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Generalized measurements via a programmable quantum processor

Marián Roško,1 Vladimı́r Bužek,1,2 Paul Robert Chouha,3 and Mark Hillery3
1Research Center for Quantum Information, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
2Department of Mathematical Physics, National University of Ireland, Maynooth, Co. Kildare, Ireland

3Department of Physics and Astronomy, Hunter College of CUNY, 695 Park Avenue, New York, New York 10021, USA
~Received 30 July 2003; published 2 December 2003!

We show that it is possible to control the trade-off between information gain and disturbance in generalized
measurements of qudits by utilizing a programmable quantum processor. This universal quantum machine
allows us to perform a generalized measurement on the initial state of the input qudit to construct a Husimi
function of this state. The trade-off between the gain and the disturbance of the qudit is controlled by the initial
state of ancillary system that acts as a program for the quantum-information distributor. The trade-off fidelity
does not depend on the initial state of the qudit.
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I. INTRODUCTION

Recently in several experiments@1–3# optimal quantum
cloning of qubits@4–6# has been achieved. In these expe
ments the information that was originally encoded in an
known stateuC& of an input qubit has been distributed b
tween two qubits in a covariant way~i.e., the fidelity of this
information distribution does not depend on the state of
input qubit!. Quantum cloning, viewed as a process of info
mation distribution, can be considered as one of the b
tasks of quantum-information processing~QIP!. Another im-
portant task of QIP is the application of specific operatio
~maps! to the input data. In order to perform either of the
tasks, we have to control the dynamics of the data regis
This control can be achieved by having external forc
which are specified by classical parameters~e.g., phases and
amplitudes of lasers!, act on the quantum system@7–9#. Al-
ternatively, the control of the dynamics of the data regis
can be performed on the quantum level, that is, the m
induced on the data register can be completely specified
the quantum state of a program register in a quantum pro
sor. The action of the processor is specified by a unit
operator acting on the Hilbert space of the data and
program register and results in a map induced on the
@10–14#.

In this paper we will consider a specific model of th
quantum processor—the so-called quantum-information
tributor ~QID!, which was introduced recently in Ref.@15#.
This covariant quantum processor allows us to distrib
quantum-information into several quantum channels as w
as to perform specific quantum operations in each of
channels. This set up is interestingper sesince it allows us to
achievequantumcontrol over quantum systems. In additio
if the quantum information distributor is combined with
projective measurement performed on some of the ou
channels one can achieve interesting generalized quan
~positive operator value measure! measurements on the inpu
register. In particular, in this paper we will show how qua
tum filtering of the original~input! data register can be rea
ized and how propensities~e.g., a Husimi function! of the
input register can be easily measured.

Our paper is organized as follows. In Sec. II we will i
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troduce a formal description of a qudit and some basic
erations that can be performed on a single qudit and c
trolled rotations that can be performed on two qudits. In S
III we will describe the quantum-information distributor an
the role of the programs encoded in states of program qu
In Sec. IV we will be devoted to a description of generaliz
measurements and the reconstruction~measurement! of the
Husimi function in a discrete phase space. In Sec. V we w
analyze how positive-operator value measure~POVM! mea-
surements can be realized with the help of quantu
information distributor. We conclude our paper with som
remarks on the noise induced on the input data qudit du
the projective measurements performed on the program
dits at the output of quantum-information distributor.

II. OPERATIONS ON QUDITS

In order to make our discussion self-contained we fi
present a brief review of the formalism describing quant
states in a finite-dimensional Hilbert space. Here we foll
the notation introduced in Ref.@16#. Let theN-dimensional
Hilbert space be spanned byN-orthogonal normalized vec
tors uxk& or, equivalently, byN vectorsupl&, k,l 50, . . . ,N
21, where these bases are related by the discrete Fo
transform

uxk&5
1

AN
(
l 50

N21

expS 2 i
2p

N
kl D upl&,

upl&5
1

AN
(
k50

N21

expS i
2p

N
kl D uxk&. ~2.1!

