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We discuss a concept of universal quantum processors. The processor itself is
reprasented by a fixed array of pates. The input of the processor consists of two
registers. In the program register the set of instructions \program) is encoded

This program s applied to the data register. In general one can consider two typos
of processors: deterministic programmable processors and probabilistic processors,
In this paper we eonsider processors that can perform any operation on a single
qudit of the dimension N with & certain probability (probabilistic processors). If
the operation is unitary, the probability is in general 1/N2, but for more restricted
sets of operators the probability can be higher. We show that this probability

can be when the processor is used in I wops with special error correcting program

states. We also consider programmable measurement devices that can perform
specific generalized measurement that are determined by the

1 Introduction

Schematically we can represent a classical computer as a device with a pro
cessor, which is a fixed piece of hardware, that performs operations on a data
register according to a program encoded initially in the program register, The
action of the processor is fully determined by the program. The processor is
universal if we can realize any operation on the data by entering the appro
priate program mnto the program register.

In this paper we shall examine a quantum version of this picture. Specifi-
cally, in close analogy with recent papers by Nielsen and Chuang ! and Vidal,
Massanes, and Cirac #, we will study how a quantum program initially put
INLo a Program ]'H:_{inh'l CAN cause a E1;|rr_:r_'§]]:1r l's]'JI"['lﬂjL'l]]_ to he ;1[|]:|i1-:[ to a
data register initially prepared in an unknown state.

Nielsen and Chuang ' originally formulated the problem in terms of a
programmable array of quantum gates, which can be described as a fixed
unitary operator, Fy,, that acts on both the program and the data. The
initial state, By ),, of the program register stores information about the one-
qubit unitary transformation U that is going to be performed on a single
qubit data register initially prepared in a state |t} 4. The total dynamics of
the programmable quantum gate array is then given by
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where only pure data states were considered. The program register at the
output of the gate is in the state |{;}{-':”r' - which was shown to be independent
of the input data state i) 4.

Nielsen and Chuang proved that any two ineguivalent operations U and
V require orthogonal program states, ie. (8y|89y) = 0, Thus, in order to
perfectly store a given operation U; from some set {I/;|j € J}, a vector state
|©¢,) from an orthonormal basis {|0¢ )|j € J} has to be used. Since the set
of unitary operations is infinite, the result of Nielsen and Chuang implied that
no universal gate array can be constructed using finite resources, that is, with
a finite dimensional program register. They did show, however, that if the gate
array is probabilistic, a universal gate array is possible. A probabilistic array
is one that requires a measurement to be made at the output of the program
register, and the output of the data register is only accepted if a particular
result, or set of results, is obtained. This will happen with a probability, which
is less than one.

Vidal, Massanecs and Cirac ? have recently presented a probabilistic pro-
grammable quantum gate array with a finite program register, which can
realize a one parameter family of operations, where the parameter is contin-
uous, with arbitrarily high probability. The higher the probability of success,
the greater the dimensionality of the register, but the number of transforma-
tions that can be realized is infinite. They have also considered approzimate
programmable quantum gate arrays, which perform an operation By very
similar to the desired U/, that is F(Ey,U) > 1 — ¢ for some transformation
fidelity F.

In the present paper we will address the problem of implementing an
unknown :r}]:'l'ﬂtirr:] L, encoded in the state of a program t'l"g'!f-;T.t'.‘l' |F"Jr_ }I"
on the data state |¢)g. The gate arrays we present are probabilistic; the
program register must be measured at the end of the procedure. In Section
Il we present a simple example of how to apply an arbitrary operation to a
single qubit initially prepared in a state [). The gate array (called quantum
;l.uﬁ'lrnzqf.l.rr?r fh'.uf'r'.l:hrg.f.ur'] econsists of four Controlled-NOT I:(-'-'\J{]F[\I gales, and
can implement four programs perfectly. These programs cause that one of the
operations [, o, —io,, or o, is performed on the data qubit. Here [ is the
identity and o, where j = z,y, z is a Pauli matrix. By choosing programs that
are linear combinations of the four basic ones, it is possible to probabilistically
perform any linear operation on the data qubit. In Section IIT we generalize
the idea to an arbitrary dimensional quantum system, a qudit.

