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Entangled graphs: Bipartite entanglement in multiqubit systems
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Quantum entanglement in multipartite systems cannot be shared freely. In order to illuminate basic rules of
entanglement sharing between qubits, we introduce a concept of an entangled stgrephesuch that each
qubit of a multipartite system is associated with a pougrteX, while a bipartite entanglement between two
specific qubits is represented by a connecfiedge between these points. We prove that any such entangled
structure can be associated withpare state of a multiqubit system. Moreover, we show that a pure state
corresponding to a given entangled structure is a superposition of vectors from a subspace of the
2N-dimensional Hilbert space, whose dimension grdiwsarly with the number of entangled pairs.
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[. INTRODUCTION Dur has considered just the condition of inseparability for
given set of pairs, but he did not impose a strict condition of
The entanglement is a key ingredient of quantum mecharseparability for the remaining pairs of qubits.
ics [1,2]. In the last decade, it has been identified as a key Following these ideas we analyze in the present paper an
resource for quantum information processing. In particularobject, entangled structure, which will be called through the
guantum computatiof8,4], quantum teleportatiofs], quan-  Paper as thentangled graptp16]. In the graph, each qubit is
tum dense codinfg], certain types of quantum key distribu- represented as a vertex and an edge between two vertices
tions[7], and quantum secret sharing protod@are based denotes entanglement between these two partisiescifi-
on the existence of entangled states. cally, the corresponding two-qubit density operator is insepa-
The nature of quantum entanglement between two qubit&abl®. The central issue of the paper is to show that any
is well understood by now. In particular, the necessary an@ntangled graph witiN vertices anck edges can be associ-
sufficient condition for inseparability of two-qubit systems ated with apure multiqubit state. We prove this result con-
has been derived by Per¢8] and Horodeckiet al. [10]. ~ Structively, by showing the explicit expression of corre-
Reliable measures of bipartite entanglement have been intréPonding pure states. We show that any entangled grajsh of
duced and well analyze@ee for instance Reffl1,17). On qubits can be represented by a pure state from a subspace of
the other hand, it is a very difficult task to generalize thethe whole 2'-dimensional Hilbert space dfl qubits. The
analysis of entanglement from two to multipartite systemsdimension of this subspace is at most quadratic in number of
The multipartite entanglement is a complex phenomenondubits.
One of the reasons is that quantum entanglement cannot be

shared f_reely among many particles. For inst.ance, _having Il SIMPLE EXAMPLE
four qubits, we are able to prepare a state with ®oits
(two Bell pairs, as an examplebut not more. This means In general, arN-partite system can exhibit various types

that the structure of quantum mechanics imposes striadf multipartite correlations, ranging from bipartite entangle-
bounds on bipartite entanglement in multipartite systemsment to intrinsic multipartite correlations of the Greenberger-
This issue has been first addressed by Woottesd. [13,14] Horne-Zeilinger(GHZ) nature. Correlations associated with
who have derived important bounds on shared bipartite erthe system specify its stateertainly, this specification is not
tanglement in multiqubit systems. In fact, one can solve anecessarily uniqye Ideally, we would like to know the
variational problem to answer a question: What is a pureavhole hierarchy of quantum correlations in the multipartite
multipartite state with specific constraints on bipartite en-system. We are able to determine and quantify bipartite
tanglement? O’Connors and Woott¢tsf| have studied what quantum correlations. Unfortunately, for existence of intrin-
is the state of a multiqubit ring with maximal possible en-sic N-qubit correlations we even do not have sufficient and
tanglement between neighboring qubits. Another version ofiecessary conditionssee Refs[12,13)). Nevertheless, as
the same problem has been analyzed by Koashil. [15]  suggested by Coffman, Kundu, and Wootte2KW) [13] it
who have derived an explicit expression for the multiqubitis very instructive to understand how a bipartite entangle-
completely symmetric statéentangled webin which all  mentis “distributed” in N-qubit system. The inequalities de-
possible pairs of qubits are maximally entangled. rived by these authoighe so-called CKW inequaliti¢®pen

