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We show that it is possible to control the trade-off between information gain and disturbance in generalized
measurements of qudits by utilizing a programmable quantum processor. This universal quantum machine
allows us to perform a generalized measurement on the initial state of the input qudit to construct a Husimi
function of this state. The trade-off between the gain and the disturbance of the qudit is controlled by the initial
state of ancillary system that acts as a program for the quantum-information distributor. The trade-off fidelity
does not depend on the initial state of the qudit.
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[. INTRODUCTION troduce a formal description of a qudit and some basic op-
erations that can be performed on a single qudit and con-
Recently in several experimeniid—3] optimal quantum trolled rotations that can be performed on two qudits. In Sec.
cloning of qubits[4—6] has been achieved. In these experi-lll we will describe the quantum-information distributor and
ments the information that was originally encoded in an unihe role of the programs encoded in states of program qudits.
known state/ W) of an input qubit has been distributed be- In Sec. IV we will be devoted to a description of generalized
tween two qubits in a covariant wdize., the fidelity of this measurements and the reconstructioreasuremeitof the
information distribution does not depend on the state of thdiusimi function in a discrete phase space. In Sec. V we will
input qubid. Quantum cloning, viewed as a process of infor-analyze how positive-operator value measig®VM) mea-
mation distribution, can be considered as one of the basigurements can be realized with the help of quantum-
tasks of quantum-information processif@|P). Another im-  information distributor. We conclude our paper with some
portant task of QIP is the application of specific operationg®@marks on the noise induced on the input data qudit due to
(maps to the input data. In order to perform either of thesethe projective measurements performed on the program qu-
tasks, we have to control the dynamics of the data registeflits at the output of quantum-information distributor.
This control can be achieved by having external forces,
which are specified by classical paramet@rg., phases and Il. OPERATIONS ON QUDITS
amplitudes of lasejsact on the quantum syste#—9|. Al-
ternatively, the control of the dynamics of the data register In order to make our discussion self-contained we first
can be performed on the quantum level, that is, the mappresent a brief review of the formalism describing quantum
induced on the data register can be completely specified bstates in a finite-dimensional Hilbert space. Here we follow
the quantum state of a program register in a quantum proceghe notation introduced in Ref16]. Let the N-dimensional
sor. The action of the processor is specified by a unitanHilbert space be spanned Iyorthogonal normalized vec-

operator acting on the Hilbert space of the data and théors|x,) or, equivalently, byN vectors|p,), k,1=0, ... N
program register and results in a map induced on the data 1, where these bases are related by the discrete Fourier
[10-14. transform

In this paper we will consider a specific model of the
guantum processor—the so-called quantum-information dis- 1 N7 20
tributor (QID), which was introduced recently in RgfL5]. x)=—= >, exp —i —kl>|p,>,
This covariant quantum processor allows us to distribute YN =0 N

guantum-information into several quantum channels as well
as to perform specific quantum operations in each of the 1 N1 20
channels. This set up is interestipgr sesince it allows us to lp)=—= >, expi —kl) [Xi)- (2.1
achievequantumcontrol over quantum systems. In addition, VN o N
if the quantum information distributor is combined with a
projective measurement performed on some of the outputVithout loss of generality, it can be assumed that these bases
channels one can achieve interesting generalized quantugdnsist of sets of eigenvectors of noncommuting operators
(positive operator value measlireeasurements on the input andP:
register. In particular, in this paper we will show how quan-
tum filtering of the originalinput) data register can be real- A -
ized and how propensitie®.g., a Husimi functionof the X|x=Kk[xi), Plpp=I[pi), 2.2
input register can be easily measured.

