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Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement
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A beam splitter is a simple, readily available device which can act to entangle output optical fields. We show
that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input
states exhibit nonclassical behavior. We generalize this proof for arbitrary~pure or impure! Gaussian input
states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the
field modes with the help of a beam splitter. We conjecture that this is a general property of beam splitters:
Nonclassicality of the inputs is a necessary condition for entangling fields in a beam splitter.
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I. INTRODUCTION

Entanglement is at the heart of the current developmen
quantum information processing@1#. Entanglement-assiste
communication can enlarge the channel capacity@2# and en-
hance channel efficiency@3#. Entanglement may play a ke
role in secure communication@4#. In quantum computation
of course, qubits are massively entangled.

The generation and characterization of entanglement h
been studied extensively. In particular, a recent experime
advance realized the generation and distillation
polarization-entangled photons toward optimal entanglem
in a (232)-dimensional Hilbert space@5#. The polarization-
entangled photons are generated using type I or type II p
metric down-conversion. Parametric down-conversion is a
a standard technique to produce a two-mode squeezed
which is an entangled state in an infinite dimensional Hilb
space@6#.

The beam splitter is also one of the few experimenta
accessible devices that may act as an entangler. There
been some previous studies of a beam splitter as an enta
@7–9#. In particular, Paris@9# studied entanglement prope
ties of the output state from a Mach-Zehnder interferome
for squeezed input states. The action of a linear directio
coupler can also be described by the beam splitter oper
Photon statistics and nonclassical properties of the ou
fields from a linear directional coupler have been studied
Fock and squeezed inputs@10#.

In this paper we investigate the entangling properties o
beam splitter for various pure input states including Fo
states and squeezed states. We find a simple formula to
termine the entanglement of the output fields for squee
input fields. We also study the entanglement of the out
fields when the input fields are in a Gaussian mixed state
provide a sufficient condition for input fields to have no e
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tanglement in the output state: when two Gaussian ‘‘cla
cal’’ fields are input to the beam splitter, the output state
never entangled. We find that entanglement of the out
state is strongly related to the nonclassicality of the in
fields.

II. FOCK-STATE INPUT

Figure 1 shows the schematic arrangement of a be
splitter. The input field described by the operatorâ is super-
posed on the other input field with operatorb̂ by a lossless
symmetric beam splitter, with amplitude reflection and tra
mission coefficientsr andt. The output-field annihilation op-
erators are given by

ĉ5B̂âB̂†, d̂5B̂b̂B̂†, ~1!

where the beam splitter operator is@11#

B̂5expFu2 ~ â†b̂eif2âb̂†e2 if!G ~2!

with the amplitude reflection and transmission coefficient

-

FIG. 1. Configuration of the beam splitter operation.
©2002 The American Physical Society23-1
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t5cos
u

2
, r 5sin

u

2
. ~3!

The beam splitter gives the phase differencef between the
reflected and transmitted fields.

In this paper we are interested in the entanglement p
erties of the output state. Suppose that input states are
independent Fock statesun1 ,n2&[un1&aun2&b . The output
fields are then a superposition of two-mode Fock states:

B̂un1 ,n2&5 (
N1N2

uN1 ,N2&^N1 ,N2uB̂un1 ,n2&

5 (
N1N2

Bn1n2

N1N2uN1 ,N2&, ~4!

where

Bn1n2

N1N25e2 if(n12N1)(
k50

n1

(
l 50

n2

~21!n12kr n11n22k2 l tk1 l

3
An1!n2!N1!N2!

k! ~n12k!! l ! ~n22 l !!
dN1 ,n21k2 ldN2 ,n12k1 l ,

~5!

with d a Kronecker delta function. When the total number
input photons isN5n11n2, the output state becomes a
(N11)-dimensional entangled state.

