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Entangled graphs: Bipartite entanglement in multiqubit systems
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Quantum entanglement in multipartite systems cannot be shared freely. In order to illuminate basic rules of
entanglement sharing between qubits, we introduce a concept of an entangled structure~graph! such that each
qubit of a multipartite system is associated with a point~vertex!, while a bipartite entanglement between two
specific qubits is represented by a connection~edge! between these points. We prove that any such entangled
structure can be associated with apure state of a multiqubit system. Moreover, we show that a pure state
corresponding to a given entangled structure is a superposition of vectors from a subspace of the
2N-dimensional Hilbert space, whose dimension growslinearly with the number of entangled pairs.

DOI: 10.1103/PhysRevA.67.012322 PACS number~s!: 03.67.2a, 03.65.Ta, 89.70.1c
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I. INTRODUCTION

The entanglement is a key ingredient of quantum mech
ics @1,2#. In the last decade, it has been identified as a
resource for quantum information processing. In particu
quantum computation@3,4#, quantum teleportation@5#, quan-
tum dense coding@6#, certain types of quantum key distribu
tions @7#, and quantum secret sharing protocols@8# are based
on the existence of entangled states.

The nature of quantum entanglement between two qu
is well understood by now. In particular, the necessary
sufficient condition for inseparability of two-qubit system
has been derived by Peres@9# and Horodeckiet al. @10#.
Reliable measures of bipartite entanglement have been in
duced and well analyzed~see for instance Refs.@11,12#!. On
the other hand, it is a very difficult task to generalize t
analysis of entanglement from two to multipartite system
The multipartite entanglement is a complex phenomen
One of the reasons is that quantum entanglement canno
shared freely among many particles. For instance, hav
four qubits, we are able to prepare a state with twoe-bits
~two Bell pairs, as an example!, but not more. This mean
that the structure of quantum mechanics imposes s
bounds on bipartite entanglement in multipartite syste
This issue has been first addressed by Wootterset al. @13,14#
who have derived important bounds on shared bipartite
tanglement in multiqubit systems. In fact, one can solv
variational problem to answer a question: What is a p
multipartite state with specific constraints on bipartite e
tanglement? O’Connors and Wootters@14# have studied wha
is the state of a multiqubit ring with maximal possible e
tanglement between neighboring qubits. Another version
the same problem has been analyzed by Koashiet al. @15#
who have derived an explicit expression for the multiqu
completely symmetric state~entangled web! in which all
possible pairs of qubits are maximally entangled.

In his recent work, Du¨r @17# has introduced a concept o
entanglement molecules. Dür has shown that an arbitrary en
tanglement molecule can be represented by amixedstate of a
multiqubit system. On the other hand, in his work the pro
lem of pure multipartite states with specific entangled pa
of qubits has not been discussed thoroughly. Specifica
1050-2947/2003/67~1!/012322~6!/$20.00 67 0123
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Dür has considered just the condition of inseparability
given set of pairs, but he did not impose a strict condition
separability for the remaining pairs of qubits.

Following these ideas we analyze in the present pape
object, entangled structure, which will be called through
paper as theentangled graph@16#. In the graph, each qubit is
represented as a vertex and an edge between two ver
denotes entanglement between these two particles~specifi-
cally, the corresponding two-qubit density operator is inse
rable!. The central issue of the paper is to show that a
entangled graph withN vertices andk edges can be assoc
ated with apure multiqubit state. We prove this result con
structively, by showing the explicit expression of corr
sponding pure states. We show that any entangled graphN
qubits can be represented by a pure state from a subspa
the whole 2N-dimensional Hilbert space ofN qubits. The
dimension of this subspace is at most quadratic in numbe
qubits.