Our paper is organized as follows. In Sec. Il we will in- that is,
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N—1 N—1 N—1
,\ ~ _ 1 2
X:go KIx{xl, P= I_ZO Hp)(pil. 2.3 |':mn>:\/_ﬁ “~ ex _'Wm |P(m=1ymoan) [ P1)-
. . (2.10
For instance, we can assume that the operatoasnd P are _ )
related to a discrete “position” and “momentum” of a par- The stateg= ) form an orthonormal basis
ticle on a ring with a finite number of equidistant sifds]. ZE \—s s 21
Specifically, we can introduce a length schleand two op- (EulEmn)=dmdin, (2.1
erators, the position and the momenturp, such that with
XX =xdx0, Plpy=plp1), (2.9 L.
|:mn><:mn|:l®l- (2.12
where m.n=0
oy 1 [om In order to prove the above relations we have used the stan-
X=L /Wk’ PI=1\ /WL (2.5  dard relation=\_ g exp2mi(k—K')NVN]=Nd -

It is interesting to note that the whole setdf maximally
entangled state$Z,,,) can be generated from the state

where we have used units such that 1. The length_ can, | = 00) 23 by the action ofocal unitary operationgshifts), e.g.,

for example, be taken equal tfl/wm, wherem is the mass

and w is the frequency of a quantum “harmonic” oscillator = R JUREX PN =

within a finite dimensional Fock space. |Emn)23= 128 Ru(M) Re(M)[ Zoo)2s, 213
_ The squared absolute values of_ th_e scalar product Ozgcting just on system 3 in this particular case.

eigenkets(2.2) do not depend on the indicés|: From the definition of the statd& ,,),s it follows that

[(xp))2=1N, (2.6 they are simultaneously eigenstates of the operaf(grsf(g
andP,+ Py:
which means that pairsk(l) form a discrete phase space .
[i.e., pairs k1) represent “points” of the discrete phase (Xa=X3)|Emm 23= NI E mn) 23,
spacé on which (quas) probability density distributions as-
sociated with a given quantum state can be def[i8d-22. (Po+P3)|Emn25= M Emn)2s- (2.14
Next we introduce operators which shiftyclicly permute
the basis vectorf23] We easily see that fdl=2 the above formalism reduces to
the well-known spins particle (qubit) case.
R(N)|x, )= |X (k- nymodN) Now we introduce generalizations of the two-qubit

controlledNOT (CNOT) gate(see also Ref(25]). In the case
2.7) of qubits thecNOT gate is represented by a two-particle op-

erator such that if the firgtontro) particle labeled is in the
where the sums of indices are taken modii¢this summa-  State|0) nothing “happens” to the state of the secoftelr-
tion rule is considered throughout this paper, where it is clea@€d particle labeledb. If, however, the control particle is in
we will not explicitly write the symbol mo#l). For more the statg1) then the state of the target is “flipped,” i.e., the
about the properties of these operators and the role they pl&jate|0) is changed into the stafd) and vice versa. For-

Ro(m)[P1) =P+ mymodn)»

in the discrete phase spadel( see Ref[24]. mally we can express the action of tlisOT gate as a two-
A general single-particle state in thebasis can be ex- 9qubit operator of the form
pressed as 1
N-1 N-1 ﬁab:kzo |K)o(k|®|(m+k)mod 2),(m|. (2.1
,m=
|‘I’>1:k§=‘40 Cl X1 ;::O le?=1. (2.9

We note that in principle one can introduce an operél@g
The basis of maximally entangled two-particle statdse  defined as
analog of the Bell basis for spih-particleg can be written
as

1

Bav= 2 [Kakle|(m—kjmod 2u(m|. (2.16

Il

N—1
1 2T
mn) = N go eXF{'ka) X X k= rymodns) In the case of qubits these two operators are equal. This is
(2.9 not the case when the dimension of the Hilbert space is
larger than twd25]. Let us generalize the above definition of
wherem,n=0, ... N—1. We can also rewrite these maxi- the operatoD for N>2. Before doing so, we shall simplify
mally entangled states in thebasis: our notation. Because we will work mostly in tldasis we
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@ ; ’ ] FIG. 2. Logical network for the quantum-information distribu-
— tor. The network is composed of four conditional-shift gates.
FIG. 1. Schematic description of the two-qudit conditional-shift . QUANTUM INFORMATION DISTRIBUTOR
gate.