Without loss of generality, it can be assumed that these b
consist of sets of eigenvectors of noncommuting operatorX̂

and P̂:

X̂uxk&5kuxk&, P̂upl&5 l upl&, ~2.2!

that is,
©2003 The American Physical Society02-1
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ROŠKO et al. PHYSICAL REVIEW A 68, 062302 ~2003!
X̂5 (
k50

N21

kuxk&^xku, P̂5 (
l 50

N21

l upl&^pl u. ~2.3!

For instance, we can assume that the operatorsX̂ and P̂ are
related to a discrete ‘‘position’’ and ‘‘momentum’’ of a pa
ticle on a ring with a finite number of equidistant sites@17#.
Specifically, we can introduce a length scaleL, and two op-
erators, the positionx̂ and the momentump̂, such that

x̂uxk&5xkuxk&, p̂upl&5pl upl&, ~2.4!

where

xk5LA2p

N
k, pl5

1

L
A2p

N
l , ~2.5!

where we have used units such that\51. The lengthL can,
for example, be taken equal toA1/vm, wherem is the mass
andv is the frequency of a quantum ‘‘harmonic’’ oscillato
within a finite dimensional Fock space.

The squared absolute values of the scalar produc
eigenkets~2.2! do not depend on the indicesk, l:

u^xkupl&u251/N, ~2.6!

which means that pairs (k,l ) form a discrete phase spac
@i.e., pairs (k,l ) represent ‘‘points’’ of the discrete phas
space# on which ~quasi! probability density distributions as
sociated with a given quantum state can be defined@18–22#.
Next we introduce operators which shift~cyclicly permute!
the basis vectors@23#

R̂x~n!uxk&5ux(k1n)modN&,

R̂p~m!upl&5up( l 1m)modN&, ~2.7!

where the sums of indices are taken moduloN ~this summa-
tion rule is considered throughout this paper, where it is cl
we will not explicitly write the symbol modN). For more
about the properties of these operators and the role they
in the discrete phase space (k,l ) see Ref.@24#.

A general single-particle state in thex basis can be ex
pressed as

uC&15 (
k50

N21

ckuxk&1 , (
k50

N21

ucku251. ~2.8!

The basis of maximally entangled two-particle states~the
analog of the Bell basis for spin-1

2 particles! can be written
as

uJmn&5
1

AN
(
k50

N21

expS i
2p

N
mkD uxk&ux(k2n)modN&,

~2.9!

wherem,n50, . . . ,N21. We can also rewrite these max
mally entangled states in thep basis:
06230
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uJmn&5
1

AN
(
l 50

N21

expS 2 i
2p

N
nl D up(m2 l )modN&upl&.

~2.10!

The statesuJmn& form an orthonormal basis

^JkluJmn&5dk,md l ,n , ~2.11!

with

(
m,n50

N21

uJmn&^Jmnu5 1̂^ 1̂. ~2.12!

In order to prove the above relations we have used the s
dard relation(n50

N21 exp@2pi(k2k8)n/N#5Ndk,k8 .
It is interesting to note that the whole set ofN2 maximally

entangled statesuJmn& can be generated from the sta
uJ00&23 by the action oflocal unitary operations~shifts!, e.g.,

uJmn&235 1̂2^ R̂x
†~n!R̂p~m!uJ00&23, ~2.13!

acting just on system 3 in this particular case.
From the definition of the statesuJmn&23 it follows that

they are simultaneously eigenstates of the operatorsX̂22X̂3

and P̂21 P̂3:

~X̂22X̂3!uJmn&235nuJmn&23,

~ P̂21 P̂3!uJmn&235muJmn&23. ~2.14!

We easily see that forN52 the above formalism reduces t
the well-known spin-12 particle ~qubit! case.

