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Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement
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A beam splitter is a simple, readily available device which can act to entangle output optical fields. We show
that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input
states exhibit nonclassical behavior. We generalize this proof for arbifpaing or impurg¢ Gaussian input
states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the
field modes with the help of a beam splitter. We conjecture that this is a general property of beam splitters:
Nonclassicality of the inputs is a necessary condition for entangling fields in a beam splitter.
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[. INTRODUCTION tanglement in the output state: when two Gaussian “classi-
cal” fields are input to the beam splitter, the output state is

Entanglement is at the heart of the current development ofiever entangled. We find that entanglement of the output
quantum information processifd]. Entanglement-assisted state is strongly related to the nonclassicality of the input
communication can enlarge the channel capgé@hand en-  fields.
hance channel efficiendy]. Entanglement may play a key
role in secure communicatidd]. In quantum computation, Il. FOCK-STATE INPUT
of course, qubits are massively entangled. ) _

The generation and characterization of entanglement have Figure 1 shows the schematic arrangement of a beam
been studied extensively. In particular, a recent experimentalplitter. The input field described by the operaaois super-
advance realized the generation and distillation Ofposed on the other input field with Operaﬁpmy a lossless
polarization-entangled photons toward optimal entanglemerdymmetric beam splitter, with amplitude reflection and trans-
in a (2x2)-dimensional Hilbert spadé&]. The polarization-  mission coefficients andt. The output-field annihilation op-
entangled photons are generated using type I or type Il par&rators are given by
metric down-conversion. Parametric down-conversion is also

a standard technique to produce a two-mode squeezed state, c=BaB" d=BbB 1)
which is an entangled state in an infinite dimensional Hilbert
spacef6]. where the beam splitter operator[ikl]

The beam splitter is also one of the few experimentally
accessible devices that may act as an entangler. There have . 0 ...
been some previous studies of a beam splitter as an entangler B= ex;{z(aTbe"ﬁ— ab'e™'?) 2
[7-9]. In particular, Pari§9] studied entanglement proper-
ties of the output state from a Mach-Zehnder interferomete
for squeezed input states. The action of a linear directiona
coupler can also be described by the beam splitter operator.
Photon statistics and nonclassical properties of the output d
fields from a linear directional coupler have been studied for
Fock and squeezed inpyts0]. A

In this paper we investigate the entangling properties of a
beam splitter for various pure input states including Fock
states and squeezed states. We find a simple formula to de-
termine the entanglement of the output fields for squeezed
input fields. We also study the entanglement of the output
fields when the input fields are in a Gaussian mixed state and
provide a sufficient condition for input fields to have no en-

ith the amplitude reflection and transmission coefficients
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t= b _sin® 3
—cosz, r—smz. 3

The beam splitter gives the phase differercdetween the
reflected and transmitted fields.

In this paper we are interested in the entanglement prop:
erties of the output state. Suppose that input states are tw
independent Fock statgds;,n,)=|n;)4|Nn,),. The output
fields are then a superposition of two-mode Fock states:

|A3|“1:”2>:N2'4u |N1,N2>(N1,N2|I§|n1,n2)
1N2

— N1N3
N%Z Bron N1 N2), 4
where
ng Nz

N{N2 _ —ig(n;—N _ang—kpengtno—Kk—lik+l
Bnlnz_e (nq 1)202( 1)MKpnatne t

Vnyiny! Ny TN FIG. 2. The measure of entanglemé(tp) is plotted using the
X K (ny—K) 1T (n,—1)! 5“1'”2+ K1 5N2,n1_k+| ) von Neumann entropy for the reduced density operator of the beam-

splitter output field. The Fock-state input fieldsN—k) have total
(5)  photon numbeN=10. R=r?

with 6 a Kronecker delta function. When the total number of the yon Neumann entropy for the reduced density operator
input photons isN=n;+n,, the output state becomes an ~ peis E(pc) Zk 0|ck|2In|0k|2 In Fig. 2, the von Neumann

(N+1)-dimensional entangled state. ntropy forN= 10 is plotted, which shows that the measure

forThSr;/Og Na?ﬁgagtgtigtsrggy és a[Tze]?Sl\J/\:;:rf] ebnetigg]lgg]e% entanglement is a convex function with its maximum for a
P P 9 50:50 beam splitter, i.er,=t=1/2. In particular, wherN

+ +
In(N+1) when an N+1)-dimensional bipartite system is —1 the output state is J/E(|0,1>+|1,0)) for 2 50-50 beam
maximally entangled. The von Neumann entrdb(;pc) for splitter [7,15].