As shown in Ref[15] quantum control over the quantum-
information can be achieved with the help of a quantum
“machine,” the so-called QID. The machine takes as an in-
put a system qudit prepared in an unknown state;, and
two ancilla qudits prepared in the stdf®),; that play the
A role of quantum progranii.e., theCP map that has to be

Dab:kmz:0 [K)a(k| ®[(m+k)modN)p(m|.  (2.17) performed on the system qubit is encoded in this stdtee
' action of the QID itself is described by a unitary operator
. U,,3 acting on the Hilbert space that is a tensor product of
From definition(2.17) it follows that the operatoD.y, acts  the three qudits under consideration. This unitary operator
on the basis vectors as can be expressed as a sequence of four controlled Ehifts
ie.,

shall use the notatiofx,)=|k), where it may be done so
unambiguously. With this in mind we now write

N—-1

D/ k)| m) = [k)| (k+m)modN), (2.18 C e ara
U125=D31D2:D13D 1. (3.9

which means that this operator is equal to the conditionall.
adder[26,27] and can be performed with the help of a simple

guantum network as discussed in Ref6]. . g . ; ;

If we take into account the definition of the shift operator preparation of the distributor itself, i.e., t:_)y th(_e choice of the
. ) o . program staté®),;. In other words, we imagine the trans-
R(n) given by Eq.(2.7) and the definition of the position formation(3.1) as a universal “processor” or distributor and
and momentum operatoxsandp given by Eq.(2.4) we can  the statg® ), as “program” through which the information

he flow of information in the quantum distributor, as de-
scribed by the unitary operatdB.l), is governed by the

rewrite the operatoD,;, as flow is controlled.
We present the logical network for the QID in Fig. 2. The
N-1 output state of the three-particle system after the four con-
Dav= > |K)a(kl® R (k)|m)y(m| trolled shifts are applied is
k,m=0
N-1 QW) 3= D35:03:D10 1 ¥)1|0) 5. (3.2
= R(b)
kZO [K)a(k|@R(K), 219 Note that the QID is covariant with respect to any choice of
the state|V), of data register(for more details see Ref.
and analogously [15)).
N-1 A. Factorized program states
Dl,= > |K)a(k|®|(m—k)modN)y(m| Let us first assume that the two program qudits are in a
km=0 pure state
N—1
= [Ku(kloR®(—k), (2.20 1©)25= [Xm)2| Pn)s- 3.3
k=0

After the action of the QID the staté))q,5=|V);®|0),3

where the subscrips andb indicate on which Hilbert space transforms as

the given operator acts. Now we see thatIfor2 the two QOUY U WY |x
operatorsD and D' do differ; they describe conditional | J126= Ued ¥)alxmbal Po)s
shifts in opposite directions. We see that the generalization of =[Ry(MRI(N[¥),]®|E a1 (3.9

the cNOT operator are theonditional shifts The amount by

which the targetin our case particl®) is shifted depends on So we can observe two actions of the QID on the input state:

the state of the control particke (for a pictorial representa- First, the state of the original qudit has been totally copied on

tion of this gate see Fig.)1 the state of the second qudit. Simultaneously, the second qu-
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dit undergoes two rotations described by the operatoeration on the second qudit. To see this we present the re-
(m)R (n), where the values of the rotations are un,que|yduced density operators of these two qudits at the output of

determined by the program state. Finally, the two remaininghe QID[see Eqs(3.8) and(3.9]:

qudits (labeled as 1 and 3) became maximally entangled as N_1

the result of the action of the QID. - ~ ~ . ~
© b= S [dndPRUMRYm) W)W R, (MR, (m),

B. Maximally entangled program states (3.11)
Let us assume that the QID stdt®),; is initially pre- N-1
pared in the maximally entangled st&&,,)»3 given by Eq. - o PRMRIMITWPIR. (MR (m).
(2.9). Taking the original system to be prepared in the state P2 m,;:o [mel “Ro(m) Rp() [} (¥ [ Rp(m) R (m)
|W),, i.e., the three qudits at the input are in the state (3.12
| Q) 195= | V)1 ®| B mn) 23 (3.5  We will use this property of the QID and its application as a

_ _ _ measurement device that realizes a generalized measurement
we find after the QID transformation the expression for thejn our further analysis of the QID.