In his recent work, Du[17] has introduced a concept of new possibilities how to understand the complex problem of
entanglement moleculeBur has shown that an arbitrary en- bounds on shared entanglement. The CKW inequalities uti-
tanglement molecule can be represented hy>xa@dstate of a  lize the measure of entanglement called concurrence as in-
multiqubit system. On the other hand, in his work the prob-troduced by Wootterst al.[18]. This measure is defined as
lem of pure multipartite states with specific entangled pairdollows: Let us assume a two-qubit system prepared in the
of qubits has not been discussed thoroughly. Specificallystate described by the density opergiofFrom this operator
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o exist. Does the entanglement between qubits 1 and 2, and 2
Q) b) C) d) and 3 induce the entanglement between qubits 1 and 3?
. N In order to illuminate this simple problem let us first con-
sider mixed states. According to ' Disee Ref[17]) mixed

states associated with the grafify do exist and have the

'S form

FIG. 1. Four different classes of entangled graphs associatef=a| W "), (W | ®|0)3(0|+ (1—a)| ¥ )5 ¥ | ®]0).(0],
with states of three qubit€a) separable and GHZ-like states with 2.4

no bipartite entanglementy) Bell-like states{c) W-like states, and
(d) a new category of entangled states. where|¥ )= (|01)+|10))//2 is a Bell state. By inspection

one can check that for9a<1 the mixed staté2.4) exhibits
one can evaluate the so-called spin-flipped operator define@quired correlations.

as From the explicit expression for the mixed st@2ed) as-
_ sociated with the grapfd), we might try to express a pure
p=(oy®ay)p*(ay®@ay), (2.1)  state corresponding to the same graph as follows:

where o is the Pauli matrix and a star denotes a complex |DY=a|¥)1]0)3+ V1—a?|¥F),g0);. (2.5

conjugation. Now, we define the matrix
This state has required properties imposed on correlations

R=p5, (2.2) betweem qubits 1-2 and 1-3. But, it also exhibits entangle-
ment between qubits 2 and 3, and therefore the correspond-
and label its(non-negativi eigenvalues, in decreasing order ing graph is of the typéc). In order to find a pure state for
N1, \2\3, and\,. The concurrence is then defined as the graph(d), we will consider a whole family of states of

the form
C=max0,/\;— VAo— VAs— A4} 2.3
HOVRL = Vha= Vha™ Vi) | D)= a]|000) + B|100) + 110 + VI — a?— BZ— 12| 111).
This function serves as an indicator whether the two-qubit (2.6)

system is separablg@n this caseC=0), while for C>0 it
measures the amount of bipartite entanglement between t
qubits with a number between 0 and 1. Larger the valug of
stronger the entanglement between two qubits is.
Unfortunately, no simple measures of entanglement ar
known for multiqubit systems. Nevertheless, it is still of im-
portance to understand how a bipartite entanglement is di
tributed in N-qubit system. In this paper, we will utilize a ment.

- : We can conclude this simple example by saying that all
;?gt?li?’rg of entangled graph to illuminate some aspects of tht ree-qubit entangled graphs can be realized by pure three-

Using the concurrence, we can easily associate an ofubit states. We note that the classification of states accord-
tangled graph with everyl-bartite state. On the other hand, N9 to entang[ed graphs, representlng th.e two-partlte en-
there is no one to one correspondence between graphs aPF!Pglement is incompatible with the classification presented
states. For instance all separable states Withubits have In Ref.[19]. We see that two types of statéSHZ states and

separable statgdhave the same graph. On the other hand,

the same graph-N-vertices and no edges. Also all GHZ like
states folN>2 would have the same graph. The question weLWO _states of the same clafSHZ statep can be represented
y different graphs.

are going to address can be formulated as follows: Is it pos-
sible to construct at least onmure state for a given graph?
We start our discussion with the simplest nontrivial ex- lll. N-PARTICLE SYSTEM

ample: Let us consider three qubits. Pure states of three qu- | et ys first consider entangled graphs associated with
bits can be divided into six classesee Ref[19]): separable  mixed N-qubit states. These graphs consisNofertices. Let

states, bipartite entangled stat@isree classes respective t0 the parametek denote the number of edges in the graph,
the permutatiop) theW-type states, and the GHZ-type states. ith the condition