the reduced density operatpg= TrdB|n1,n2><n1,n2|B’r is

B. Input fields of same number of photons

NiN2 2 NyN2|2
E(pe)= 2 |B | In |B | ®) In Fig. 2, it is interesting to note that, for a 50:50 beam

splitter, the entanglement shows a dip whenr=n,. When
Figure 2 shows the von Neumann entrdpfp.) as a func-  the two input Fock states have the same number of photons,
tion of the reflection coefficient and configuration of input i.€., n;=n,=n, the output state is
photon numbers. It is interesting to note that the entropy does N
n"
o) 2ol

not necessarily maximize for a 50:50 beam splitter. This is B n,n)= 2 e-i(n—2m)g
discussed further in the following subsections.
A. SU(2) coherent state X( n ) v2ml(2n—2m)!
When N number of photons are injected into one input 2m—k n!
port while no photon is injected into the other input port, the 9
output state turns into a state generally known as afRgU
coherent stat¢13,14. Substitutingn; =0 andn,=N into  for a 50:50 beam splitter. This shows that the possibility of

|2m,2n—2m)

Eq. (4), we find the SW2) coherent state having odd numbers of photons is zdt®]. This is an ex-
tension of the well-known result oB|1,1)=(1/1/2)(|0,2)
B|ON)= >, cNk,N—k), 7) +¢€'%12,0)) [16]. The output statd1,1) may result from

k=0

transmission or reflection of both the photons. The two cases
destructively interfere to remove ti&,1) state in the output
state. In fact, the output state is the maximally entangled
12 state in the Hilbert space composed @f and|2). We now
cN= ( rktN—kgike (8) see why entanglement is not maximized when the same num-
k . . . . . . .
k bers of photons are injected to a 50:50 beam splitter. This is

where
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due to the fact that odd-number states destructively interfere

and do not appear in the output state. It is also true that the

output state can be considered in an-(1)-dimensional Hil-

bert space composed 8),|2),--,|2n) instead of a (2

+1)-dimensional space. 025
With the use of a beam splitter, there are two ways to

generate entangled states im+1)-dimensional Hilbert

space. One way is to put a total nfphotons into a beam

splitter and the other way is to patphotons into each input
port of a 50:50 beam splitter. By comparing the von Neu- & "' .
el

mann entropies for the two cases, we find that the latter cas
of using a 50:50 beam splitter does not bring about the bes 0101 S
entanglement.

IIl. SQUEEZED STATE INPUTS

Generating Gaussian states, in particular, coherent state
and squeezed states has become a standard experimen
technique. When two coherent states are incident on a bear
splitter, the output is given by

BD,(a)Dy(B)]0,00=D,(ta+re'?B)Dy(tB—re ¢a)|0,0)
(10

where D(a)=exp(a’—a*a) is the displacement operator
[17]. The output stat€10) is clearly not entangled. It is fur-
ther found thadisplacing the input fields does not increase 125
entanglement of the output fieldgcause the impact of dis-
placing the input fields can always be canceled by local uni- 100
tary operations on the output fields.

When the two input fields are squeezed, the output stat@ 075

from a beam splitter is

p uJ 050

BSa(£1)5(£2)[0,0), (11) 025

where the squeezing operaf{ds] 000

R 1 .. 1.

S(§)=e><p(—§*a2— 5¢a'?|, (12)

2 2

with the complex squeezing parametérsexple). The <

phasey of the squeezing parameter determines the direction

of squeezing. Using the rotation operatoﬁ(ﬂ) FIG. 3. The measure of entanglemé&tjp) for the beam-splitter

output field is plotted using the von Neumann entropy for the re-

=exp( 195‘Té‘) the following can be written: duced density operator of the output field. The squeezing parameter
. . . . L for one squeezed input is fixed §9= 0.5 while the squeezing pa-
B(60,4)S({)=B(6,¢)R(¢/2)S(s)RT(¢/2) rameter for the other squeezed state is varied fspm0 to 1. The

R R . transmittivity isR. The beam splitter gives phase differente 0
=R(¢/2)B(0,¢—¢l2)S(s)RT(¢/2), (13) (3 a;wd ¢é=m/2 (b) between the reflected and transmitted fields.
R=r<.