II. SIMPLE EXAMPLE

In general, anN-partite system can exhibit various type
of multipartite correlations, ranging from bipartite entang
ment to intrinsic multipartite correlations of the Greenberg
Horne-Zeilinger~GHZ! nature. Correlations associated wi
the system specify its state~certainly, this specification is no
necessarily unique!. Ideally, we would like to know the
whole hierarchy of quantum correlations in the multipart
system. We are able to determine and quantify bipar
quantum correlations. Unfortunately, for existence of intr
sic N-qubit correlations we even do not have sufficient a
necessary conditions~see Refs.@12,13#!. Nevertheless, as
suggested by Coffman, Kundu, and Wootters~CKW! @13# it
is very instructive to understand how a bipartite entang
ment is ‘‘distributed’’ inN-qubit system. The inequalities de
rived by these authors~the so-called CKW inequalities! open
new possibilities how to understand the complex problem
bounds on shared entanglement. The CKW inequalities
lize the measure of entanglement called concurrence as
troduced by Wootterset al. @18#. This measure is defined a
follows: Let us assume a two-qubit system prepared in
state described by the density operatorr. From this operator
©2003 The American Physical Society22-1
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one can evaluate the so-called spin-flipped operator defi
as

r̃5~sy^ sy!r* ~sy^ sy!, ~2.1!

wheresy is the Pauli matrix and a star denotes a comp
conjugation. Now, we define the matrix

R5rr̃, ~2.2!

and label its~non-negative! eigenvalues, in decreasing ord
l1 ,l2,l3, andl4. The concurrence is then defined as

C5max$0,Al12Al22Al32Al4%. ~2.3!

This function serves as an indicator whether the two-qu
system is separable~in this caseC50), while for C.0 it
measures the amount of bipartite entanglement between
qubits with a number between 0 and 1. Larger the value oC
stronger the entanglement between two qubits is.

Unfortunately, no simple measures of entanglement
known for multiqubit systems. Nevertheless, it is still of im
portance to understand how a bipartite entanglement is
tributed in N-qubit system. In this paper, we will utilize
concept of entangled graph to illuminate some aspects o
problem.

Using the concurrence, we can easily associate an
tangled graph with everyN-partite state. On the other han
there is no one to one correspondence between graphs
states. For instance all separable states withN qubits have
the same graph—N vertices and no edges. Also all GHZ lik
states forN.2 would have the same graph. The question
are going to address can be formulated as follows: Is it p
sible to construct at least onepure state for a given graph?

We start our discussion with the simplest nontrivial e
ample: Let us consider three qubits. Pure states of three
bits can be divided into six classes~see Ref.@19#!: separable
states, bipartite entangled states~three classes respective
the permutation!, theW-type states, and the GHZ-type state
On the other hand in Fig. 1, we represent all possible gra
for a three-partite system. Separable and GHZ-like sta
correspond to the case~a!, bipartite entangled states are re
resented by the graph~b!, while theW-type states are repre
sented by the graph~c!. Obviously, one can imagine also a
additional type of a graph, when a given qubit~labeled as the
qubit 2! is entangled with two others~labeled as 1 and 3
respectively!, while the qubits 1 and 3 are not entangled. T
question is whether this type of a graph@see Fig. 1~d!# can

FIG. 1. Four different classes of entangled graphs associ
with states of three qubits:~a! separable and GHZ-like states wit
no bipartite entanglement,~b! Bell-like states,~c! W-like states, and
~d! a new category of entangled states.
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exist. Does the entanglement between qubits 1 and 2, a
and 3 induce the entanglement between qubits 1 and 3?

In order to illuminate this simple problem let us first co
sider mixed states. According to Du¨r ~see Ref.@17#! mixed
states associated with the graph~d! do exist and have the
form

r5auC1&12̂ C1u ^ u0&3^0u1~12a!uC1&23̂ C1u ^ u0&1^0u,
~2.4!

whereuC1&5(u01&1u10&)/A2 is a Bell state. By inspection
one can check that for 0,a,1 the mixed state~2.4! exhibits
required correlations.

From the explicit expression for the mixed state~2.4! as-
sociated with the graph~d!, we might try to express a pur
state corresponding to the same graph as follows:

uF&5auC1&12u0&31A12a2uC1&23u0&1 . ~2.5!