state vector of the three qudits

|Q(0ut)> _[I’:‘ZT(n)I’:‘zT(m)|\P> ]®|~ ) 3.6 D. The case of qubits
e P Hom e ' We have seen that for qudits, there are two special bases
We see that if the program register is initially prepared in thethat cause a set of operations to be performed on the input
maximally entangled state then the information encoded irflata state so that at the output, the transformed data state is
the input state of the firssystem qudit will remain in this ~ disentangled from the output program state. In the case of
qudit, but the QID will induce a specific rotation on this qubits there is a third special basis.

qudit that is uniquely determined by the maximally en- In this section let us change our notation to connect it to
tangled state of the program qudits. Interestingly enough, théhat usually employed for two-state systems. We shall denote

program state is not changed at all in this case. the stategxo) and[x;) by |0) and|[1), respectively. The
states|pg) and|p;) can then be expressed as

C. Superposition of program states

1
The complete set of maximally entangled states,(E®), |po)=—"=(]0)+|1)),
is a basis for the two-qudit Hilbert space. Therefore, an ar- V2

bitrary program state can be written in the form

1
< Ip1y=—=(|0)—[1)). (3.13
|®>23:m;=0 Aol Emn)» (3.7 ' \/E

_ _ _ The maximally entangled statd&,,, are just the Bell
and the corresponding evolution of the QID results in thestates. The actions of the product and maximally entangled
state program states can be expressed as

U12d¥)1|E 00 25=|¥)1|E o0 23+

U12d V1| E10)25= (0 ¥)1)|E10) 23,

N—-1
010)= X dnRUMRUMI¥)10(Endzs (39

2 dmn[R (MR(M[ )] ®|E gz, (3.9 U12d V)1l Eon2s= (0 ¥)1) [ Eo1) 23

m,n=0
~ Uiod W) E1023= —i(ay|W)1)[E1n2s, (314
whered,,, is the Fourier transformation of the coefficients 124 ¥)1|= 1023 1 ¥)2)| Bz

dmn: and
N—1
1 2m U12dW)1]0)2[po)s=[¥)2| Eoo 13,
=N §=‘, " exp[.w(kmﬂn) =F(dyp).
(3.10 U12d¥)1]0)|p1)s= (0 ¥)2) | E 1013,

This last result is not surprising, since the complete set of U124 )| 1)2poYa= (o ¥)2) | Eop) 13,
factorized state$x.,)|p,) forms another orthonormal basis
for the program space. If the program space is expanded in U1od¥)1|1)2lp1)s=i(oy|¥)))|E1)13.  (3.15

this basis Eq(3.9) immediately results. What is interesting is
that the program state that induces a specific operation on thehere is now a second product basis that causes the trans-
first qudit performs an analogoutough not identicalop-  formed data state to emerge from output 3. We have
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U12d¥)1|P0)20)3=[¥) 3| Eoo) 12 A

. (a—ﬂ)’z |a+ﬁ|2 A |a+ﬁ|2
o= _
U12d¥)1|p1)2/0)3= (0| ¥)3)|E10) 12,

‘y+ 5 | 2 apoyt > 1.

In this case we do obtain an approximate versiofi¥of in
U12dU)1]po)2|1)3= (o ¥)3) | Eor) 12, output 1, an approximate version @f| V') in output 2, and

an approximate version ef,| V) in output 3. A simple way
U1od¥)alp1)2l1)3=i(oy|¥)3)|E1)12.  (3.16  to see how the accuracy of the approximations in the differ-

ent outputs is constrained, is to define the fidelities
The additional basis suggests that it would be useful to

examine program states that are superpositions of three F1:<\If|’31|\p>'
states, one from each basis. Perhaps the simplest of these is
the one that is a superposition of the states corresponding to F2=(UZ‘I’|;J2|UZ‘II>,

the identity operator
|©)25= a|Eoo)23t Bl0)2|Po)st ¥|Po)20)s, (3.17) Fa=(x¥]pslox¥), 323

h = _ L111DY/ V2. Th lizati . and to note thaF,+ Fot F;=2. Each of the fid(_alities lies
){/ivonerfil tf?i(gasbtat(éoi? 1)/2 e normalization cond between 1/2 and 1. Noting that a completely noisy output of