where, in order to specify the parameteérsp of the beam
splitter operator, the beam splitter operator has been denoted The von Neumann entrop(p.) of the output staté11)
by B(6,¢). The first rotation operator in the last line of Eq. is plotted in Fig. 3 against the squeezing paramsjeand
(13) is canceled by local operation and the last rotation opreflection coefficient fos; =0.5. The relative phas¢=0 in
erator does not change the state when it is applied to thBig. 3(a) and /2 in Fig. 3b). We find that the entanglement
vacuum. Now we have found that the relative phasee-  of the output state depends on the degrees of squeezing for
tween the amplitude reflection and transmission coefficientinput fields and the reflection coefficient. We also note that
gives the effect of the rotation of the squeezing angle for thehe relative phase and hence the relative angle of squeez-
input fields. Without losing generality, we take the inputing for the input fields play an important role. For a 50:50
squeezing parameter to be real while keepfngariable. beam splitter, the entanglement of the output state is mini-

032323-3



M. S. KIM, W. SON, V. BUVZEK, AND P. L. KNIGHT PHYSICAL REVIEW A 65 032323

mized when¢ =0, while it is maximized wherp= /2. In  For example, if a single-mode state is nonclassical its density
other words, for¢=0, the entanglement of the output state pperatorp® can be written as

is maximized if the two input fields are squeezed along the

conjugate quadratures in phase space. To analyze the output

state(11) further, consider the following relation for a 50:50 [)C':f P(a)|a){a|d?a, (15
beam splitter of¢p=I1=7/2 (1=0,1,2 ...). Inthis case, the

output statg11) can be written as ) ) »
where theP function P(«) is positive and well behaved.

. . . It has been shown that, if a two-mode Gaussian state is
B(7/4,¢)Sa(81)Sp(S2)[0,0 represented by a positive well-behavedunction P(a, ),

the state is separahf20,21]. Suppose two classical states of
P functionsP,(«) andP,(8) are incident on a beam splitter.
Using Eq.(15), the density operator for the output state is

. (1 ) . (1 )
:Sa<§(31+5292'¢) Sb(E(SleZ'¢+Sz)

written as
~ (1 : .
X Sap g(sle'q’—sze'q‘))IO,O), (14) X i
8 [ PucPuB]a)u(ale|8)a(Bl 0 ac?pE"

whereS,(¢) =exp(—{ab+¢*a'b') is the two-mode squeez- 9’ 9’
ing operator. The single-mode squeezing operdgandS, :f Pa(a)Py(B)|tatre?B)a(ta+re’’p|
on the right-hand side of Eq14) do not contribute toward g i 5
entanglement of the output state because they can be can- ®—re”attp)p(—re Yat+tp|d*ad’s
celed by local unitary operations. Thus only the two-mode _ _
squeezing operatds,,, determines the entanglement of the IJ Pa(ty—re'?8)Py(re ' ?y+t5)|y)a( vl
output state as only it represents a joint action on both pairs
of the bipartite system. For a given squeezsgand s,, ®|8)p( 8]d%yd?s. (16)

when ¢= /2, the output state is maximally entangled.
When ¢=0, entanglement is minimized. In fact, $f =s, Here Py(ty—re'?8)P(re '?y+1t4) is the two-modeP
we completely lose entanglement f¢r=0. We notice that  function for the output state. BecauBe(«) and P,(8) are
two-mode squeezed state is produced from a single-mogsysitive well defined under the assumption of classical input
squeezed state by the action of a beam splitter and locaelds, P,(ty—re'¢5)Py(re '¢y+16) is also positive well
unitary operationsIn contrast to the case of the Fock-state defined. We have proveal sufficient conditiodfor separabil-
input, the relative phase between reflection and transmissiay of the output state from a beam splitter: when talas-
plays an important role for the case of squeezed input fieldssical Gaussian input fields are incident on a beam splitter, the
So far, we have studied only pure input states. From whagutput state is always separable. It follows that for creating a
we have learned we can conclude that the nonclassical b&aussian entangled state with the help of a beam splitter it is
havior of the input fields is a necessary condition for thenecessary that the input exhibits nonclassical behavior.
output fields to be entangled. Specifically, the only pure state We have already seen that two nonclassical input fields do
that does not possess nonclassical properties is a cohereiiit necessarily bring about entanglement in the output state
state(its P function is positive well defined; see the discus- as two squeezed state inputs may not be entangled in the
sion in the next sectionAs is well known coherent inputs beam splitter. We investigate the entanglement of the output
never become entangled in the beam splitter, that is, the outtate when two Gaussian mixed states are incident on a beam
put can always be written in the factorized form. On thesplitter.