The von Neumann entropy is a measure of entanglem
for pure bipartite states~see, e.g.,@12#!, which becomes
ln(N11) when an (N11)-dimensional bipartite system i
maximally entangled. The von Neumann entropyE( r̂c) for
the reduced density operatorr̂c5TrdB̂un1 ,n2&^n1 ,n2uB̂† is

E~ r̂c!52 (
N1N2

uBn1n2

N1N2u2 lnuBn1n2

N1N2u2. ~6!

Figure 2 shows the von Neumann entropyE( r̂c) as a func-
tion of the reflection coefficientr and configuration of input
photon numbers. It is interesting to note that the entropy d
not necessarily maximize for a 50:50 beam splitter. This
discussed further in the following subsections.

A. SU„2… coherent state

When N number of photons are injected into one inp
port while no photon is injected into the other input port, t
output state turns into a state generally known as an SU~2!
coherent state@13,14#. Substitutingn150 and n25N into
Eq. ~4!, we find the SU~2! coherent state

B̂u0,N&5 (
k50

N

ck
Nuk,N2k&, ~7!

where

ck
N5S N

k D 1/2

r ktN2keikf. ~8!
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The von Neumann entropy for the reduced density oper
r̂c is E( r̂c)5(k50

N uck
Nu2 lnuck

Nu2. In Fig. 2, the von Neumann
entropy forN510 is plotted, which shows that the measu
of entanglement is a convex function with its maximum fo
50:50 beam splitter, i.e.,r 5t51/A2. In particular, whenN
51 the output state is 1/A2(u0,1&1u1,0&) for a 50:50 beam
splitter @7,15#.

B. Input fields of same number of photons

In Fig. 2, it is interesting to note that, for a 50:50 bea
splitter, the entanglement shows a dip whenn15n2. When
the two input Fock states have the same number of phot
i.e., n15n25n, the output state is

B̂un,n&5 (
m50

n

e2 i (n22m)fS 1

2D n

(
k50

n

~21!n2kS n

kD
3S n

2m2kDA2m! ~2n22m!!

n!
u2m,2n22m&

~9!

for a 50:50 beam splitter. This shows that the possibility
having odd numbers of photons is zero@10#. This is an ex-
tension of the well-known result ofB̂u1,1&5(1/A2)(u0,2&
1eifu2,0&) @16#. The output stateu1,1& may result from
transmission or reflection of both the photons. The two ca
destructively interfere to remove theu1,1& state in the output
state. In fact, the output state is the maximally entang
state in the Hilbert space composed ofu0& and u2&. We now
see why entanglement is not maximized when the same n
bers of photons are injected to a 50:50 beam splitter. Thi

FIG. 2. The measure of entanglementE( r̂) is plotted using the
von Neumann entropy for the reduced density operator of the be
splitter output field. The Fock-state input fieldsuk,N2k& have total
photon numberN510. R[r 2.
3-2



fe
th

t

t
u
a
e

ta
e

ea

r
-
se
-
n

ta

tio

o
q.
op
th

n
th
ut

t
g for
hat
z-
0
ini-

re-
eter

-

s.

ENTANGLEMENT BY A BEAM SPLITTER: . . . PHYSICAL REVIEW A 65 032323
due to the fact that odd-number states destructively inter
and do not appear in the output state. It is also true that
output state can be considered in an (n11)-dimensional Hil-
bert space composed ofu0&,u2&,•••,u2n& instead of a (2n
11)-dimensional space.

With the use of a beam splitter, there are two ways
generate entangled states in (n11)-dimensional Hilbert
space. One way is to put a total ofn photons into a beam
splitter and the other way is to putn photons into each inpu
port of a 50:50 beam splitter. By comparing the von Ne
mann entropies for the two cases, we find that the latter c
of using a 50:50 beam splitter does not bring about the b
entanglement.