Now we introduce generalizations of the two-qub
controlled-NOT ~CNOT! gate~see also Ref.@25#!. In the case
of qubits theCNOT gate is represented by a two-particle o
erator such that if the first~control! particle labeleda is in the
stateu0& nothing ‘‘happens’’ to the state of the second~tar-
get! particle labeledb. If, however, the control particle is in
the stateu1& then the state of the target is ‘‘flipped,’’ i.e., th
stateu0& is changed into the stateu1& and vice versa. For-
mally we can express the action of thisCNOT gate as a two-
qubit operator of the form

D̂ab5 (
k,m50

1

uk&a^ku ^ u~m1k!mod 2&b^mu. ~2.15!

We note that in principle one can introduce an operatorD̂ab
†

defined as

D̂ab
† 5 (

k,m50

1

uk&a^ku ^ u~m2k!mod 2&b^mu. ~2.16!

In the case of qubits these two operators are equal. Th
not the case when the dimension of the Hilbert space
larger than two@25#. Let us generalize the above definition
the operatorD̂ for N.2. Before doing so, we shall simplify
our notation. Because we will work mostly in thex basis we
2-2
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shall use the notationuxk&[uk&, where it may be done so
unambiguously. With this in mind we now write

D̂ab5 (
k,m50

N21

uk&a^ku ^ u~m1k!modN&b^mu. ~2.17!

From definition~2.17! it follows that the operatorD̂ab acts
on the basis vectors as

D̂abuk&um&5uk&u~k1m!modN&, ~2.18!

which means that this operator is equal to the conditio
adder@26,27# and can be performed with the help of a simp
quantum network as discussed in Ref.@26#.

If we take into account the definition of the shift operat
R̂x(n) given by Eq.~2.7! and the definition of the position
and momentum operatorsx̂ and p̂ given by Eq.~2.4! we can
rewrite the operatorD̂ab as

D̂ab5 (
k,m50

N21

uk&a^ku ^ R̂x
(b)~k!um&b^mu

[ (
k50

N21

uk&a^ku ^ R̂x
(b)~k!, ~2.19!

and analogously

D̂ab
† 5 (

k,m50

N21

uk&a^ku ^ u~m2k!modN&b^mu

[ (
k50

N21

uk&a^ku ^ R̂x
(b)~2k!, ~2.20!

where the subscriptsa andb indicate on which Hilbert space
the given operator acts. Now we see that forN.2 the two
operatorsD̂ and D̂† do differ; they describe conditiona
shifts in opposite directions. We see that the generalizatio
the CNOT operator are theconditional shifts. The amount by
which the target~in our case particleb) is shifted depends on
the state of the control particlea ~for a pictorial representa
tion of this gate see Fig. 1!.

FIG. 1. Schematic description of the two-qudit conditional-sh
gate.
06230
l
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III. QUANTUM INFORMATION DISTRIBUTOR

As shown in Ref.@15# quantum control over the quantum
information can be achieved with the help of a quantu
‘‘machine,’’ the so-called QID. The machine takes as an
put a system qudit prepared in an unknown stateuC&1 and
two ancilla qudits prepared in the stateuQ&23 that play the
role of quantum program~i.e., theCP map that has to be
performed on the system qubit is encoded in this state!. The
action of the QID itself is described by a unitary opera
U123 acting on the Hilbert space that is a tensor product
the three qudits under consideration. This unitary opera
can be expressed as a sequence of four controlled shiftsDkl ,
i.e.,

Û1235D̂31D̂21
† D̂13D̂12. ~3.1!

The flow of information in the quantum distributor, as d
scribed by the unitary operator~3.1!, is governed by the
preparation of the distributor itself, i.e., by the choice of t
program stateuQ&23. In other words, we imagine the trans
formation~3.1! as a universal ‘‘processor’’ or distributor an
the stateuQ&23 as ‘‘program’’ through which the information
flow is controlled.