other hand, as we have shown above, nonclassicality of the The necessary and sufficient criterion for the separability

inputs is not a sufficient condition for entanglement. of a Gaussian mixed state has been studied using the Weyl
characteristic functiolC™)(¢, ») [19—21. For a two-mode
IV. GAUSSIAN MIXED STATE INPUT Gaussian state of density operafgy,, the Weyl character-

istic function [23] C"™)(¢, 7)=Tr ppDa(2)D can be
When the input fields are mixed, the output fields from a:/vrlitte: asl (23] (&) =T paDa(£)Do(7)

beam splitter are also mixed. A general mixed continuous-
variable state is not easy to deal with because of its compli- 1
cated nature. However, for a Gaussian two-mode state, the ~(w) _ T , , ] T
separability condition has been studied extensiy&f~—21. g ex;{ 2 Ginbe o MG o),

The separability of a Gaussian state is discussed using (17
quasiprobability functions and their characteristic functions
in phase space. There are a group of quasiprobability funovhere M is a 4X4 matrix that completely determines the
tions including the Wigner function, the Husir@ function,  statistical properties of the Gaussian state. Degal. [20]
and theP function[22]. In particular, theP function can be found that after some local operations it is possible to trans-
used as a measure of the nonclassicality of the given fieldorm the state into another that is represented by the matrix
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b, 0 ¢, O
M’ 0 b, 0 ¢ 18
“lc, 0 dy O (18

0 Cy 0 d2

where the parametets, d;, andc; satisfy
bi—1 by,—-1
a1 6,1 9
|cal—[cal= V(b= 1)(d;— 1) — V(b — 1)(d,—1).

(20)

Note that the parameters , determine the correlation be- us consider a 50:50 beam splitter. Substitu

PHYSICAL REVIEW A 65 032323

N[ -

ct(g)= exr{ — 5(2n+1)e*(7 - %(2F+ 1)e—25g$}.
(25

The squeezed thermal state is said to be nonclassical when
one of the quadrature variables has its variance smaller than
the vacuum limit; the squeezed thermal state of &) is
nonclassical wheh24]

(2n+1)e”-1<0. (26)

Throughout the papes>0 is assumed without loss of gen-
erality.
For the maximum entanglement of the squeezed input, let
)
o) of Eq.

tween the two modes. The necessary and sufficient criteriof25) into Eq.(23), the matrix elements in E417) are found:

for separability then reads

n N 1
<<Au>2>+<<Av>2>>q§+;, (21)

whereqg2=\/(d,—1)/(b;— 1) and the two operators andv
are defined as

c, 1

(=2 (a+ah - ———(b'+b),
u ﬁ(a ) .l ﬁqo( +b)
A_iqo Ap o Cp fpon
=—(@"-a)- ——=—(b"-b).
v \/E(a a) Ic,] \/qu( ) (22

When two mixed states of density operatpgsandp,, are

1
b1=b2=d1=d2=§(2n+1)(8234—8723),
1 — —2s 2s
c1:§(2n+1)(e —e“’),

1
Cp=5(2n+ 1)(e*S—e %), (27)
The separability conditiof21) in this case reads that the
output state is separable whbep—1=|c,|. Substitutingb,
andc, in Eq. (27), it is found that the output state is sepa-
rable when (2+1)e 25— 1=0. With the help of Eq(26),
we write that the output state is entangled when the squeezed
thermal input fields become nonclassical.

input to a beam splitter, the density operator for the two-

mode output field isp,,=BpBT. The Weyl characteristic
function for the output field is

CO¢m=Cl(tg+renCi(—re ¢ +ty),
(23

which is obtained using the relatioB™D,(¢)Dy(7)B
=D (t{+re'?n)Dy(—re ¢ +ty).

A. Squeezed thermal state inputs

Consider two thermal states of the same average photon

numbern. The density operator for the thermal field[ 5]

. n"
pin= > %W(”L

n (1+n 24

B. Squeezed thermal and vacuum input states

Suppose a squeezed thermal state is incident on one input
port and vacuum is incident on the other input port. As was
done earlier, we assumike= 7r/2 for the beam splitter. In this
subsection we release the condition of the 50:50 beam split-
ter; hence, the output state depends on the reflection coeffi-
cient of the beam splitter. The output state is then represented
by the matrixM with its elements:

bi=r?(2n+1)e 2+t%  b,=r%(2n+1)e*+t?,

di=t(2n+1)e 2 +r1%  d=t3(2n+1)e*+r2,

c,=tr[(2n+1)e*—1].
(28)

c,=tr[(2n+1)e”25-1],

The separability criteriori21) takes different forms depend-
ing on the positivity o, —1 andd;—1 due to the definition

Suppose the thermal fields are each squeezed before they ajfieq, . Whenb,—1=0 andd;—1=0, the separability cri-
mixed at a beam splitter. From the earlier section, we knowerion becomes

that two squeezed vacua result in maximum entanglement
for the output field whenp= /2. We thus restrict our dis-

cussion to the caseé= w/2 for the study of two squeezed
thermal state inputs. We also assume that the incident fiel
are equally squeezed.