III. SQUEEZED STATE INPUTS

Generating Gaussian states, in particular, coherent s
and squeezed states has become a standard experim
technique. When two coherent states are incident on a b
splitter, the output is given by

B̂D̂a~a!D̂b~b!u0,0&5D̂a~ ta1reifb!D̂b~ tb2re2 ifa!u0,0&
~10!

where D̂(a)5exp(aâ†2a* â) is the displacement operato
@17#. The output state~10! is clearly not entangled. It is fur
ther found thatdisplacing the input fields does not increa
entanglement of the output fieldsbecause the impact of dis
placing the input fields can always be canceled by local u
tary operations on the output fields.

When the two input fields are squeezed, the output s
from a beam splitter is

B̂Ŝa~z1!Ŝb~z2!u0,0&, ~11!

where the squeezing operator@18#

Ŝ~z!5expS 1

2
z* â22

1

2
zâ†2D , ~12!

with the complex squeezing parameterz5s exp(iw). The
phasew of the squeezing parameter determines the direc
of squeezing. Using the rotation operatorR̂(q)
5exp(iqâ†â) the following can be written:

B̂~u,f!Ŝ~z!5B̂~u,f!R̂~w/2!Ŝ~s!R̂†~w/2!

5R̂~w/2!B̂~u,f2w/2!Ŝ~s!R̂†~w/2!, ~13!

where, in order to specify the parametersu,f of the beam
splitter operator, the beam splitter operator has been den
by B̂(u,f). The first rotation operator in the last line of E
~13! is canceled by local operation and the last rotation
erator does not change the state when it is applied to
vacuum. Now we have found that the relative phasef be-
tween the amplitude reflection and transmission coefficie
gives the effect of the rotation of the squeezing angle for
input fields. Without losing generality, we take the inp
squeezing parameter to be real while keepingf variable.
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The von Neumann entropyE( r̂c) of the output state~11!
is plotted in Fig. 3 against the squeezing parameters2 and
reflection coefficient fors150.5. The relative phasef50 in
Fig. 3~a! andp/2 in Fig. 3~b!. We find that the entanglemen
of the output state depends on the degrees of squeezin
input fields and the reflection coefficient. We also note t
the relative phasef and hence the relative angle of squee
ing for the input fields play an important role. For a 50:5
beam splitter, the entanglement of the output state is m

FIG. 3. The measure of entanglementE( r̂) for the beam-splitter
output field is plotted using the von Neumann entropy for the
duced density operator of the output field. The squeezing param
for one squeezed input is fixed tos150.5 while the squeezing pa
rameter for the other squeezed state is varied froms250 to 1. The
transmittivity is R. The beam splitter gives phase differencef50
~a! and f5p/2 ~b! between the reflected and transmitted field
R[r 2.
3-3
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mized whenf50, while it is maximized whenf5p/2. In
other words, forf50, the entanglement of the output sta
is maximized if the two input fields are squeezed along
conjugate quadratures in phase space. To analyze the o
state~11! further, consider the following relation for a 50:5
beam splitter off5 lp/2 (l 50,1,2, . . . ). In this case, the
output state~11! can be written as

B̂~p/4,f!Ŝa~s1!Ŝb~s2!u0,0&

5ŜaS 1

2
~s11s2e2if! D ŜbS 1

2
~s1e22if1s2! D

3ŜabS 1

2
~s1eif2s2e2 if! D u0,0&, ~14!

whereŜab(z)5exp(2zâb̂1z* â†b̂†) is the two-mode squeez
ing operator. The single-mode squeezing operatorsŜa andŜb
on the right-hand side of Eq.~14! do not contribute toward
entanglement of the output state because they can be
celed by local unitary operations. Thus only the two-mo
squeezing operatorŜab determines the entanglement of th
output state as only it represents a joint action on both p
of the bipartite system. For a given squeezings1 and s2,
when f5p/2, the output state is maximally entangle
When f50, entanglement is minimized. In fact, ifs15s2
we completely lose entanglement forf50. We notice thata
two-mode squeezed state is produced from a single-m
squeezed state by the action of a beam splitter and lo
unitary operations. In contrast to the case of the Fock-sta
input, the relative phase between reflection and transmis
plays an important role for the case of squeezed input fie

So far, we have studied only pure input states. From w
we have learned we can conclude that the nonclassica
havior of the input fields is a necessary condition for t
output fields to be entangled. Specifically, the only pure s
that does not possess nonclassical properties is a coh
state~its P function is positive well defined; see the discu
sion in the next section!. As is well known coherent inputs
never become entangled in the beam splitter, that is, the
put can always be written in the factorized form. On t
other hand, as we have shown above, nonclassicality of
inputs is not a sufficient condition for entanglement.