We present the logical network for the QID in Fig. 2. Th
output state of the three-particle system after the four c
trolled shifts are applied is

uV (out)&1235D̂31D̂21
† D̂13D̂12uC&1uQ&23. ~3.2!

Note that the QID is covariant with respect to any choice
the stateuC&1 of data register~for more details see Ref
@15#!.

A. Factorized program states

Let us first assume that the two program qudits are i
pure state

uQ&235uxm&2upn&3 . ~3.3!

After the action of the QID the stateuV&1235uC&1^ uQ&23
transforms as

uV (out)&1235U123uC&1uxm&2upn&3

5@R̂x~m!R̂p
†~n!uC&2] ^ uJnm&31. ~3.4!

So we can observe two actions of the QID on the input st
First, the state of the original qudit has been totally copied
the state of the second qudit. Simultaneously, the second

t

FIG. 2. Logical network for the quantum-information distribu
tor. The network is composed of four conditional-shift gates.
2-3
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dit undergoes two rotations described by the opera
R̂x(m)R̂p

†(n), where the values of the rotations are unique
determined by the program state. Finally, the two remain
qudits ~labeled as 1 and 3) became maximally entangled
the result of the action of the QID.

B. Maximally entangled program states

Let us assume that the QID stateuQ&23 is initially pre-
pared in the maximally entangled stateuJmn&23 given by Eq.
~2.9!. Taking the original system to be prepared in the st
uC&1, i.e., the three qudits at the input are in the state

uV&1235uC&1^ uJmn&23 ~3.5!

we find after the QID transformation the expression for
state vector of the three qudits

uV (out)&1235@R̂x
†~n!R̂p

†~m!uC&1] ^ uJmn&23. ~3.6!

We see that if the program register is initially prepared in
maximally entangled state then the information encoded
the input state of the first~system! qudit will remain in this
qudit, but the QID will induce a specific rotation on th
qudit that is uniquely determined by the maximally e
tangled state of the program qudits. Interestingly enough,
program state is not changed at all in this case.

C. Superposition of program states

The complete set of maximally entangled states, Eq.~2.9!,
is a basis for the two-qudit Hilbert space. Therefore, an
bitrary program state can be written in the form

uQ&235 (
m,n50

N21

dmnuJmn&, ~3.7!

and the corresponding evolution of the QID results in
state

ÛuV&5 (
m,n50

N21

dmnR̂x
†~n!R̂p

†~m!uC&1^ uJmn&23 ~3.8!

5 (
m,n50

N21

d̃mn@R̂p
†~n!R̂x~m!uC&2] ^ uJnm&13, ~3.9!

where d̃mn is the Fourier transformation of the coefficien
dmn :

d̃mn5
1

N (
k,l 50

N21

dkl expF i
2p

N
~km1 ln !G5F~dmn!.

~3.10!

This last result is not surprising, since the complete se
factorized statesuxm&upn& forms another orthonormal bas
for the program space. If the program space is expande
this basis Eq.~3.9! immediately results. What is interesting
that the program state that induces a specific operation on
first qudit performs an analogous~though not identical! op-
06230
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eration on the second qudit. To see this we present the
duced density operators of these two qudits at the outpu
the QID @see Eqs.~3.8! and ~3.9!#:

r̂15 (
m,n50

N21

udmnu2R̂x
†~n!R̂p

†~m!uC&^CuR̂p~m!R̂x~n!,

~3.11!

r̂25 (
m,n50

N21

ud̃mnu2R̂x~m!R̂p
†~n!uC&^CuR̂p~n!R̂x

†~m!.

~3.12!

We will use this property of the QID and its application as
measurement device that realizes a generalized measure
in our further analysis of the QID.

D. The case of qubits

We have seen that for qudits, there are two special ba
that cause a set of operations to be performed on the in
data state so that at the output, the transformed data sta
disentangled from the output program state. In the case
qubits there is a third special basis.