This state has required properties imposed on correlat
betweem qubits 1-2 and 1-3. But, it also exhibits entang
ment between qubits 2 and 3, and therefore the corresp
ing graph is of the type~c!. In order to find a pure state fo
the graph~d!, we will consider a whole family of states o
the form

uF&5au000&1bu100&1gu110&1A12a22b22g2u111&.

~2.6!

It is straightforward to calculate concurrencies for all pairs
qubits in the state~2.6!. We find thatC(1,3) is always zero,
while C(1,2) andC(2,3) are nonzero for all nonzero value
of involved probability amplitudes. By inspection it is po
sible to determine that the state~2.6! belongs to the class o
GHZ states, since it contains intrinsic three-partite entang
ment.

We can conclude this simple example by saying that
three-qubit entangled graphs can be realized by pure th
qubit states. We note that the classification of states acc
ing to entangled graphs, representing the two-partite
tanglement is incompatible with the classification presen
in Ref. @19#. We see that two types of states~GHZ states and
separable states! have the same graph. On the other ha
two states of the same class~GHZ states! can be represente
by different graphs.

III. N-PARTICLE SYSTEM

Let us first consider entangled graphs associated w
mixedN-qubit states. These graphs consist ofN vertices. Let
the parameterk denote the number of edges in the grap
with the condition

0<k<
N~N21!

2
. ~3.1!

Then let us define a setS with k members. These will be
pairs of qubits between which we expect entanglement; th
for every i , j ,

$ i , j %PS ⇔ C~ i , j !.0,

ed
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$ i , j %¹S ⇔ C~ i , j !50. ~3.2!

A state of the form

uC& i j 5uC1& i j u0•••0& i j ~3.3!

exhibits entanglement between qubitsi and j and nowhere
else. In Eq.~3.3! the vectoruC1& i j 5(u01&1u10&)/A2 repre-
sents the maximally entangled Bell state between pairs
two qubitsi andj. The rest ofN22 qubits are assumed to b
in the product stateu0•••0& i j . Dür in Ref. @17# has proposed
a mixed state of N qubits, which corresponds to a grap
defined by the setS in the form

r5
1

k (
$ i , j %PS

uC& i j ^Cu i j . ~3.4!

It is much more complex task to find a pure state ofN qubits
corresponding to a specific graph. We will solve this probl
below.

Pure states

We start our analysis with entangled graphs that exh
specific symmetries. Certainly the two most symmet
graphs are those representing separable states@no edges—see
Fig. 2~a!# and those representingW states, with all vertices
connected by edges. A representative of a pure comple
separable state is described by the vectoruC&5u0•••0&. The
W state uW&N51/ANuN21,1&, is a maximally symmetric
state with one qubit in stateu1& andN21 qubits in stateu0&
~see Refs. @15,17#!. This state maximizes the bipartit
concurrence—its value is given by the expressionC
52/AN. We see that the most symmetric entangled gra
do correspond to specific pure multiqubit states.

Let us now consider graphs with a lower symmetry. F
instance, a star-shaped graph@Fig. 2~c!#. In this case, the
given qubit is~equally! entangled with all other qubits in th
system, that in turn are not entangled with any other qub

Dür @17# has proposed an explicit expression for a pu
state associated with this type of entangled graph

uC&5
1

A2
u1&u0•••0&1

1

A2
u0&uN22,1&. ~3.5!

In fact, this state maximizes the concurrence between
first and any other qubit. But, the remaining qubits are s
mutually entangled. So the state~3.5! is represented by the
graph~b! ~all vertices are connected! rather than graph~c!. In
our analysis, we require more stringent constraints than

FIG. 2. Examples of entangled graphs associated with state
five qubits:~a! separable states, or any other states with no bipa
entanglement,~b! W-type states, and~c! star-shaped states.
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Ref. @17#, where only the conditions on the presence of e
tanglement between specific qubits have been imposed.
require the conditions~3.2!, that is, the presence and absen
of bipartite entanglement for given pairs of qubits in t
system.