IV. GAUSSIAN MIXED STATE INPUT

When the input fields are mixed, the output fields from
beam splitter are also mixed. A general mixed continuo
variable state is not easy to deal with because of its com
cated nature. However, for a Gaussian two-mode state,
separability condition has been studied extensively@19–21#.

The separability of a Gaussian state is discussed u
quasiprobability functions and their characteristic functio
in phase space. There are a group of quasiprobability fu
tions including the Wigner function, the HusimiQ function,
and theP function @22#. In particular, theP function can be
used as a measure of the nonclassicality of the given fi
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For example, if a single-mode state is nonclassical its den
operatorr̂cl can be written as

r̂cl5E P~a!ua&^aud2a, ~15!

where theP function P(a) is positive and well behaved.
It has been shown that, if a two-mode Gaussian stat

represented by a positive well-behavedP function P(a,b),
the state is separable@20,21#. Suppose two classical states
P functionsPa(a) andPb(b) are incident on a beam splitte
Using Eq.~15!, the density operator for the output state
written as

B̂E Pa~a!Pb~b!ua&a^au ^ ub&a^bud2ad2bB̂†

5E Pa~a!Pb~b!uta1reifb&a^ta1reifbu

^ u2re2 ifa1tb&b^2re2 ifa1tbud2ad2b

5E Pa~ tg2reifd!Pb~re2 ifg1td!ug&a^gu

^ ud&b^dud2gd2d. ~16!

Here Pa(tg2reifd)Pb(re2 ifg1td) is the two-modeP
function for the output state. BecausePa(a) andPb(b) are
positive well defined under the assumption of classical in
fields, Pa(tg2reifd)Pb(re2 ifg1td) is also positive well
defined. We have proveda sufficient conditionfor separabil-
ity of the output state from a beam splitter: when twoclas-
sical Gaussian input fields are incident on a beam splitter,
output state is always separable. It follows that for creatin
Gaussian entangled state with the help of a beam splitter
necessary that the input exhibits nonclassical behavior.

We have already seen that two nonclassical input fields
not necessarily bring about entanglement in the output s
as two squeezed state inputs may not be entangled in
beam splitter. We investigate the entanglement of the ou
state when two Gaussian mixed states are incident on a b
splitter.

The necessary and sufficient criterion for the separab
of a Gaussian mixed state has been studied using the W
characteristic functionC(w)(z,h) @19–21#. For a two-mode
Gaussian state of density operatorr̂ab , the Weyl character-
istic function @23# C(w)(z,h)[Tr r̂abD̂a(z)D̂b(h) can be
written as

C(w)~z,h!5expF2
1

2
~z i ,z r ,h i ,h r !M ~z i ,z r ,h i ,h r !

TG ,
~17!

where M is a 434 matrix that completely determines th
statistical properties of the Gaussian state. Duanet al. @20#
found that after some local operations it is possible to tra
form the state into another that is represented by the ma
3-4
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M 85S b1 0 c1 0

0 b2 0 c2

c1 0 d1 0

0 c2 0 d2

D , ~18!

where the parametersbi , di , andci satisfy

b121

d121
5

b221

d221
, ~19!

uc1u2uc2u5A~b121!~d121!2A~b221!~d221!.
~20!