In this section let us change our notation to connect it
that usually employed for two-state systems. We shall den
the statesux0& and ux1& by u0& and u1&, respectively. The
statesup0& and up1& can then be expressed as

up0&5
1

A2
~ u0&1u1&),

up1&5
1

A2
~ u0&2u1&). ~3.13!

The maximally entangled statesuJmn& are just the Bell
states. The actions of the product and maximally entang
program states can be expressed as

U123uC&1uJ00&235uC&1uJ00&23,

U123uC&1uJ10&235~szuC&1)uJ10&23,

U123uC&1uJ01&235~sxuC&1)uJ01&23,

U123uC&1uJ11&2352 i ~syuC&1)uJ11&23, ~3.14!

and

U123uC&1u0&2up0&35uC&2uJ00&13,

U123uC&1u0&2up1&35~szuC&2)uJ10&13,

U123uC&1u1&2up0&35~sxuC&2)uJ01&13,

U123uC&1u1&2up1&35 i ~syuC&2)uJ11&13. ~3.15!

There is now a second product basis that causes the tr
formed data state to emerge from output 3. We have
2-4



l t
hr
s
g

o

ce

d
a
th
-
.
ro
s

om

er-

t of
ds
,

are
of
put
er to
l to
n-
ut

-
in
ring

of

re
d

the

the
if

by
-

on of
the

GENERALIZED MEASUREMENTS VIA A PROGRAMMABLE . . . PHYSICAL REVIEW A 68, 062302 ~2003!
U123uC&1up0&2u0&35uC&3uJ00&12,

U123uC&1up1&2u0&35~szuC&3)uJ10&12,

U123uC&1up0&2u1&35~sxuC&3)uJ01&12,

U123uC&1up1&2u1&35 i ~syuC&3)uJ11&12. ~3.16!

The additional basis suggests that it would be usefu
examine program states that are superpositions of t
states, one from each basis. Perhaps the simplest of the
the one that is a superposition of the states correspondin
the identity operator

uQ&235auJ00&231bu0&2up0&31gup0&2u0&3 , ~3.17!

whereuJ00&ab5(u00&1u11&)/A2. The normalization condi-
tion for this state is

ua1bu21ua1gu21ub1gu252. ~3.18!

We hope that this state will lead to an output that consists
three approximate copies of the input data stateuC&1, how-
ever, we find that this is not what happens. The redu
density matrix of the first output is

r̂15FUa1
~b1g!

2 U2

2
ub1gu2

4 G r̂1
ub1gu2

2
1̂

2
~bg* 1b* g!

2
syr̂sy , ~3.19!

where we used the notationr̂5uC&^Cu. Similar results are
obtained for the reduced density matrices of outputs 2 an
As can be seen, while the first two terms are, in fact,
approximate copy of the input state, this is disturbed by
last term. Note that if eitherb or g is zero, this term disap
pears and the device behaves as an approximate cloner

A somewhat more successful example is given by a p
gram state consisting of states each of which correspond
a different operation, e.g.,

uQ&235auJ00&231bu0&2up1&31gup0&2u1&3 , ~3.20!

with the normalization condition

ua1bu21ua1gu21ub2gu252. ~3.21!

The first state in the superposition producesuC& in output 1,
the secondszuC& in output 2, and the thirdsxuC& in output
3. The single-qubit-reduced density matrices resulting fr
this program state are

r̂15FUa1
~b1g!

2 U2

2
ub2gu2

4 G r̂1
ub2gu2

2
1̂,

r̂25FUb1
~a2g!

2 U2

2
ua1gu2

4 Gszr̂sz1
ua1gu2

2
1̂,

~3.22!
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r̂35FUg1
~a2b!

2 U2

2
ua1bu2

4 Gsxr̂sx1
ua1bu2

2
1̂.

