisting of M particles). An N qubit GHZ state
measurement [8] is made on N qubits, each belong-
ing to a different state. This is dicussed in sec-
tion III. GHZ state measurement projects onto the
GHZ basis. The 3-qubit GHZ basis, for example,
consists of the states

G1,2 = 1√
2
(|000〉 ± |111〉),

G3,4 = 1√
2
(|100〉 ± |011〉),

G5,6 = 1√
2
(|010〉 ± |101〉),

G7,8 = 1√
2
(|001〉 ± |110〉),

(2)

where again the + sign applies to states with odd
indices. Similarly one may define an N -qubit GHZ
basis by considering the binary decompositions of
2N − 1.

We shall be interested in whether the resulting states
in different forms of entanglement swapping are nonclas-
sical. As our bench-mark of nonclassicality, we shall use
the threshold value of visibility allowing for violation of
suitable Bell inequalities [9, 10]. That is, we compare the
critical visibility for violation of local realism of the state
obtained after entanglement swapping, with the critical
visibility for violation in the input state (parent state)
itself. We obtain a kind of superadditivity in violation of
local realism, for the case of Werner states in the Hilbert
space of dimension 2 ⊗ 2, consequent to entanglement
swapping in a specific scenario (section III F). In the
concluding section (section IV), we find that such super-
additivity exists for other states also in suitably chosen
configurations of entanglement swapping. We indicate
that checking for violation of local realism in the state
obtained after entanglement swapping in suitably chosen
configurations, can be an efficient entanglement witness
for the input state (of the swapping procedure).

II. CHAIN CONFIGURATION OF

ENTANGLEMENT SWAPPING

In this section, we will compare the visibilities of the
input state to that of the swapped state, in the case of
entanglement swapping between pairs of states in a chain
configuration. See Fig. 2 for the case of two entanglement
swapping of three pairs of states in a chain.

A. Swapping in a chain of two states: “Loss” in the

region of violation of local realism

Let us begin by considering the case of entanglement
swapping between two pairs. Consider the 2 ⊗ 2 dimen-
sional Werner state [11]

ρ = p |B1〉 〈B1| + (1 − p)ρ
(2)
noise. (3)

(In this paper, we denote the completely depolarised

state of n qubits, In/2
n, as ρ

(n)
noise, where In is the iden-

tity operator of the Hilbert space of n qubits.) The state
ρ is entangled when p > 1

3 , but the state violates local

realism only for p > 1√
2
. Let Alice (A) and Bob (B) share

the state ρ, and let Claire (C) and Danny (D) also share
such a state [12]. Bob and Claire (who are together)
make a measurement on their part of the two states, in
the Bell basis {Bi} given by eqs. (1) (see Fig. 1). We
are interested in whether the state of the qubits of Alice
and Danny after the swap, violates local realism. After
the Bell measurement, if the measurement result is B1,
the state shared by Alice and Danny is a Werner state of
the form

ξ
(2)
AD = p2 |B1〉 〈B1| + (1 − p2)ρ

(2)
noise.

Since ξ
(2)
AD is a Werner state, it is entangled for p > 1√

3
,

but violates local realism when p >
(

1
2

)
1
4 . Of course,

the same condition is obtained for the other Bell mea-
surement outcomes. Therefore the region in which the

final state ξ
(2)
AD violates Bell inequalities is strictly con-

tained in the region in which the initial state ρAB has
the same property. We see that there is a region of p,

namely p ∈ ( 1√
2
,
(

1
2

)
1
4 ), for which the output state will

not be able to show any violation of local realism (but it
is still entangled), whereas the input states do violate in
that region. Therefore we have a “loss in the region of
violation of local realism” after entanglement swapping.

B. Chain of three states: Further “Loss”

Let us next consider swappings between three Werner
states, each of dimension 2 ⊗ 2. This can be considered
in two different scenarios. It can be either in a chain,
scenario as considered below, or it can be in a “star”
scenario [2], as considered in the section III.