We find that a pure state which indeed is represented
the star-shaped graph@see Fig. 2~c!# is given by the expres-
sion

uC&5auW&N1bu0&u1•••1&, ~3.6!

with the normalization conditionuau21ubu251. For N.4,
the reduced two-qubit density operator for the first and a
other qubit in the system reads

r1i5S N22

N
uau2 0 0 0

0 uau2
1

N
1ubu2 uau2

1

N
0

0 uau2
1

N
uau2

1

N
0

0 0 0 0

D .

~3.7!

One of the eigenvalues of the partially transformed matri

l5uau2
n222An21824n

n
~3.8!

is negative for everya.0. Consequently, using the Pere
Horodecki criterion we see that the first qubit is indeed e
tangled with any other qubit in the system for any nontriv
value ofa. Now we have to show, that all other qubits in th
system are not mutually entangled~i.e., all pairs of qubits
$ i , j %, where 1, i , j ,N are separable!. The reduced density
operator describing a state of qubitsi and j reads

r i j 5S N22

N
uau2 0 0 0

0 uau2
1

N
uau2

1

N
0

0 uau2
1

N
uau2

1

N
0

0 0 0 ubu2

D . ~3.9!

The smallest eigenvalue of the partially transposed oper
is

l5
N22uau22Ad

2 N
, ~3.10!

where

d5N224uau2~N21!N14uau4@21~N22!N#.

We see that for alla such that

of
te
2-3
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uau<
AN222N

N21
, ~3.11!

the smallest eigenvaluel is non-negative. Consequently, th
corresponding density operator is separable. Thus, we h
found a family of states that correspond to the desired gra
For the special case ofN54, the reduced operators have
form different from Eqs.~3.7! and ~3.9! and also the final
condition is more complicated. However, it is quite easy
find one example of the state of four qubits corresponding
the star-shaped graph. The state vector reads

uC&5
1

A5
~ u0111&1u0001&1u0010&1u0100&1u1000&)

5
2

A5
uW&41

1

A5
u0111&. ~3.12!
e
ed
e

b

t
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Above, we have analyzed the most symmetric entang
graphs. In what follows, we propose a general algorithm h
to construct a pure state for an arbitrary graph. Let us c
sider a pure state ofN (N.4) qubits described by the vecto

uC&5au0•••0&1bu1•••1&1 (
$ i , j %PS

g

Ak
u1& i u1& j u0•••0& i j̄ ,

~3.13!

with the normalization conditionuau21ubu21ugu251. In
what follows, we will show that for a certain range of p
rameters this state matches a graph given by the cond
~3.2!.

First, we show that a pair of qubitsi and j such that
$ i , j %PS is indeed entangled. The corresponding reduc
density operator reads
r i j 51
uau21ugu2

k2ni2nj11

k
0 0

ag*

Ak

0 ugu2
ni21

k
ugu2

ni j

k
0

0 ugu2
ni j

k
ugu2

nj21

k
0

a* g

Ak
0 0 ubu21

ugu2

k

2 , ~3.14!
ity

in
the
sired

of
bits
whereni is the number of connections originating from th
i th vertex~the number of qubits we wish to have entangl
with the i th one! and ni j is the number of vertices that ar
connected directly with thei th andj th vertex. The following
inequalities for these variables hold:

1<ni<k,

0<ni j ,
k

2
,

2<ni1nj<k11,

1<ninj<
~k11!2

4
. ~3.15!

One of the eigenvalues of the density operator obtained
the partial transposition of the operator~3.14! reads

l5
ugu
2k

@ ugu~ni1nj22!2A4uau2k1ugu2~ni2nj !
2#.

In the nontrivial case ofugu.0, we need only to show tha
y

ugu2~ni1nj22!2,4uau2k1ugu2~ni2nj !
2. ~3.16!