On the other hand in Fig. 1, we represent all possible graphs

for a three-partite system. Separable and GHZ-like states N(N—1)

correspond to the caga), bipartite entangled states are rep- Osks — (3.9
resented by the graplb), while theW-type states are repre-

sented by the grapft). Obviously, one can imagine also an Then let us define a s& with k members. These will be

additional type of a graph, when a given quititoeled as the  pairs of qubits between which we expect entanglement; thus,
qubit 2 is entangled with two otherflabeled as 1 and 3, for everyi<j,

respectively, while the qubits 1 and 3 are not entangled. The
question is whether this type of a grafgee Fig. 1d)] can {i,jleS <  C(ij)>0,

v\;gis straightforward to calculate concurrencies for all pairs of
qubits in the stat€2.6). We find thatC(1,3) is always zero,
while C(1,2) andC(2,3) are nonzero for all nonzero values
gf involved probability amplitudes. By inspection it is pos-
Sible to determine that the staf2.6) belongs to the class of
GHZ states, since it contains intrinsic three-partite entangle-
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q) . b) C) Ref.[17], where only the conditions on the presence of en-
tanglement between specific qubits have been imposed. We
require the conditioné3.2), that is, the presence and absence
of bipartite entanglement for given pairs of qubits in the
. . system.

We find that a pure state which indeed is represented by

FIG. 2. Examples of entangled graphs associated with states gf, o star-shaped gragkee Fig. 20)] is given by the expres-
five qubits:(a) separable states, or any other states with no bipartit@siOn

entanglement(b) W-type states, an¢t) star-shaped states.
. . (W) =a|W)\+p5[0)[1---1), (3.6
{i,jtjeS & C(i,j)=0. (3.2
with the normalization conditiofe|?+|8|?=1. ForN>4,
the reduced two-qubit density operator for the first and any
other qubit in the system reads

A state of the form

[®)ij=1¥");[0---0)p 3.3
exhibits entanglement between quhbitandj and nowhere EMZ 0 0 0
else. In Eq(3.3) the vectod\I”)ij=(|01>+|10>)/\/§ repre- N
sents the maximally entangled Bell state between pairs of ,1 X ,1
two qubitsi andj. The rest ofN— 2 qubits are assumed to be _ 0 |l N+|'B| |l N 0
in the product statf- - - 0);. Dur in Ref.[17] has proposed Pii~=
a mixed state of N qubits, which corresponds to a graph 0 |a|2£ |a|2£ 0
defined by the se$in the form N N

1 0 0 0 0
P=1 2 Wil 3.9 3.7
{i.jtes

One of the eigenvalues of the partially transformed matrix
It is much more complex task to find a pure statéNajubits

corresponding to a specific graph. We will solve this problem ,N—2— Jyn®+8—4n
below. A=|q| - (3.8
Pure states is negative for everyy>0. Consequently, using the Peres-

We start our analysis with entangled graphs that exhibifi0rodecki criterion we see that the first qubit is indeed en-
specific symmetries. Certainly the two most symmetrictangled with any other qubit in the system for any nontnwal
graphs are those representing separable giatesdges—see value of . Now we have to show, t'hat all othgr qubits in the
Fig. 2@)] and those representing states, with all vertices SyStém are not mutually entangl¢ie., all pairs of qubits
connected by edges. A representative of a pure completely 1}, Where I<i<j<N are separabjeThe reduced density
separable state is described by the ve[or=|0- - - 0). The Operator describing a state of qubitandj reads

W state [W)y=1/JVN|N—1,1), is a maximally symmetric N—2

state with one qubit in stajd) andN—1 qubits in state0) —af? 0 0 0

(see Refs.[15,17]). This state maximizes the bipartite N

concurrence—its value is given by the expressiGn 1 1

=2/\JN. We see that the most symmetric entangled graphs _ 0 |01|2N |a|2N 3.9

do correspond to specific pure multiqubit states. Pij = '
Let us now consider graphs with a lower symmetry. For 0 |a|2£ |a|2£ 0

instance, a star-shaped graffig. 2(c)]. In this case, the N N

given qubit is(equally entangled with all other qubits in the 0 0 0 FE

system, that in turn are not entangled with any other qubit.
Dur [17] has proposed an explicit expression for a purerhe smallest eigenvalue of the partially transposed operator

state associated with this type of entangled graph is
1 1 2
_ N—2|a|*—+é
| W)= —|1)|0---0)+ —|0)|N—2,1). (3.5 _ A oNe
B B N N , (3.10

In fact, this state maximizes the concurrence between th@here

first and any other qubit. But, the remaining qubits are still

mutually entangled. So the stat@.5) is represented by the 5=N?—4|a|> (N—1)N+4|a|*[2+(N—2)N].
graph(b) (all vertices are connectgdather than grapfkr). In

our analysis, we require more stringent constraints than in We see that for allx such that
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NZ—2N Above, we have analyzed the most symmetric entangled