Note that the parametersc1,2 determine the correlation be
tween the two modes. The necessary and sufficient crite
for separability then reads

^~Dû!2&1^~D v̂ !2&>qo
21

1

qo
2 , ~21!

whereqo
25A(di21)/(bi21) and the two operatorsû and v̂

are defined as

û5
qo

A2
~ â1â†!2

c1

uc1u
1

A2qo

~ b̂†1b̂!,

v̂5
iqo

A2
~ â†2â!2

c2

uc2u
i

A2qo

~ b̂†2b̂!. ~22!

When two mixed states of density operatorsr̂a andr̂b are
input to a beam splitter, the density operator for the tw
mode output field isr̂out5B̂r̂B̂†. The Weyl characteristic
function for the output field is

Cout
(w)~z,h!5Ca

(w)~ tz1reifh!Cb
(w)~2re2 ifz1th!,

~23!

which is obtained using the relationB̂†D̂a(z)D̂b(h)B̂
5D̂a(tz1reifh)D̂b(2re2 ifz1th).

A. Squeezed thermal state inputs

Consider two thermal states of the same average ph
numbern̄. The density operator for the thermal field is@15#

r̂ th5(
n

~ n̄!n

~11n̄!11n
un&^nu. ~24!

Suppose the thermal fields are each squeezed before the
mixed at a beam splitter. From the earlier section, we kn
that two squeezed vacua result in maximum entanglem
for the output field whenf5p/2. We thus restrict our dis
cussion to the casef5p/2 for the study of two squeeze
thermal state inputs. We also assume that the incident fi
are equally squeezed.

The squeezed thermal fieldŜ(s) r̂ thŜ†(s) is represented
by the following characteristic function:
03232
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C(w)~z!5expF2
1

2
~2n̄11!e2sz r

22
1

2
~2n̄11!e22sz i

2G .
~25!

The squeezed thermal state is said to be nonclassical w
one of the quadrature variables has its variance smaller
the vacuum limit; the squeezed thermal state of Eq.~25! is
nonclassical when@24#

~2n̄11!e22s21,0. ~26!

Throughout the papers.0 is assumed without loss of gen
erality.

For the maximum entanglement of the squeezed input
us consider a 50:50 beam splitter. SubstitutingCa,b

(w) of Eq.
~25! into Eq.~23!, the matrix elements in Eq.~17! are found:

b15b25d15d25
1

2
~2n̄11!~e2s1e22s!,

c15
1

2
~2n̄11!~e22s2e2s!,

c25
1

2
~2n̄11!~e2s2e22s!. ~27!

The separability condition~21! in this case reads that th
output state is separable whenb121>uc1u. Substitutingb1
and c1 in Eq. ~27!, it is found that the output state is sep
rable when (2n̄11)e22s21>0. With the help of Eq.~26!,
we write that the output state is entangled when the squee
thermal input fields become nonclassical.

B. Squeezed thermal and vacuum input states

Suppose a squeezed thermal state is incident on one i
port and vacuum is incident on the other input port. As w
done earlier, we assumef5p/2 for the beam splitter. In this
subsection we release the condition of the 50:50 beam s
ter; hence, the output state depends on the reflection co
cient of the beam splitter. The output state is then represe
by the matrixM with its elements:

b15r 2~2n̄11!e22s1t2, b25r 2~2n̄11!e2s1t2,

d15t2~2n̄11!e22s1r 2, d25t2~2n̄11!e2s1r 2,

c15tr @~2n̄11!e22s21#, c25tr @~2n̄11!e2s21#.
~28!

The separability criterion~21! takes different forms depend
ing on the positivity ofb121 andd121 due to the definition
of qo . Whenb121>0 andd121>0, the separability cri-
terion becomes

A~b121!~d121!1A~b221!~d221!>uc1u1uc2u.
~29!