3

Suppose A and B share the Werner state ρ given by
Eq. (3). And so does C and D as well as E and F. If
we now consider the “chain” configuration (schematically
represented in Fig. 2), where B and C (as well as D

r

A B C D E F

r r r r r

FIG. 2: A chain of two swappings. Boxes represent Bell basis
measurements that have been performed by B, C and D, E.

and E) come together to perform Bell measurements (in
Fig. 2, it has been shown by boxes), the swapped state
between A and F is

p3 |B1〉 〈B1| + (1 − p3)ρ
(2)
noise, (4)

which is again a Werner state. The swapped state vi-

olates local realism for p >
(

1
2

)
1
6 . Therefore from the

perspective of violation of Bell inequalities, we have a
further “loss”, in the sense described in the preceeding
subsection.

C. Chain of N states: “Loss” increases with N

This phenomenon of “loss” becomes more and more
pronounced as the number of swappings is increased.
Starting with N initial Werner state shared between Ak

and Bk (k = 1, 2, . . . , N), the swapped state between A1

and BN (after Bell measurements performed by B1A2,
B2A3, . . ., BN−1AN ) is again the Werner state

pN |B1〉 〈B1| + (1 − pN)ρ
(2)
noise.

Hence the swapped state violates local realism for

p >

(

1

2

)
1
N

.

Therefore in the case of a series of a large number of
entanglement swappings, the swapped state can violate
local realism only when initial state is almost pure.

Note that if we consider a chain of N Werner states
with different visibilities, i.e. if

pk |B1〉 〈B1| + (1 − pk)ρ
(2)
noise

is shared between Ak and Bk (k = 1, 2, . . . , N), then the
swapped state between A1 and BN is the Werner state

p1p2 . . . pN |B1〉 〈B1| + (1 − p1p2 . . . pN )ρ
(2)
noise.

Therefore, again we have that the region of violation
of local realism of the swapped state is strictly smaller
than the region of violation of the parent states in the
(p1, p2, . . . , pN)-space. The former is vanishing when for
sufficiently large N .

III. A STAR CONFIGURATION

ENTANGLEMENT SWAPPING

In this section, we consider entanglement swapping in
a different configuration, than that was considered in sec-
tion II. We assume a multiparty situation in which ini-
tially disjoint subsets of parties share entangled states.
In the next stage, single representatives of each subset
of parties meet together and perform a GHZ-state mea-
surement. The result of the measurement is sent to the
remaining parties. This procedure results in an entangled
state shared by them. We shall call this type of entan-
glement swapping as entanglement swapping in a “star
configuration”.

A. A star swapping between three states

Consider entanglement swapping in a “star” configu-
ration for three parent states (as is schematically repre-
sented in Fig. 3). Suppose that pairs AB, CD and EF,
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FIG. 3: A star configuration swapping. A GHZ basis mea-
surement is performed on A, C, and E. This is represented by
a box.

each share the same Werner state ρ = p |B1〉 〈B1| + (1 −
p)ρ

(2)
noise. A, C, and E come together and perform a mea-

surement in their 2⊗ 2⊗ 2 dimensional Hilbert space, in
the GHZ basis as given in Eq. (2). After the measure-
ment, if G1 clicks, then B, D, F share the state

ξ
(3)
BDF = p3 |G1〉 〈G1| + (1 − p2)ρ

(3)
noise

+ 1
2p

2(1 − p)(|000〉 〈000|+ |111〉 〈111|). (5)

Other measurement results give the same state upto local
unitary transformations. Note that the swapped state
now is not a mixture of white noise and |G1〉 〈G1| only
and this is so whenever p 6= 1.

We will now use the Mermin-Klyshko (MK) inequali-
ties to study the violation of local realism by the swapped
state (see Appendix).

Let us first calculate tr
(

B3ξ
(3)
BDF

)

. (See Eq. (A1).)