No1 (3.11 graphs. In what follows, we propose a general algorithm how
to construct a pure state for an arbitrary graph. Let us con-

the smallest eigenvalue is non-negative. Consequently, the Sider a pure state & (N>4) qubits described by the vector
corresponding density operator is separable. Thus, we have
found a family of states that correspond to the desired graph. y
For the special case =4, the reduced operators have a _ NN 0. L O
form different from Egs.(3.7) and (3.9 and also the final [¥)=al0---0)+ 11 1>+{i,j;es \/E|1>'|1>J|O 0%y
condition is more complicated. However, it is quite easy to (3.13
find one example of the state of four qubits corresponding to
the star-shaped graph. The state vector reads

|al<

with the normalization conditiorja|?+|B|2+]|y|?=1. In

1 what follows, we will show that for a certain range of pa-
| W)= E(|Oll]}+|000])+|001Q+|010Q+|1OOQ) rameters this state matches a graph given by the condition
(3.2.

5 1 First, we show that a pair of qubiisandj such that
:T|W>4+7|011]>' (3.12 ({ji,j}eS is indeed edntangled. The corresponding reduced
5 5 ensity operator reads
|
k—nj—n;+1 ay*
a2+ |yf——M—— 0 0
|2+ |72 — =
n—1 Njj
0 e 20 0
I = I 514
pii = , .
” 0 PP o
k k
aty |12
0 0 2y
= B2+
|
wheren; is the number of connections originating from the |712(ni+n;—2)2<4]al?k+|y]2(nj—nj)?.  (3.16

ith vertex(the number of qubits we wish to have entangled
with the ith ong andn;; is the number of vertices that are

connected directly with thith andjth vertex. The following If we use the inequalitie€3.15), we find the following con-

inequalities for these variables hold: straints:
1=n;=k, |12(ni+n;—2)2<| y|?k?<4| | %k,
k
Ognij<5' 4|a|2k$4|a|2k+|fy|2(ni—nj)2, (3.17

from which it follows that if the condition

k+1)2 0<|y|%k=4|al? (3.18
(k+1)* (3.15 ] ||

lsnin;=

is fulfilled then a specific pair qubits described by the density
One of the eigenvalues of the density operator obtained byperator(3.14) is entangled.
the partial transposition of the operat@:14) reads Till now, we have proved that a specific pair of qubits in
multipartite system is entangled. In order, to show that the
corresponding state vector indeed is associated with a desired
entangled graph, we have to show that all other pairs of
qubits are separable. Density operators for pairs of qubits
In the nontrivial case ofy|>0, we need only to show that {i,j} ¢S are given by the expression

|yl
A= ﬁ[|'}’|(ni+nj_2)_ \/4|a|2k+|‘}’|2(ni—nj)z]-
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k—n;,—n, 2
a2 +]yP—— 0 0 0 yza\fg. (3.24
n; n;;
0 y2 P 0
Pij , This state indeed corresponds to the desired graph. This
0 | |2@ | |2m 0 proves that one can associate with an arbitrary entangled
e M graph a pure state. Moreover, by construction we have
0 0 0 8|2 proved that, in general, this state is a superposition of at most
N? vectors from the B-dimensional Hilbert space df qu-
(319 pits.
with the involved parameters satisfying the set of inequalities
O<n;=<k, IV. CONCLUSION
o k We have introduced a concept of the entangled graphs,
O=nj=< 20 that is, an entangled multiqubit structure such that every qu-

bit is represented by a vertex, while entanglement between
O=n;+n;=Kk, two qubits is represented as an edge between relevant verti-
ces. We have shown that for every possible graph with non-
weighted(see below edges there exists a pure state, which
7 (3.20 represents the graph. Moreover, such state can be con-
structed, as a superposition of small number of states from a
Instead of checking that all the eigenvalues of the corresubspace of the Hilbert space. The dimension of this sub-
sponding partially transposed operator are non-negative, wgpace grows linearly with the number of entangled pairs
will show that under certain conditions the concurrence of(thus, in the worst case, quadratically with the number of
the stateg(3.20 will be zero. The eigenvalues of the operator particles.
R given by Eq.(2.2) are It is clear that introducing a “weight” to the edges of the
graphs would lead to new interesting questions. The weight
should correspond to a value of the concurrence between the