Otherwise the separability criterion is

2A~b121!~d121!1A~b221!~d221!>uc1u1uc2u.
~30!
3-5
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With the use ofb1 and d1 in Eq. ~28!, we find that both
conditionsb121>0 andd121>0 imply (2n̄11)e22s21
>0. In this case, the inequality~29! is always satisfied and
the output state is separable. However, when (2n̄11)e22s

21,0, the separability criterion~30! is never satisfied and
the output state is entangled. Here, we confirm our ea
finding that the nonclassicality of the input state provides
entanglement criterion for the output state. When a squee
thermal state and vacuum are incident on a beam splitter
output state is entangled only if the squeezed thermal sta
nonclassical.

C. Squeezed vacuum and thermal input states

So far, we found that nonclassicality of the incident fie
plays an important role in the entanglement of the out
field. Let us suppose that one input field is a squee
vacuum and the other input field is a thermal state. Diff
ently from the earlier cases in this section, one of the in
states is always nonclassical while the other is always c
sical. Substituting the characteristic functions for the therm
state and squeezed state into Eq.~23!, the characteristic func
tion for the output field is represented by Eq.~17! with the
matrix M in the form Eq.~18!, and the matrix elements are

b15~2n̄11!r 21e22st2, b25~2n̄11!r 21e2st2,

d15~2n̄11!t21e22sr 2, d25~2n̄11!t21e2sr 2,

c15tr ~2n̄112e22s!, c25tr ~2n̄112e2s!. ~31!

These elements do not satisfy conditions~19! and ~20!. In
order to use the separability criterion~21!, the output state
has to be locally transformed.

Suppose the output fields are squeezed locally. Assum
an equal degree of squeezings for each mode, the trans
formed state is represented byr̂ trans5ŜaŜbr̂outŜa

†Ŝb
† . We use

the identity Ŝ†(s)D̂(a)Ŝ(s)5D̂(a re
s1 ia ie

2s), where the
subscriptsr andi, respectively, denote the real and imagina
parts, and definition~17!, to find the Weyl characteristic
function for the transformed state:

Ctrans
(w) ~z,h!5Cout

(w)~z re
s1 i z ie

2s,h re
s1 ih ie

2s!, ~32!

whereCout
(w) is the characteristic function for the output sta

After a little algebra, we find that the matrix elements rep
sentingCtrans

(w) (z,h) are the same as those in Eq.~28! for the
output state from a beam splitter when the squeezed the
and vacuum are input fields but with squeezing factor2s.
The separability criterion (2n̄11)e22s21,0 thus applies
for the output state when the two input fields are t
, a
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squeezed vacuum and the thermal field. The separability
terion coincides with the nonclassicality condition for th
output field of modec in Fig. 1.

V. REMARKS

We have considered the nature of the entanglemen
output fields from a beam splitter for pure state inputs a
for mixed Gaussian state inputs. In the case of pure state
have found that, for Fock-state inputs, the beam splitter
tool to produce an (N11)-dimensional entangled state
where N is the total excitation of the input fields. Fo
squeezed vacuum inputs, the entanglement of the ou
fields depends on many factors including the relative an
of squeezing between the two input fields. When the rela
angle is appropriately chosen, the entanglement of the ou
state is maximized for a 50:50 beam splitter. From the
results it directly follows that nonclassicality of the inp
pure states is a necessary condition for having entan
states at the output of the beam splitter.

In the case of mixed states the analysis is more com
cated since there does not exist a necessary and suffi
condition for inseparability of arbitrary infinite-dimension
bi-partite systems. Since the condition exists for Gauss
states, we have concentrated our attention on these state
have proved a sufficient condition for the output state o
beam splitter to be separable~that is they are not entangled!:
if both the Gaussian input fields are classical, it is not p
sible to create entanglement in the output of the beam s
ter. From here it automatically follows that nonclassicality
a necessary condition for the entanglement.

These observations make us conjecture that nonclass
ity of at least one of the input fields is a necessary condit
for the output to be entangled. That is, the nonclassicality
individual inputs can be traded for quantum entanglemen
the output of the beam splitter.

Note added in proof.Recently, a paper describing an in
teresting approach to entanglement generation by passive
tical devices including a beam splitter has appeared@25#.
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