Suppose that the observables are chosen from the x−y-
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plane [13]. That is, we choose

σaj
= |+, φj〉 〈+, φj| − |−, φj〉 〈−, φj |

σa
′

j
=

∣

∣

∣
+, φ

′

j

〉〈

+, φ
′

j

∣

∣

∣
−

∣

∣

∣
−, φ′

j

〉〈

−, φ′

j

∣

∣

∣
,

(6)

where

|±, φj〉 = 1√
2
(|0〉 ± eiφj |1〉)

∣

∣

∣
±, φ′

j

〉

= 1√
2
(|0〉 ± eiφ

′

j |1〉).

The only term in the state given by (5), that will con-

tribute to the expression tr
(

B3ξ
(3)
BDF

)

, is

p3

2
(|000〉 〈111|+ |111〉 〈000|).

(This observation would help us in the more general cases
that we consider in the succeeding subsections.)

For the GHZ state |G1〉 = 1√
2
(|000〉+ |111〉), one has

max tr (B3 |G1〉 〈G1|) = 2,

and this maximal violation of local realism by the GHZ
state is reached in the x − y-plane. The contribution to
tr (B3 |G1〉 〈G1|) is only from the term 1

2 (|000〉 〈111| +
|111〉 〈000|). Therefore the maximal value reached by

tr
(

B3ξ
(3)
BDF

)

, for any choice of φj and φ
′

j by the par-

ties, is

max tr
(

B3ξ
(3)
BDF

)

= 2p3. (7)

Consequently, the state ξ
(3)
BDF violates a MK inequality

for max tr(B3ξ
(3)
BDF ) > 1, i.e. for

p >

(

1

2

)
1
3

≃ .7937.

Our initial Werner state ρ violates Bell inequalities when

p >
1√
2
≃ .7071.

One should compare this with the case of entanglement
swapping between two Werner states, where the swapped
state gives violation for

p >

(

1

2

)
1
4

≃ .8409.

In considering violation of local realism by the state

ξ
(3)
BDF , we have used only the Mermin-Klyshko inequal-

ities. However in this case, one can also consider the
WWWZB inequalities [14, 15, 16], which are a necessary
and sufficient condition for the violation of local realism
by the N -qubit correlations of an arbitrary state of N
qubits, when there are two settings at each site.

Let us first define the correlation tensor for N -qubit
states. An N -qubit state ρ can always be written down
as

1

2N

∑

x1,...,xN=0,x,y,z

Tx1...xN
σ(1)

x1
⊗ . . .⊗ σ(N)

xN
, (8)

where σ
(k)
0 is the identity operator and the σ

(k)
xi ’s (xi =

x, y, z) are the Pauli operators of the k-th qubit. The
coefficients

Tx1...xN
= tr(ρσ(1)

x1
⊗ . . .⊗ σ(N)

xN
), (xi = x, y, z) (9)

are elements of the N -qubit correlation tensor T̂ and they
fully define the N -qubit correlation functions of the state
ρ.

Consider now the state ξ
(3)
BDF , obtained via entangle-

ment swapping, as given in Eq. (5). One can check that

the three-qubit correlation tensor T̂ of this state, contains
only those terms which are also present for the GHZ state

G1. Precisely, the correlation tensor T̂ of ξ
(3)
BDF , is given

by

T̂
ξ
(3)
BDF

= p3(~x1 ⊗ ~x1 ⊗ ~x1 − ~x1 ⊗ ~x2 ⊗ ~x2

−~x2 ⊗ ~x1 ⊗ ~x2 − ~x2 ⊗ ~x2 ⊗ ~x1),

whereas the correlation tensor of the GHZ state G1 is
just

T̂G1 = ~x1 ⊗ ~x1 ⊗ ~x1 − ~x1 ⊗ ~x2 ⊗ ~x2

−~x2 ⊗ ~x1 ⊗ ~x2 − ~x2 ⊗ ~x2 ⊗ ~x1,

where ~x1 = ~x and ~x2 = ~y. Hence, when the quantum
correlation function is computed by inserting T̂