2 Operations on qubits

We would like to construct a device that will do the following: The input
consists of a qubit, |1}4, and a second state, |8y ), which may be a multiqubit
state, that acts as a program. The output of the deviee will be a state Ui}y,
where U is an operation that is specified by |©p)p. Can we find a network
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and a program vector to implement all unitary operations on |47

We can, in fact, do this by using the network for a quantum informa-
ion distributor (QID) as introduced in Ref. * (this is a modification of the
quantum cloning transformation *® ), In this network the program register
A)p. DBefore we present the network
for the programmable gate array, we shall introduce notation for its compo-
nents. A Controlled-NOT gate [J;, acting on qubits j and k performs the
transformation,

is represented by a two qubit state |8

Djklm);|n)x = |"-";'-I;_||m @ n)k, (2)

where § is the control bit, k is the target bit, and ' and n are either 0 or 1.
The addition is modulo 2. The QITY network consists of four Controlled-NO'T
gates, and acts on three qubits (a single data qubit denoted by a subseript
1 and two program qubits denoted by subscripts 2 and 3, respectively). Its
action is given by the operator Pigy = Dy D21 D312, As our first task, we
shall determine how this network acts on input states where qubit 1 is in the
state |y}, and qubits 2 and 3 are in Bell basis states. The Bell basis states
are defined by

. | . L ) ]
‘I'*-:' = == (101) + |10})) = |":}”| | R B Y = - - | 01) — [10) | = 1)
W2 Vi

Ly _:.-;[ 00) + |111)) = |Bpa) ; ¥_) = —=(]00) — |11}) = |By0) .(3)
V&

We find that

Piasl)1|®4)as = (o)1) ®4)
Praglv)1 [P )2z = (o), )| 8-}
Praa|¥)1|W4)aa = [¥)1)| P4}

|“|-_r|'!|',.'::l|"'1-".:':d_ f:T_.iI."J-:].II'..}. |:H'

Any operation on qubits can be expanded in terms of Pauli matrixes and the
identity. The above equations mean that the Bell basis vectors are “programs”
for a complete set of operations

We now need to determine whether there is a program for any operator
that could act on 'fl The n|.H.'t.'I1iJI' |ll‘l'1E not be u||it'r1r_'..'. it could be a result
of coupling 1)) to an ancilla, evolving the coupled system (a unitary process),
and then measuring the ancilla. Therefore, if A is now any linear operator
acting on a two dimensional quantum system, the transformations in which

we are interested are given by
(¥) = ——A|y) (5)

Let us denote the operators, which can be implemented by Bell state pro
grams, by Spg = I, Sy = 04, Sio = 0., and Sy; = —io,. Any 2 x 2 matrix
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can be expanded in terms of these operators, so that we have

1
A= E ’-*:k--“.:k- (6]
3 k=0
I 3 o 3 ‘ — . — 3 = ol - |2 1 F
We now define a,y @ik /\/T, where n = }_d,..a oldik|*, 80 that 1

=1 a
e j ==l |”?ﬁ..

Now let us go back to our network and consider the program vector given
by
1

184) = Z ik Ok ), (7)

f.k=0
and at the output of the program register we shall measure the projection
' T =1
operator corresponding to the vector (1/2) 2 ke 184k, If the measurement
18 successful, the state of the data register is, up to normalization, given by
1

[Wy — Z aiSn | W) - (8)

1.k=0

After this state is normalized, it is just (1/||ay||)|¥). This means that for any
transformation of the type given in Eq. (5), we can find a program for our
network that will carry it out

3 QID: Generalization to qudits

In order to extend the network presented in the previous section to higher
dimensions, we must first introduce a generalization of the two-qubit C-NOT
gate *. As we noted previously, it is possible express the action of a C-NOT
gate as a two-gqubit operator of the form
1
D= Y kYalk| @ |m & k)p(m] . (KL}

i
L e ]

In principle one can also introduce an operator I}“JJI defined as
|
Dyy= 3 [K)atkl® |m & k)y(m| . (10)
k,m=0
In the case of qubits these two operators are equal, but this will not be the
case when we generalize the operator to Hilbert spaces whose dimension is
larger than 2 3 Inm P;lt'rjl'll.!'rir'. wWe CAn grlu-l'.—dixr the operator D for dimension
N > 2 by defining
N-1
Dy, Z: kYo (k] @ |(mm + k)mod Nyl | (11)

k. mi={]
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Figure 1 A logi network for the universal UARLUIM Processor a8 givern by the unitary
transformation (15)

which implies that
D!, = Y |k)alk]| @ |(m = k)mod N)u(m] . (12)

From this definition it follows that the operator D), acts on the basis vectors

HL
'il-'lu.-'-l'llf': m) = ||r.i::-:'|r.' + mimod N, [13)

which means that this operator has the same action as the conditional adder
and can be performed with the help of the simple quantum network discussed
in ®. Now we sce that for N > 2 the two operators D and ' do differ;
they describe conditional shifts in opposite directions. Therefore the gener-
alizations of the C-NO'I' operator to higher dimensions are just conditional
shifts.