If we use the inequalities~3.15!, we find the following con-
straints:

ugu2~ni1nj22!2,ugu2k2<4uau2k,

4uau2k<4uau2k1ugu2~ni2nj !
2, ~3.17!

from which it follows that if the condition

0,ugu2k<4uau2 ~3.18!

is fulfilled then a specific pair qubits described by the dens
operator~3.14! is entangled.

Till now, we have proved that a specific pair of qubits
multipartite system is entangled. In order, to show that
corresponding state vector indeed is associated with a de
entangled graph, we have to show that all other pairs
qubits are separable. Density operators for pairs of qu
$ i , j %P” S are given by the expression
2-4
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r i j 5S uau21ugu2
k2ni2nj

k
0 0 0

0 ugu2
ni

k
ugu2

ni j

k
0

0 ugu2
ni j

k
ugu2

nj

k
0

0 0 0 ubu2

D ,

~3.19!

with the involved parameters satisfying the set of inequali

0<ni<k,

0<ni j <
k

2
,

0<ni1nj<k,

0<ninj<
k2

4
. ~3.20!

Instead of checking that all the eigenvalues of the co
sponding partially transposed operator are non-negative
will show that under certain conditions the concurrence
the state~3.20! will be zero. The eigenvalues of the operat
R given by Eq.~2.2! are

l15l25uabu21ugu2
k2ni2nj

k
,

l3,45ugu4S ni j 6Aninj

k D 2

, l4>l3 , ~3.21!

and according to the definition of the concurrence~2.3!, it is
enough to show thatl1>l4 ~since thenl1 is the maximal
eigenvalue and alreadyAl12Al250 and so the concur
rence vanishes!. That is, we require that

uabu21ugu2
k2ni2nj

k
>ugu4S ni j 1Aninj

k D 2

. ~3.22!

When we use the inequalities~3.20!, we obtain the final con-
dition

uabu2>ugu4.0, ~3.23!

which guarantees that the state~3.19! is separable.
One can check that there are many states which fulfill

conditions~3.18! and ~3.23!. In particular, let us assume th
state~3.13! with

a5
k

Ak212k14
,

b5
2a

k
,

01232
s

-
e

f

e

g5aA2

k
. ~3.24!

This state indeed corresponds to the desired graph.
proves that one can associate with an arbitrary entan
graph a pure state. Moreover, by construction we h
proved that, in general, this state is a superposition of at m
N2 vectors from the 2N-dimensional Hilbert space ofN qu-
bits.

IV. CONCLUSION

We have introduced a concept of the entangled grap
that is, an entangled multiqubit structure such that every
bit is represented by a vertex, while entanglement betw
two qubits is represented as an edge between relevant v
ces. We have shown that for every possible graph with n
weighted~see below! edges there exists a pure state, whi
represents the graph. Moreover, such state can be
structed, as a superposition of small number of states fro
subspace of the Hilbert space. The dimension of this s
space grows linearly with the number of entangled pa
~thus, in the worst case, quadratically with the number
particles!.

It is clear that introducing a ‘‘weight’’ to the edges of th
graphs would lead to new interesting questions. The we
should correspond to a value of the concurrence between
two qubits that are connected by the given edge. Du¨r in Ref.
@17# has addressed this question briefly in the context
mixed states associated with entanglement molecules
shown in our paper, the issue of shared bipartite entan
ment in pure multiqubit systems is much more complex i
sue. Nevertheless, it is of great interest to find out so
general bounds on the amount of possible shared bipa
entanglement in a given entangled graph. Another prob
directly related to the issue of weighted graphs is how
maximize bipartite entanglement for given graphs. There,
every graph one could find the optimal state with maxim
concurrencies on defined pairs of qubits, as it was made
specific cases in Refs.@14,15#.

States with defined bipartite entanglement properties
of a possible practical use: In communications protocols, l
quantum secret sharing@8# or quantum oblivious transfe
@20# one needs many-particle states with specific bipar
entanglement properties. Therefore, deep understandin
possible entangled graphs can help us to understand stru
of quantum correlation and the corresponding bounds
quantum communications and quantum information proce
ing.
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