ξ
(3)
BDF

into

the generalised Bell inequality of WWWZB, one gets the
value which is by factor 2p3 greater than the one allowed
by local realism. This is because for the GHZ state, the
value is by factor 2 greater than the one allowed by lo-
cal realism. This maximal value (2p3) is attained in the
x − y plane, and was already obtained (in Eq. (7)) for

the state ξ
(3)
BDF , when we considered the MK inequali-

ties. Therefore the state ξ
(3)
BDF violates local realism for

p > (1/2)1/3. Moreover, from our considerations of the
WWWZB inequalities, we have that for lower values of

the parameter p, the three-qubit correlations of ξ
(3)
BDF

have a local realistic model for two measurement settings
at each site.

B. Other forms of the star configuration of

swapping

In the preceeding subsection, we have shown that the
“star configuration” leads to stronger resistance to noise
admixture than with Bell measurements in the “chain
configuration” (discussed in section II). The parent
states that we considered (in the preceeding subsection)
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were bipartite states. Let us now consider the case of en-
tanglement swapping with measurements in a GHZ basis,
when the parent states are multipartite states.

Consider therefore the state

ρ3 = F |G1〉 〈G1| + (1 − F )ρ
(3)
noise

where |G1〉 = 1√
2
(|000〉+ |111〉). This state violates local

realism for

F >
1

2
.

Let two such states be shared between A, B, C and D,
E, F, with A and D placed together (Fig. 4). A and D
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FIG. 4: A star configuration swapping. A Bell measurement
is performed on A and D which is denoted by a box.

make a Bell measurement on their parts of the two states.
After the measurement, the resulting state violates the
MK inequalities in the x− y-plane, for

F >
(

2
3
2

)− 1
2 ≃ .5946.

Note here that we do not need the explicit form of the
state. The terms that contribute to the violation of
MK inequality in the x− y-plane are |0 . . . 0〉 〈1 . . . 1| and
|1 . . . 1〉 〈0 . . . 0|.

With three ρ3’s, and a swapping in the 3-qubit GHZ
basis (given in Eq. (2)) on the 3 qubits (one from each
of the ρ3’s) (see Fig. 5), the MK inequality is violated in
the x− y-plane for

F >
(

2
5
2

)− 1
3 ≃ .5612.

Thus the following picture is emerging: entanglement
swapping involving GHZ measurements is less fragile (to
violation of local realism) than Bell measurements, with
repect to the noise admixtures in the initial states.

C. The general star configuration entanglement

swapping

We will now generalize the entanglement swapping pro-
cess in the star configuration. Consider the following M -
qubit state:

ρM = V |GHZM 〉 〈GHZM | + (1 − V )ρ
(M)
noise (10)

@
@

@
@@

r

r

r

B11

B12

A1

�
�

�
��

�
�

�
��

@
@

@
@@

r

r

r

B21

B22

A2

�
�

�
��

@
@

@
@@

r

r r

B31 B32

A3

FIG. 5: A star configuration swapping. A1, B11, B12 and
A2, B21, B22 and A3, B31, B32 share noisy GHZ states. All
B’s are at distant locations but A’s are in the same lab. A
GHZ basis measurement is performed by A1, A2, and A3, as
depicted in the figure by a box.

where |GHZM 〉 = 1√
2

(

|0〉⊗M
+ |1〉⊗M

)

. Take N copies

of ρM . The i-th copy (i = 1, 2, . . . , N) is shared between
Ai and Bi1, Bi2, . . . , Bi(M−1). We suppose that all Ais
are at the same location of the observer called Alice. (The
schematic diagram in Fig. 5 is drawn when both N and
M are three.) She makes a measurement in the N -qubit
GHZ basis. (See Eq. (2) for the three qubit GHZ basis.)
As in the previous cases, we take the observables in the
x − y-plane, i.e., the ones given by Eq. (6), in the MK
inequality. Here also we do not need the explicit form of
the state. The terms that contribute to the violation of
MK inequality in the x− y-plane are |0 . . . 0〉 〈1 . . . 1| and
|1 . . . 1〉 〈0 . . . 0|. Therefore we obtain that the resulting
N(M − 1)-qubit state violates this inequality for

V > V
(M)
N ≡

(

2
N(M−1)−1

2

)− 1
N

. (11)

This expression is easily obtained once we remember our
observation for the derivation of Eq. (7) [17].