1/2, containing no information about the input, corresponds
la+ B2 +|a+ y|2+| B+ y]?=2. (3.18 to a fidelity of 1/2, we see that if one of the fidelities is 1,
containing perfect information about the input, the others are
We hope that this state will lead to an output that consists ol/2, and contain no information. Thus, we have a kind of
three approximate copies of the input data sfdte;, how-  conservation of information, the more accurate one output
ever, we find that this is not what happens. The reducetbecomes, the less accurate the others become in order to

density matrix of the first output is compensate. If the fidelities are equal, then each is equal to
) ) ) 2/3. This is the fidelity of state estimation, and hence clon-
- (B+Y|? 1B+l - 1B+l i ing, that would be achieved by simply measuring the input
p1=| |« 2| 4 P 2 qubit.
(BY"+B*y) -
- ST aypay, (3.19 IV. QUANTUM PROPENSITIES

According to Walkiewicz[28], propensity means the ten-
where we used the notatidn= | W) (W|. Similar results are dency(or propabilit;b of a measqred obj(_act to take up certair_1
obtained for the reduced density matrices of outputs 2 and States prescribed by a measuring device. Let the measuring
As can be seen, while the first two terms are, in fact, arfléVice—the so-called quantum ruler—be in a pure sthje
approximate copy of the input state, this is disturbed by the'N& duantum-ruler state can be “shifted” by an action of
last term. Note that if eitheB or y is zero, this term disap- Some generalized displacement oper&6g), whereg is an
pears and the device behaves as an approximate cloner. €lement of a grougs. If the measured system is in a pure

A somewhat more successful example is given by a prostate|‘1’>, then its probability to be in the ruler state shifted
gram state consisting of states each of which corresponds ty g (i.e., the propensityis
a different operation, e.g.,

g Po,w(9)=[(¥|D(g)|®)[?, (4.2)
0)23= a|E o) 23t Bl0)2|P1)3+ ¥IPo)2| 1)z, (3.20 _ o _ _
whereas if the system is in a mixed state described by the
with the normalization condition density operatop, the propensity is
2 2 2 n .
S Py,(0)=TpD(Q| N DD ()] (4.2
The first state in the superposition produf¥ inoutput 1, | our case, that of a finite-dimensional Hilbert space, the

the secondr,| W) in output 2, and the thirdr,| W) in output  §r6upG will be formed by discrete translations on a torus: if
3. The single-qubit-reduced density matrices resulting fromy = (n, m,) andg,=(n,,m,) are elements o, then their

this program state are group product isg;g,=((n;+ n,)modN, (m; +m,)moad\).
The corresponding displacement operator is then given by
. Ha+(ﬁ+ y)z_l,e—yljﬁ+ 8=

the expressioiR,(n)R,(m). We see that while the displace-

P1 2 ‘ 4 2 ’ ment is not a representation of the groGpin the Hilbert
space under consideration, nevertheless it is representation of
A~ (a—?’)|2 la+ %] . la+ |2 this group in a ray space, which enables us to define the
P2=| Bt 5 | 4 TPt o propensity uniquely. For a pure stdt#) we can write the

(3.22 propensity in the form{see Ref[24])
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Pow(nm)=|(¥|R(MR(m|D)2 (4.3 C. Ruler state
In analogy with the continuous limit, where the ruler state
In the case of a statistical mixture described by the densitiﬁSSOCiiteﬂ W:]th a Husimi f_lllmCtiorll is the gro%f\lhiuﬁm _
~ - : state of the harmonic oscillator, let us consider following
operatorp the corresponding propensity reads requirements on the ruler state) it should be in some sense
. a . Ay Al centered at origin of phase spdee., the point (0,0)](ii) it
Pa,,(N,m)=Tr[ pRy(n)Ry(m)|)(P[Ry(n)Ry(m)]. should be “symmetric” with regards to the quantiti¥sand
(4.4 P, ie., its wave function should have similar form in both
representation@erhaps up to scalingsand(iii ) it should be
A. Propensities and POVM measurements in some sense a minimum uncertainty state, which means
- ] ] that in the phase space it should be represented by a peak
The propensities as defined above are in fact results Qfhich is as narrow as possible. As shown in R&f] all the
so-called generalizedpositive-operator value measure— above properties are fulfilled by the ground state of the
POVM) measurement&.g., see Ref29]). To see this let us Hamiltonian
recall that