In analogy with the quantum computational network discussed in the pre-
vious section, we assume the network for the probabilistic universal quantum

processor Lo be
Pigs = Day DY, D1aDya (14)

I'he data register consists of system 1 and the program register of systems
2 and 3. The state |9 )2 acts as the “software” which the operation Lo T8
implemented on the qudit data state |¥);. The output state of the three qudit

systern, after the four controlled shifts are applied, reads
‘J'!|__|_ n"_-l-;|!J._‘I!.I.II.F|_|.II_.F|_| 1[J:|i‘_J,' tag . |}-.?‘_|

A graphical representation of the logical network (15) with the conditional
shift gates Dy in Fig. 1.
We now turn to the fundamental program states. A basis consisting of

maximally entangled two-particle states (the analogue of the Bell basis for
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spin-§ particles) is given by 7

N=1
_ " 1 = ?‘T s PR
Brn) = = PIU e_«:p(f-:Hf -ma-)!a-}itk - n)mod N, (16)

where m,n = U, aN=1. If i{Ti,,.,,:I'I. is the initial state of the Program
register, and |W) = 3. a4|j)a (here, as usual, ZJ la;|* = 1) is the initial
state of the data register, then (after little algebra) follows that ®

Pra3|9)1 O )23 = (™)) |8 mn), (17)
where the fundamental unitary transformations
N=1 n
!n’rrwll X £LTEIN g W, | ]_'5':1
5 - EXD ———] ({3141 F BE.
P— )
s=10

This result is similar to the one we found in the case of a single qubit. We
would now like to examine which transformations we can perform on the state
in the data register by using a program consisting of a linear combination of
the vectors |O,,) followed by the action of the processor Py and a subse-
quent measurement of the program register

I'he operators U7'™™ satisfy the orthogonality relation

mm’ Onn'. (19)

Iy [.f_-'.“'l"..']1|r_'|.mnlr _-"l.'.ﬂ
J

['he space of linear operators 7 (H) defined on some Hilbert space H with
the scalar product given by (19) we know as Hilbert-Schmidt space. Thus
the unitary operators U'™") form an orthogonal basis in it and any operator
A e T(H) ean be expressed in terms of them
N=1]
o FLmmr ) i
A= >.-.-* rlrrr-'lr' il (20)

i =

The orthogonality relation allows us to find the expansion coefficients in terms

of the operators

l rimmn t I A
{fmn = ﬂ—_.T'I‘ [(Ir ' } -’1]| (21)
Equations (19) and (20) imply that
\'_ 1 1
Z‘I |Gmn* = 5 Tr(A"A4). (22)

Therefore, the program vector that implements the operator A is given by
1/2 N-1

: [ N ] - :
lua)as = |:[?4H_,| ; }_ Grmn|Omn) 23 (23)
L i g J

rry, ==}
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Application of the processor to the input state |U)q|v)as vields the output
state

|$2)123 = Z‘i’Trlrl'lT"rtTnTlll:LI':'J @ |Omn}2a (24)
mn
To obtain the final result we perform a projective measurement of the program
register onto vector |M) = & 'H::I',Il___,_, |&mn} If the outcome of the measure-
ment 18 positive, then we get the required transformation A acting on an
unknown, arbitrary input state |[¥);. In this case the probability of success is
1/N2,

4 Perspectives

4.1  Amplification of the probability of suceess

We have shown that using the QID processor the probability of the imple-
mentation of any unitary transformation on a qudit is p = 1/N?, where N
denotes the dimension of the qudit (data) Hilbert space. For a certain sub-

classes of unitary transformations we can do better ?

, Le. the probability can
be increased. The question is whether the probability of success can be made
arbitrarily close to unity. Unfortunately this upper bound cannot be achieved,
because no universal deterministic processor can be designed (for review on
deterministic regime of quantum processors see Hillery et al, '%7),

However, using a conditional type of dynamics (in accordance with Vidal,
Massanes and Cirac proposal ?) the probability can be made arbitrarily close
to unity ®. In this scenario we used conditioned loops to correct those runs
of the processors with wrong results. In particular, it is possible to correct
the action of the QID processor by using the same processor many times
and always initialize a new program state with respect to the measurement
outcome. For n repetitions the success probability equals p=1-[1-1/N?]",
where N is the dimension of the data register.

4.2  Implementation of generalized measurements

For a given processor only a subset of all program states can be used to
encode a unitary transformation'®!!. For all others program states the re
sulting transformation is not linear. Measuring the outcome § the data state
transforms according to the rule

' . o .
@=+p;= T-.u- f‘_“_l-,*:"'!", [JI’,}
)
where p; = TrpF; is the probability of the particular outcome. Because

this probability depends on g, this transformation does not satisfy the linear-
ity criterion. Note that if unitary transformation is realized (on QID), then
.F"J = f"_rf-"; IN? = I/N? for all i, and consequently Py 1/N. However,
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if the transformation is non-unitary, then the probability distribution p; is
not constant and it contains some information about the initial state of the
data. So the probabilistic processor can be exploited to implement generalized
measurements of the data system. For instance, QID can be used to realize
complete state reconstruction of the qubit state ''!?

4.5  Universal programmable measurement devices

1?,.5“5 the concept of ]:rnj:,rfl.mn:‘..lljl{" (quantum processors one can design uni
versal programmable measurement devices (programmable quantum multime-
ters ¥4} that can realize any generalized measurement from a chosen, but
finite. set of measurements (see also '*), Here again the performed POVM is
determined by a state of the program register.
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