D. There is no loss in the asymptotic regime

We remember that our parent state ρM , as given in
(10), violates local realism for

V >

(

1√
2

)M−1

.

Note that V
(M)
N (as given by Eq. (11)) is monotonically

decreasing with respect to N . A plot of the critical vis-

ibility V
(M)
N for M = 2, that is the visibility obtained

when the swapping in a star configuration is performed
on N number of copies of two qubit Werner states, is
given in Fig. 6. It clearly shows the monotonic decrease
of the critical visibility in N .
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N

FIG. 6: (a) Plot of the critical visibilities V
(M)

N for M = 2
(the stars). This is the critical visibility required (in the par-
ent state) for violation of local realism by the swapped state,
in the case when one representative from each of N Werner
states (Eq. (3)) come together to perform an entanglement
swapping in the N-qubit GHZ basis (see Fig. 7). The vio-
lation of local realism in the swapped state is considered by
using the MK inequalities. (b) The critical visibility V

f
N (the

diamonds) is the that for violation of local realism by consider-
ing functional Bell inequalities in the same N-qubit swapped
state. The figure shows their relative monotonic decrease in
N .

Thus the system is surprisingly robust to noise admix-
ture, with respect to violation of local realism in the fol-
lowing sense. The amount of (white) noise that the par-
ent state can afford so that the state after entanglement
swapping still violates local realism, increases monotoni-
cally as we consider swapping between higher number of
parties, in a star configuration. Moreover, one has

V
(M)
N →

(

1√
2

)M−1

as N → ∞.

This shows that the amount of noise that the parent state
can afford, so that the state obtained after entanglement
swapping violates the MK inequality, in the asymptotic
limit of arbitrarily large number of subsystems (in the
way considered above, that is in the star situation), co-

incides with the amount of noise that can be afforded
by the parent state itself to violate local realism. The
loss in the region of violation of local realism is more
and more recovered as we consider entanglement swap-
ping between higher and higher number of parties and
ultimately in the asymptotic limit, there is no loss in the
region of violation of local realism.

In this general situation, the state obtained after per-
forming the entanglement swapping, is an incoherent
mixture of some product states and a “weakened” GHZ
state (i.e., a GHZ state admixed with white noise). The
product states contribute only to the Tz...z component of
the the correlation tensor T̂ (cf. Eq. (9)) of the state ob-
tained after entanglement swapping. Here we have con-
sidered violation of the MK inequalities (by the state

obtained after swapping) only in the x − y-plane. This
is because the gradual reduction of loss of the region of
violation of local realism after entanglement swapping,
and disappearance of this loss asymptotically, is already
obtained in this plane. However we do not rule out a
faster reduction of loss if all the WWWZB inequalities
are considered.

From the perspective of the recent works indicating
that Bell inequality violation is a signature of “useful en-
tanglement” [18, 19, 20, 21], our result here can be also
viewed as showing (in a particular case) that in an en-
tanglement swapping process, this useful entanglement
is lost, but this loss may be asymptotically vanishing.
Below in sections III E and III F, we will show that use-
ful entanglement can even be “gained” in an entangle-
ment swapping process, and this gain can be possible
even without going into the asymptotic regime. Here by
“gain”, we mean a situation in which the swapped state
violates local realism, even when the parent state does
not violate. That is, there exists values of the visibility
V , for which the parent states do not, while the swapped
state does violate Bell inequalities after performing the
swap. We will perform the swapping in a star configura-
tion.

E. Star entanglement swapping in the light of

functional Bell inequality

The Bell inequalities we have considered upto now are
the ones in which there is only a finite number of (in
fact, two) settings per local site. However there are Bell
inequalities in which one may consider even a continuous
range of settings of the local apparatus, as described in
Appendix A2.