In this case we do obtain an approximate version ofuC& in
output 1, an approximate version ofszuC& in output 2, and
an approximate version ofsxuC& in output 3. A simple way
to see how the accuracy of the approximations in the diff
ent outputs is constrained, is to define the fidelities

F15^Cur̂1uC&,

F25^szCur̂2uszC&,

F35^sxCur̂3usxC&, ~3.23!

and to note thatF11F21F352. Each of the fidelities lies
between 1/2 and 1. Noting that a completely noisy outpu
1̂/2, containing no information about the input, correspon
to a fidelity of 1/2, we see that if one of the fidelities is 1
containing perfect information about the input, the others
1/2, and contain no information. Thus, we have a kind
conservation of information, the more accurate one out
becomes, the less accurate the others become in ord
compensate. If the fidelities are equal, then each is equa
2/3. This is the fidelity of state estimation, and hence clo
ing, that would be achieved by simply measuring the inp
qubit.

IV. QUANTUM PROPENSITIES

According to Wódkiewicz @28#, propensity means the ten
dency~or probability! of a measured object to take up certa
states prescribed by a measuring device. Let the measu
device—the so-called quantum ruler—be in a pure stateuF&.
The quantum-ruler state can be ‘‘shifted’’ by an action
some generalized displacement operatorD̂(g), whereg is an
element of a groupG. If the measured system is in a pu
stateuC&, then its probability to be in the ruler state shifte
by g ~i.e., the propensity! is

PF,C~g!5u^CuD̂~g!uF&u2, ~4.1!

whereas if the system is in a mixed state described by
density operatorr̂, the propensity is

PF,r~g!5Tr@ r̂D̂~g!uF&^FuD̂1~g!#. ~4.2!

In our case, that of a finite-dimensional Hilbert space,
groupG will be formed by discrete translations on a torus:
g1[(n1 ,m1) andg2[(n2 ,m2) are elements ofG, then their
group product isg1g2[„(n11n2)modN,(m11m2)modN….
The corresponding displacement operator is then given
the expressionR̂x(n)R̂p(m). We see that while the displace
ment is not a representation of the groupG in the Hilbert
space under consideration, nevertheless it is representati
this group in a ray space, which enables us to define
propensity uniquely. For a pure stateuC& we can write the
propensity in the form~see Ref.@24#!
2-5
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PF,C~n,m!5u^CuR̂x~n!R̂p~m!uF&u2. ~4.3!

In the case of a statistical mixture described by the den
operatorr̂ the corresponding propensity reads

PF,r~n,m!5Tr@ r̂R̂x~n!R̂p~m!uF&^FuR̂p
†~n!R̂x

†~m!#.
~4.4!

A. Propensities and POVM measurements

The propensities as defined above are in fact result
so-called generalized~positive-operator value measure—
POVM! measurements~e.g., see Ref.@29#!. To see this let us
recall that

F̂mn5R̂x~n!R̂p~m!uF&^FuR̂p
†~m!R̂x

†~n!, ~4.5!

where uF& is a ruler state arepositive operators and they
fulfill the condition

(
mn

F̂mn5N1̂. ~4.6!

So the operatorsF̂mn ~or more specifically the operator
f̂ mn5F̂mn /N) form a complete set that can be used for
complete measurement of the state of a qudit. We note
other operators of form~4.5!, e.g.,

F̂mn5R̂x~m!R̂p
†~n!r̂R̂p~n!R̂x

†~m! ~4.7!

for an arbitrary density matrix,r, also realize a POVM mea
surement.

B. Q function in discrete phase space

In an analogy with a continuous (q,p) phase space, wher
theQ function ~Husimi function! is defined as the propensit
of a state to be in the vacuum state, we define the discreQ
function as propensity~4.1!

Q~n,m![PF,r~n,m!, ~4.8!

with the quantum ruler being in a ‘‘vacuum’’ state. The pro
lem is how to define a vacuum state corresponding t
finite-dimensional Hilbert space.