k2
O=ninj=

kK—n;—n, L
N1=No=|aB|?+| 'y|2+, two qubits that are connected by the given edgé. iDuRef.
[17] has addressed this question briefly in the context of
mixed states associated with entanglement molecules. As
. nij = Vnin; 2 showr_l in our paper, _the issue (_)f shared bipartite entangle-
Nsa=|7l x| MEAs, (3:2)  ment inpure multiqubit systems is much more complex is-

sue. Nevertheless, it is of great interest to find out some
and according to the definition of the concurreii2¢3), itis ~ general bounds on the amount of possible shared bipartite
enough to show that;=\, (since them\, is the maximal entanglement in a given entangled graph. Another problem

eigenvalue and already\,;—yA,=0 and so the concur- directly related to the issue of weighted graphs is how to
rence vanishésThat is, we require that maximize bipartite entanglement for given graphs. There, for

every graph one could find the optimal state with maximal
K —n. N congurrencies on defined pairs of qubits, as it was made for
a2+ ||2 i J>|y|4( ij i J) . (322 specific cases in Ref§14:1£'ﬂ.' .
k k States with defined bipartite entanglement properties are
of a possible practical use: In communications protocols, like

When we use the inequaliti€8.20, we obtain the final con- . antum secret sharingg] or quantum oblivious transfer

dition [20] one needs many-particle states with specific bipartite
laB|?=|y|*>0 (3.23 entanglement properties. Therefore, deep understanding of
’ possible entangled graphs can help us to understand structure

which guarantees that the std819 is separable. of quantum correlation and the corresponding bounds on

One can check that there are many states which fulfill théluantum communications and quantum information process-
conditions(3.18 and(3.23. In particular, let us assume the Ng.
state(3.13 with

3 k ACKNOWLEDGMENTS
VKt 2k +4 We thank Maio Ziman and Jakub NMeha for many help-
ful discussions. This work was supported by the IST-FET-
B= 2_“ QIPC project EQUIP under Contract No. IST-1999-11053.
k'’ V.B. would like to acknowledge the financial support by SFI.

012322-5



MARTIN PLESCH AND VLADIMI R BUZEK PHYSICAL REVIEW A 67, 012322 (2003

[1] E. Schralinger, Naturwissenschafte28, 807 (1935; 23, 823 [10] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

(1935; 23, 844(1935. 223 1(1996. _ o .
[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Ré%, 777  [11] V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys.
(1939; J.S. Bell, PhysicslLong Island City, N.Y) 1, 195 Rev. Lett.78, 2275(1997.

(1964; A. Peres,Quantum Theory: Concepts and Methods [12] G. AI_l_)er, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki,
(Kluwer, Dordrecht, 1998 M Rotteler, H. Winfurter, R. F. Werner, and A. Zeilinger,
' ' Quantum informatior(Springer-Verlag, Berlin, 2001

(31 J. Gruska,Qua_ntum ComputlngMcGraW-Hll!, New York, [13] V. Coffman, J. Kundu, and W.K. Wootters, Phys. Rev6A
1999; J. Preskill, Quantum Theory Information and Compu- 052306(2000.

tation (www.theory.caltech.edu/people/preskill/ph229/#ledture [14] K.M. O’Connor and W.K. Wootters, Phys. Rev.68, 052302

[4] M. A. Nielsen and I. L. ChuangQuantum Computation and (2002).
Quantum Information(Cambridge University Press, Cam- [15] M. Koashi, V. Buzk, and N. Imoto, Phys. Rev. 82, 050302
bridge, 2000. (2000.

[5] C.H. Bennettet al,, Phys. Rev. Lett70, 1895(1993. [16] This term should not be connected with a totally different con-

[6] C.H. Bennett and S. Wiesner, Phys. Rev. L&8, 2881 cept of graph codesas introduced by D. Schlingemann and
(1992. R.F. Werner, Phys. Rev. 85, 012308(2002).

[7] A.K. Ekert, Phys. Rev. Lett67, 661(1991). [17] W. Dur, Phys. Rev. A63, 020303R) (2001).

[8] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. 39, [18] S. Hill and W.K. Wootters, Phys. Rev. Left8, 5022 (1997);
1829(1999; R. Cleve, D. Gottesman, and H. Lo, Phys. Rev. W.K. Wootters,ibid. 80, 2245(1998.
Lett. 83, 1874(1999. [19] W. Dur, G. Vidal, and J.1. Cirac, e-print quant-ph/0005115.
[9] A. Peres, Phys. Rev. Leff7, 4524(1996. [20] J. Macha, e-print quant-ph/0005115.

012322-6