Let us consider violation of local realism by the
swapped state as revealed by a functional Bell inequality.
For simplicity, let us consider the parent states to be a
two-qubit state, although all our considerations can be
generalised to a parent state of higher number of qubits.
Suppose therefore that the Werner state, given by Eq.
(3), is shared between two parties, A and B. Numerical
calculations have indicated that the Werner state vio-
lates local realism for p > 1√

2
even for a high number of

settings per observer [22, 23]. We use as a working hy-
pothesis that p = 1√

2
is indeed the threshold value below

which there exist an explicit local realistic model which
returns the quantum predictions for the continuous range
of settings.

Consider now the “star” configuration described be-
fore, where A1B1, A2B2, . . ., ANBN share N Werner
states, each given by Eq. (3) (see Fig. 7). The Ai’s
come together and perform a measurement in the N -
qubit GHZ basis (see Eq. (2)) as has been discussed
previously. We will now consider violation of local real-
ism of the swapped state, by using the functional Bell
inequalities.
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FIG. 7: N Werner states are distributed between Ai and
Bi (for i = 1, 2, . . . , N) and a GHZ basis measurement is
performed at A1, A2, . . . , AN .

Consider the local observable at the jth location to be

σaj
(φj) = |+, φj〉 〈+, φj | − |−, φj〉 〈−, φj | . (12)

where

|±, φj〉 =
1√
2

(

|0〉 ± eiφj |1〉
)

. (13)

The aggregate ξj of local parameters, in the functional
Bell inequality, at the jth site is just the single parameter
φj here. One can now easily show that the swapped state
violates local realism (by violating the functional Bell
inequality with the observables as defined in Eq. (12))
for [24, 25, 38]

p > V f
N ≡ 2

π
(2)

1
N . (14)

V f
N is plotted in Fig. 6 and compared with the critical

visibility V
(2)
N , for the same swapped state, but when

violation of the MK inequalities are considered.

F. A kind of superadditivity for Werner states

There is an important consequence of the relation (14).

For N ≥ 7, the critical visibility V f
N is strictly less than

1√
2
, which is the critical visibility for the Werner state to

violate local realism (on the basis of the multi-settings
numerical results in Ref. [22]).

Therefore, in the process of entanglement swapping,
there seems to be a kind of superadditivity with respect
to violation of local realism. Suppose Alice shares 7
Werner states with 7 Bobs, B1, . . ., B7. Each of the
states is given by Eq. (3), with a visibility p ∈ ( 2

π ,
1√
2
).

Such Werner states do not violate local realism [22]. Now
suppose that Alice makes a measurement in the gener-
alised GHZ basis and communicates her result to all the
Bobs, over a classical channel. The state created at the

Bobs, violates local realism (by violating the functional
Bell inequality, as discussed above) for (cf. (14))

p >
2

π
(2)

1
7 ≃ .7029,

which is strictly less than 1√
2

≃ .7071. Yet for such

visibilities which are lower than 1√
2
, any single pair of

particles shared between Alice and any one Bob, will not
be able to violate local realism. (Recall that we have
assumed that taking more settings at each site does not
help to improve the critical visibility of violation of local
realism by the Werner state [22].) It is in this sense that
we obtain a kind of “superadditivity” in violation of local
realism.

For sufficiently large N ,

V f
N → 2

π
≃ .6366.

Let us note here a surprising coincidence. An ex-
plicit construction of local hidden variable model for the
Werner state exists (till date) for all possible projection
measurements by the two parties, for just p ≤ 2

π [26, 27].
It must be stressed that the kind of superadditivity

obtained here is not related to a distillation protocol
[28]. As distinct from a distillation protocol, we do not
consider measurements depending on previous measure-
ments. Also in our case, only the Alices are together
while the Bobs can be far apart (collective operations are
required on both ends in the usual distillation protocols).