" 2T A 27 A
Frnn= RN R(M)| O} (DRMRL(N), (4.5 HOZ‘”{ N X)‘COQ(WP)- 4.10

We will use this ground state as the ruler state in our forth-

where |®) is a ruler state argositive operators and they ; X .
coming considerations.

fulfill the condition
V. POVM MEASUREMENT VIA QID

> Fron=NL (4.9 Let us now study the action of the quantum-information
mn distributor when the two ancillary qudits are prepared in a

. superposition state
So the operators-,,, (or more specifically the operators

fn=Fmn/N) form a complete set that can be used for a |0)25=(a|Eod23t BlXm)2|Pn)a). 6.
complete measurement of the state of a qudit. We note thafith the two real amplitudes and g satisfying the normal-
other operators of forn4.5), e.g., ization condition
. . ~ ~a ~ 2a 2
Fmn=R(MRI(n) pRy(mRI(m) 4.7 a?+ g2+ T'ch{wnm) =1. (5.2
for an arbitrary density matrix, also realize a POVM mea- With this program state the QID acts on the input data qudit
surement. | W), =2,cy/Xy) so that at the output the three qudits are in
the following states
B. Q function in discrete phase space 2
A o B
In an analogy with a continuous|{p) phase space, where p1=(1=p%p+ N 1, 53

the Q function (Husimi function is defined as the propensity
of a state to be in the vacuum state, we define the disQete
function as propensity4.1)

~ ~ ~ A~ ~ a’z,\
p2= (1= a®R(MRYMpRy(MRLmM) + 1, (5.9

Q(n!m)EPCI),p(n!m)! (48) A N N ~ATAt ~t a2+,82A
p3=(1—a®= B*)R(M)Ry(n)p RN R, (m) + 1,
with the quantum ruler being in a “vacuum” state. The prob- (5.5)
lem is how to define a vacuum state corresponding to a
finite-dimensional Hilbert space. where p=|¥)(¥| and p" is the transpose of the density

Befo.re speqifying the rul_er state, we will mention Severaloperator[)=2k k’CkC:r|Xk><Xk’|- That is, in the basitx) the
properties of discret® functions. If we assume that the ruler :

state|®) is chosen(i.e., the vacuum state is specifjettien
the Q function has the following propertie§) it is uniquely
defined;(ii) it is non-negative{iii) it is normalized toN

transposed density operator reads= =, /Cf Ci [ X)X
The action of the QID discussed earlier, allows us to re-
construct partially the state of the measured system without a
total “destruction” of the state of the data register. Specifi-
cally, from Eq.(5.3) it follows that the entangled component
> Q(n,m)=N; (4.9  of the program registefrepresented by the stat& oo),3)
n,m dictates how “much” of the original information encoded in
the qudit 1 is transferred from the data register to the pro-
(iv) for properly chosen ruler stategb) the information gram register at the output of the QID. For instance, if the
about a system state can be completely reconstructed froamplitude« is equal to unity(i.e., 8=0) then the data reg-
the correspondin@ function. ister is not perturbed at all, and no information is transferred.
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M_It_:[_ Q ft(}f )
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Kf;,r ! ~
©,,) L &
D —t—rL =
FIG. 4. Logical network for the quantum-information distributor
with a projective measurement performed on the program register.

fected not only by the action of the QID but also by the
effect of the projective measurement performed on the sec-
ond qudit.

To understand the role of the projective measurement per-
formed on the program register on the state of the data reg-
ister at the output of the QID, let us consider the following.