Before specifying the ruler state, we will mention seve
properties of discreteQ functions. If we assume that the rule
stateuF& is chosen~i.e., the vacuum state is specified! then
theQ function has the following properties:~i! it is uniquely
defined;~ii ! it is non-negative;~iii ! it is normalized toN

(
n,m

Q~n,m!5N; ~4.9!

~iv! for properly chosen ruler statesuF& the information
about a system state can be completely reconstructed
the correspondingQ function.
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C. Ruler state

In analogy with the continuous limit, where the ruler sta
associated with a Husimi function is the ground~vacuum!
state of the harmonic oscillator, let us consider followi
requirements on the ruler state:~i! it should be in some sens
centered at origin of phase space@i.e., the point (0,0)],~ii ! it
should be ‘‘symmetric’’ with regards to the quantitiesX and
P, i.e., its wave function should have similar form in bo
representations~perhaps up to scalings!, and~iii ! it should be
in some sense a minimum uncertainty state, which me
that in the phase space it should be represented by a
which is as narrow as possible. As shown in Ref.@19# all the
above properties are fulfilled by the ground state of
Hamiltonian

Ĥ052cosS 2p

N
X̂D2cosS 2p

N
P̂D . ~4.10!

We will use this ground state as the ruler state in our for
coming considerations.

V. POVM MEASUREMENT VIA QID

Let us now study the action of the quantum-informati
distributor when the two ancillary qudits are prepared in
superposition state

uQ&235~auJ00&231buxm&2upn&3), ~5.1!

with the two real amplitudesa andb satisfying the normal-
ization condition

a21b21
2ab

N
cosS 2p

N
nmD51. ~5.2!

With this program state the QID acts on the input data qu
uC&15(kckuxk& so that at the output the three qudits are
the following states

r̂15~12b2!r̂1
b2

N
1̂, ~5.3!

r̂25~12a2!R̂x~m!R̂p
†~n!r̂R̂p~n!R̂x

†~m!1
a2

N
1̂, ~5.4!

r̂35~12a22b2!R̂x~m!R̂p~n!r̂TR̂p
†~n!R̂x

†~m!1
a21b2

N
1̂,

~5.5!

where r̂5uC&^Cu and r̂T is the transpose of the densit
operatorr̂5(k,k8ckck8

* uxk&^xk8u. That is, in the basisuxk& the

transposed density operator readsr̂T5(k,k8ck* ck8uxk&^xk8u.
The action of the QID discussed earlier, allows us to

construct partially the state of the measured system witho
total ‘‘destruction’’ of the state of the data register. Spec
cally, from Eq.~5.3! it follows that the entangled componen
of the program register~represented by the stateuJ00&23)
dictates how ‘‘much’’ of the original information encoded i
the qudit 1 is transferred from the data register to the p
gram register at the output of the QID. For instance, if t
amplitudea is equal to unity~i.e., b50) then the data reg
ister is not perturbed at all, and no information is transferr
2-6
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On the other hand, fora,1 some of the information from
the data is transferred to the program at the expense of n
introduced into the data register. The trade-off between
information transfer and the noise introduced into the d
register is nicely seen from Eq.~5.3!. The amount of noise
that is transferred into the first~data! qudit is dictated by the
amplitudeb that weighs the factorizable contribution to th
program state, i.e.,uxn&2upm&3. Moreover this specific state
also determines operations~rotations! that are performed on
program qudits.

In order to illustrate the action of the QID we plot in Fig
3 Q functions of an input qudit, that is, initially prepared
the ground state of Hamiltonian~4.10!, as well as the three
output qudits. The ruler state is chosen to be again
ground state of Hamiltonian~4.10!. The Husimi functions do
correspond to the situation when a POVM measuremen
performed on the density operatorr̂ j ( j 51,2,3) given by
Eqs.~5.3!–~5.5!, respectively.