In Ref. [29], two Werner states shared by A1B1 and
A2B2, respectively, are shown to violate local realism,
although the individual states are non-violating. But in
Ref. [29], collective tests are required at both ends. That
is, both A1 and A2, and B1 and B2 are required to be to-
gether. In our case, although the Alices must be together,
the Bobs are separated. Therefore the “superadditivity”
reached in this subsection is of a different kind than the
one in Ref. [29].

IV. DISCUSSION

We have shown (under a plausible assumption) that
if the initial state has a local realistic model, after per-
forming entanglement swapping, the final swapped state
can violate local realism. This was obtained by using the
initial states as Werner states. We regard this as a kind
of superadditivity for Werner states.

However, there can be a general question: Consider
a state that is entangled and yet does not violate local
realism. Is it possible to show that there exists some
entanglement swapping process, after which the swapped
state will violate local realism?

The “star” configuration entanglement described in
this paper, gives a positive answer to this question for
the case of Werner states in certain ranges of the vis-
ibility parameter (under a plausible assumption). Can



8

such configurations be obtained in other cases also? Can
this be a general method of obtaining violation of local
realism?

In this respect, let us consider another interesting ex-
ample. The state

ρλ = λ |ψ〉 〈ψ| + 1 − λ

2
(|00〉 〈00| + |11〉 〈11|), (15)

where |ψ〉 = a |01〉 − b |10〉 (and λ > 1
2(1−ab) ), is entan-

gled whenever λ > 1/(1+2ab) [30]. For λ ≤ 1/(1+a2b2),
this state does not violate any Bell inequality. However,
despite the fact that for λ ∈ ( 1

(1+2ab) ,
1

(1+a2b2) ), the state

ρλ can be modelled with local hidden variable models, it
was shown in Ref. [31] that after a suitable local filter-
ing operations, the resulting state violates local realism.
Since the required operations are local, one may interpret
this result as a sort of “self-superadditivity”.

Consider the following entanglement swapping process.
Assume that there are four observers Alice, Bob, Claire
and Danny. Alice and Bob share a state ρλ, and so do
the other two. After a Bell measurement performed by
Bob and Claire, (whom we are at the same location), if
the measurement result is |B1〉, the state at AD, collapses
into

ξ
(ρλ)
AD = 1

A [λ2a2b2

2 |B1〉 〈B1|
+ (1−λ)2

8 )(|00〉 〈00|+ |11〉 〈11|)
+ λ(1−λ)

2 (a2 |01〉 〈01| + b2 |10〉 〈10|)] ,
(16)

where A = λ2a2b2 + (1 − λ2)/4. This state violates local
realism for

λ >
1

√

1 + 4(
√

2 − 1)a2b2
.

Therefore the region of violation of local realism for the

swapped state ξ
(ρλ)
AD is strictly greater than that for the

parent states (that is, for ρλ). Recall that in Ref. [31],
it was shown that one can obtain a nonclassical state,
after operating locally on an input classical state. Here
we have used a different method to obtain the same end:
after performing entanglement swapping on two copies of
the input classical state, the swapped state can violate
local realism.

Note that the “superadditivity” reported in this sec-
tion (for the state ρλ), as also in section III F (for the
Werner states), is of a different kind than in Ref. [31].

Importantly, note here that the superadditivity re-
ported in section III F, is for Werner states. And for
Werner states, one cannot reproduce the kind of “self-
superadditivity” by using local filtering operations [32],
as was done in [31].

From these examples, it seems that it may be a generic
feature that an entangled state which satisfies local re-
alism, will violate local realism after a suitable entan-
glement swapping procedure. If this is true, then this

method can be used to detect entanglement in the labo-
ratory. Suppose Alice and Bob who are in a different lo-
cations, share some state. They want to find out whether
their shared state is entangled or not. One way is to
do a Bell experiment and find whether their state vio-
lates local realism. If the state violates local realism,
then they conclude that their state is entangled. If the
state does not violate local realism, they cannot infer
anything about the entanglement of the state. However
Alice and Bob can apply the method discussed in this pa-
per. They can perform entanglement swapping on some
copies of the state in a suitable configuration, and then
check whether the resulting state violates local realism.
If yes, then they can infer that the input state was en-
tangled.
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APPENDIX A: BELL INEQUALITIES

For obtaining violation of local realism by the swapped
state, we will consider two different types of multipartite
Bell inequalities: multiparticle Mermin-Klyshko inequal-
ities [33, 34, 35, 36, 37]. (subsection A1) and the func-
tional Bell inequality [38] (subsection A2).