We will study the action of the quantum-information dis-
k,l ; . . .
G kD 2.(kD) Q.(k.D) tributor when the two ancillary qudits are prepared in a su-

FIG. 3. Husimi functions of the input state of the data qudit andperposmon state given by E¢b.1). With ihls program state
the output qudits. The input data qudit is initially prepared in theth® QID acts on the input data quéti), = =cy|x,) so that
ground state of Hamiltonia.10 while the auxiliary systenfan- 2t the output the three qudits are in the state
cilla) is initially prepared in the state|®)=0.795qy) oup\ —

—0.64x%7)|ps). The top graph, labele@y(k,1), represents the Hu- [ Q89)125= U124 W)al @ E o023t BlXm)2| Pn)s]

simi function of the initial state of the data qudit. The three graphs, _ = ~ At -
labeledQ; (k.1), Q,(k.1) andQa(k,I), represent the Husimi func- = a|W)1|E oo 2t BIRAMRL(M)|W)] 2| Enmar-
tions of reduced statgs; , p,, andps of the composite system that (6.1
are given by Eqgs(5.3—(5.5), respectively.

Then we will assume that both program qudits are measured
On the other hand, for<1 some of the information from Projectively. Qudit 2 is projected in the ruler sta@),
the data is transferred to the program at the expense of noise>kfk/Xk)2 while the qudit 3 is projected on the transposed
introduced into the data register. The trade-off between théuler statg®T);:=3,f}|x,)s. Schematically this situation is
information transfer and the noise introduced into the dat&lepicted in Fig. 4
register is nicely seen from E@5.3). The amount of noise ~ The data qudit after the action of the QID and this pro-
that is transferred into the firétlatg qudit is dictated by the jective measurement reads
amplitudeB that weighs the factorizable contribution to the

—_ T
program state, i.e]X,),|pm)3. Moreover this specific state WD), = (@]  DT|QCU) 15
also determines operatiofiotationg that are performed on 2 t
program qudits. :i|‘1’)1+ B(P|R(M)Ry(n)[ V)
In order to illustrate the action of the QID we plot in Fig. JN JN
3 Q functions of an input qudit, that is, initially prepared in e
the ground state of Hamiltoniaf@.10, as well as the three XRy(M)Rp(n)[D);. (6.2

output qudits. The ruler state is chosen to be again the . .
ground state of Hamiltonia#.10. The Husimi functions do  This means that by acquiring knowledge of a particular value
correspond to the situation when a POVM measurement igrf ﬂ:je HUS'(T' funI(I:tlons of the se(con)d aﬁdoifhe tglfd qufltS,
; S ; the data qudit “collapses” into stai{@.2). The disturbance o
erformed on the density operat =1,2,3) given b - X
qus (5.3—(5.5) respectiv)élyp Py (1 )9 y the original data state depends on the value ,othe particu-
o o ' lar point (m,n) at which the Husimi functions of the pro-

gram qudits are measured and the specific choice of the ruler
VI. EFFECT OF MEASUREMENT state.

It is obvious from expressiofb.4) that if the von Neu-
mann measurement using the projedidn (®| (i.e., pro- VII. CONCLUSION
jecting on the ruler stajeon qudit 2 is performed then this

measurement results in a reconstruction of the Husimi func- : ; e I
tion of the original data state affected by the amount of nois guantum-information distributor, can both distribute and pro-

determined by the particular value af In other words, this Cess quarjtum—information. This device was Qiscussgd in Ref.
o . . > f[15], and it was shown there that the flow of information was
prOJeCtIV? n.1easurt?:‘ment will result in thAe r:aconstrucnfm Olcontrolled by a program state. In this paper, we have consid-
the Husimi function of the operatop$™=(1-a®)p  ered a much wider class of program states. Besides moving
+ a?IN1. Certainly, the state of the data register is then afthe quantum-information between outputs, they allow us to,

Here we have shown how a simple quantum device, the

062302-7
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in addition, apply shift operators to the input data. This, inwith a very flexible programmable quantum-information pro-
turn, makes it possible to use the QID to measure the discretgessing device, which has a number of useful applications.
Q function of the input data, which is equivalent to realizing
a class of POVM operators. Another possibility, is to split the
input into two parts, find the&) function of one part and  This work was supported in part by the European Union
retain the other part. There is a trade-off involved: the moreyroject QGATES and by the grant agency VEGA of the Slo-
information that is retained, the more smeared is@fenc-  vak Academy of Sciences and by NSF Grant No. PHY-
tion, and the better th® function, the more distorted is the 0139692. V.B. would like to thank the Science Foundation
information in the retained qudit. Thus, the QID provides uslreland for support.
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