VI. EFFECT OF MEASUREMENT

It is obvious from expression~5.4! that if the von Neu-
mann measurement using the projectoruF&2^Fu ~i.e., pro-
jecting on the ruler state! on qudit 2 is performed then thi
measurement results in a reconstruction of the Husimi fu
tion of the original data state affected by the amount of no
determined by the particular value ofa. In other words, this
projective measurement will result in the reconstruction
the Husimi function of the operatorr̂2

(out)5(12a2) r̂

1a2/N1̂. Certainly, the state of the data register is then

FIG. 3. Husimi functions of the input state of the data qudit a
the output qudits. The input data qudit is initially prepared in t
ground state of Hamiltonian~4.10! while the auxiliary system~an-
cilla! is initially prepared in the state uQ&50.75uJ00&
20.64ux7&up5&. The top graph, labeledQC(k,l ), represents the Hu
simi function of the initial state of the data qudit. The three grap
labeledQ1(k,l ), Q2(k,l ) andQ3(k,l ), represent the Husimi func

tions of reduced statesr̂1 , r̂2, andr̂3 of the composite system tha
are given by Eqs.~5.3!–~5.5!, respectively.
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fected not only by the action of the QID but also by th
effect of the projective measurement performed on the s
ond qudit.

To understand the role of the projective measurement
formed on the program register on the state of the data
ister at the output of the QID, let us consider the followin
We will study the action of the quantum-information di
tributor when the two ancillary qudits are prepared in a
perposition state given by Eq.~5.1!. With this program state
the QID acts on the input data qudituC&15(kckuxk& so that
at the output the three qudits are in the state

uV (out)&1235U123uC&1@auJ00&231buxm&2upn&3]

5auC&1uJ00&231b@R̂x~m!R̂p
†~n!uC&] 2uJnm&31.

~6.1!

Then we will assume that both program qudits are measu
projectively. Qudit 2 is projected in the ruler stateuF&2
5(kf kuxk&2 while the qudit 3 is projected on the transpos
ruler stateuFT&3ª(kf k* uxk&3. Schematically this situation is
depicted in Fig. 4

The data qudit after the action of the QID and this pr
jective measurement reads

uC (out)&1.2^Fu 3^F
TuV (out)&123

5
a

AN
uC&11

b^FuR̂x~m!R̂p
†~n!uC&

AN

3R̂x
†~m!R̂p~n!uF&1 . ~6.2!

This means that by acquiring knowledge of a particular va
of the Husimi functions of the second and the third qud
the data qudit ‘‘collapses’’ into state~6.2!. The disturbance of
the original data state depends on the value ofa, the particu-
lar point (m,n) at which the Husimi functions of the pro
gram qudits are measured and the specific choice of the r
state.

VII. CONCLUSION

Here we have shown how a simple quantum device,
quantum-information distributor, can both distribute and p
cess quantum-information. This device was discussed in
@15#, and it was shown there that the flow of information w
controlled by a program state. In this paper, we have con
ered a much wider class of program states. Besides mo
the quantum-information between outputs, they allow us

,

FIG. 4. Logical network for the quantum-information distribut
with a projective measurement performed on the program regis
2-7
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in addition, apply shift operators to the input data. This,
turn, makes it possible to use the QID to measure the disc
Q function of the input data, which is equivalent to realizin
a class of POVM operators. Another possibility, is to split t
input into two parts, find theQ function of one part and
retain the other part. There is a trade-off involved: the m
information that is retained, the more smeared is theQ func-
tion, and the better theQ function, the more distorted is th
information in the retained qudit. Thus, the QID provides
a

w-

e

06230
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with a very flexible programmable quantum-information pr
cessing device, which has a number of useful application
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@28# K. Wódkiewicz, Phys. Rev. Lett.52, 1064~1984!; Phys. Lett.

115A, 304 ~1986!; 129, 1 ~1988!.
@29# See, for example, M.A. Nielsen and I.L. Chuang,Quantum

Computation and Quantum Information~Cambridge Univer-
sity Press, Cambridge, 2000!.
2-8