1. The Mermin-Klyshko inequalities

A Bell operator for the so-called Mermin-Klyshko
(MK) inequality for N qubits (shared between observers
A1, A2, . . ., AN ) can be defined recursively as [39]

Bk =
1

2
Bk−1⊗(σak

+σa
′

k

)+
1

2
B

′

k−1⊗(σak
−σa

′

k

), (A1)

with B
′

k obtained from Bk by interchanging ak and a
′

k,
and

B1 = σa1 and B
′

1 = σa
′

1
.

The party Aj is allowed to choose between the mea-

surements σaj
and σa

′

j
. Here ~aj and ~a

′

j are two three-

dimensional unit vectors (j = 1, 2, . . . , N), and for exam-
ple, σaj

= ~σ. ~aj , ~σ = (σx, σy, σz).
An N -qubit state η violates MK inequality if

tr (BNη) > 1.
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2. The functional Bell inequalities

To study the violation of local realism of the swapped
state, we will (along with the MK inequalities) also con-
sider the functional Bell inequalities [38].

The functional Bell inequalities [38] essentially fol-
low from a simple geometric observation that in any
real vector space, if for two vectors h and q one has
〈h | q〉 <‖ q ‖2, then this immediately implies that h 6= q.
In simple words, if the scalar product of two vectors has
a lower value than the length of one of them, then the
two vectors cannot be equal.

Let ̺N be a state shared between N separated parties.
Let On be an arbitrary observable measured at the nth
location (n = 1, . . . , N). The quantum mechanical pre-
diction EQM for the correlation in the state ̺N , when
these observables are measured, is

EQM (ξ1, . . . , ξN ) = tr (O1 . . .ON̺N) , (A2)

where ξn is the aggregate of the local parameters at the
nth site. Our objective is to see whether this prediction
can be reproduced in a local hidden variable theory. A
local hidden variable correlation in the present scenario
must be of the form

ELHV (ξ1, . . . , ξN ) =

∫

dλρ(λ)ΠN
n=1In(ξn, λ), (A3)

where ρ(λ) is the distribution of the local hidden variables
and In(ξn, λ) is the predetermined measurement-result
of the observable On(ξn) corresponding to the hidden
variable λ.

Consider now the scalar product

〈EQM | ELHV 〉 =
∫

dξ1 . . . dξNEQM (ξ1, . . . , ξN )ELHV (ξ1, . . . , ξN )
(A4)

and the norm

‖ EQM ‖2=

∫

dξ1 . . . dξN (EQM (ξ1, . . . , ξN ))2 . (A5)

If we can prove that a strict inequality holds, namely for
all possible ELHV , one has

〈EQM | ELHV 〉 ≤ B, (A6)

with the number B <‖ EQM ‖2, we will immediately
have EQM 6= ELHV , indicating that the correlations in
the state ̺N are of a different character than in any local
realistic theory. We then could say that the state ̺N

violates the “functional” Bell inequality (A6), as this Bell
inequality is expressed in terms of a typical scalar product
for square integrable functions. Note that the value of the
product depends on a continuous range of parameters (of
the measuring apparatuses) at each site.
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[14] H. Weinfurter and M. Żukowski, Phys. Rev. A 64, 010102

(2001).
[15] R.F. Werner and M.M. Wolf, Phys. Rev. A 64, 032112

(2001).
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[20] Č. Brukner, M. Żukowski, and A. Zeilinger, Phys. Rev.
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