The squeezed thermal fiel(s)p,,S'(s) is represented
by the following characteristic function:

V(b;—1)(d;— 1)+ V(b= 1)(dy— 1)=]cy| +|cyl.
(29

d . . o
Bther\lee the separability criterion is

= (b1 =1)(dy— 1)+ (b= 1)(dy— 1)=[cy| +]co.
(30
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With the use ofb; andd; in Eq. (28), we find that both squeezed vacuum and the thermal field. The separability cri-
conditionsb,;—1=0 andd,—1=0 imply (2n+1)e 2s—1  terion coincides with the nonclassicality condition for the

=0. In this case, the inequaliti29) is always satisfied and output field of modec in Fig. 1.

the output state is separable. However, when+2)e 2%

—1<0, the separability criterio30) is never satisfied and V. REMARKS

the output state is entangled. Here, we confirm our earlier )

finding that the nonclassicality of the input state provides the Ve have considered the nature of the entanglement of
entanglement criterion for the output state. When a squeezedtPut fields from a beam splitter for pure state inputs and

thermal state and vacuum are incident on a beam splitter, tH8" Mixed Gaussian state inputs. In the case of pure states we

output state is entangled only if the squeezed thermal state i2ve found that, for Fock-state inputs, the beam splitter is a
nonclassical. tool to produce an N+ 1)-dimensional entangled state,

where N is the total excitation of the input fields. For
squeezed vacuum inputs, the entanglement of the output
fields depends on many factors including the relative angle
So far, we found that nonclassicality of the incident field of squeezing between the two input fields. When the relative
plays an important role in the entanglement of the outputangle is appropriately chosen, the entanglement of the output
field. Let us suppose that one input field is a squeezedtate is maximized for a 50:50 beam splitter. From these
vacuum and the other input field is a thermal state. Differ-results it directly follows that nonclassicality of the input
ently from the earlier cases in this section, one of the inpupure states is a necessary condition for having entangled
states is always nonclassical while the other is always classtates at the output of the beam splitter.
sical. Substituting the characteristic functions for the thermal |n the case of mixed states the analysis is more compli-
state and squeezed state into E2p), the characteristic func- cated since there does not exist a necessary and sufficient
tion for the output field is represented by H@7) with the  condition for inseparability of arbitrary infinite-dimensional
matrix M in the form Eq.(18), and the matrix elements are pj-partite systems. Since the condition exists for Gaussian
— _ — states, we have concentrated our attention on these states. We
by=(2n+1)r*+e *%%  by=(2n+1r*+e*t?, have proved a sufficient condition for the output state of a
di=(2n+ D)t2+e 252, dy=(2n+1)t2+er2, _beam splitter to b(_a se_parat(t_(hat is they are not (_an_tangl)ed
if both the Gaussian input fields are classical, it is not pos-
c,=tr(2n+1-e %), c,=tr(2n+1-e%). (31) Sible to create entanglement in the output of the beam split-
ter. From here it automatically follows that nonclassicality is
These elements do not satisfy conditidd®) and (20). In  a necessary condition for the entanglement.
order to use the separability criterig@l), the output state These observations make us conjecture that nonclassical-
has to be locally transformed. ity of at least one of the input fields is a necessary condition
Suppose the output fields are squeezed locally. Assuminfpr the output to be entangled. That is, the nonclassicality of
an equal degree of squeezisgfor each mode, the trans- individual inputs can be traded for quantum entanglement of

formed state is represented Pyans= SaSppouSiSh . We use  the output of the beam splitter. N _

e entty S (51D()S9) D{ae-iaye ). where e NI ded 1 prooRecenty, 2 paper escrbing an
subscripts andi, respectively, denote the real and imaginarytiCaI de\?icgspincludin a begm S Iittgr has a e%l%pﬂl P
parts, and definition(17), to find the Weyl characteristic 9 P PP )
function for the transformed state:

Cld (L m=Ci( L es+iLie s mes+ine ), (32

C. Squeezed vacuum and thermal input states
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