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Quantum-controlled measurement device for quantum-state discrimination
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We propose a “programmable” quantum device that is able to perform a specific generalized measurement
from a certain set of measurements depending on a quantum state of a “program register.” In particular, we
study a situation when the programmable measurement device serves for the unambiguous discrimination
between nonorthogonal states. The particular pair of states that can be unambiguously discriminated is speci-
fied by the state of a program qubit. The probability of successful discrimination is not optimal for all
admissible pairs. However, for some subsets it can be very close to the optimal value.
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[. INTRODUCTION space of the measured sysperm given by the expression
p.=Trs(A,ps), Wherepg is the state of the system arng,
Quantum measurements are inevitable parts of all quargre positive operators that constitute the decomposition of
tum devices. Specific sets of quantum measurements are gbe identity operatorX ,A,=1). This is the reason why it is
sential for optimal quantum-state estimatidn2]. Quantum  called positive operator valued meas{t¢?,4. Each POVM
measurements also represent the final step of any quantu®@n be implemented using an ancillary quantum system in a
computatior{3]. In many situations the choice of an optimal Specific state and realizing a projective von Neumann mea-
measurement depends on the task to be performed. For igurement on the composite systgsn In other words, if one
stance, in the case of quantum-state discrimination the choideas an “input” (measureflstateps in the Hilbert spacés it
of the measurement is given by the specific pair of states thas always possible to find some statg in a spacet, and a
are supposed to be discriminated. set of orthogonal projectors{E,} acting on Mg
A selection of a specific measurement can be performe®Ha (2,E,=1) such that
on a “classical” level. That is, the parameters of the mea-
surement(e.g., the orientation of the Stern-Gerlach appara- A,=Tra(E,pp) (1)
tus) are completely described classically. On the other hand
the parameters determining the character of quantum mea+e positive operators as discussed above.
surement can be encoded in a state of a quantum “program” In general, we can assume that the initial state of the
register. Certainly, in this situation one could perform a meaancilla can be prepared with an arbitrary precision. The an-
surement on a program register and estimate the parametarifla can be considered as a part of the “program register.”
specifying the measurement to be performed on the systerfrurther, we note that the general projection measurement on
With these parameters one can then “classically” adjust thehe composite system can be represented by a unitary trans-
measurement apparatus and perform the measurement ofermation on the composite system followed by a fixed pro-
the system. The other option is that the quantum prograrjection measuremer(e.g., independent projective measure-
register directly determines the measurement to be pements on individual qubils Therefore the problem of
formed on the system. This purely quantum control can belesigning the programmable quantum multimeter reduces to
realizedwithout an intermediate intervention of an observer. the question of whether an arbitrary unitary operatiomthe
Therefore it is interesting to understand whether it is posHilbert space with a given dimensipan be encoded in
sible to construct a universalmultipurpos¢ quantum- some quantum state of a program register of a finite dimen-
measurement devic&quantum multimeter’). That is, an  sion. It was shown that the answer to this question is “No.”
apparatus that could perform a specific class of generalizelielsen and Chuang proved that any two inequivalent opera-
measurementfpositive operator valued measuf@OVM)]  tions require orthogonal program stafé$ Thus the number
in such a way that each member of this class could be sef encoded operations cannot be higher than the dimension
lected by a particular quantum state of a “program register.”of the Hilbert space of the program register. Since, in gen-
The key property of this approach is a possibility to controleral, the set of all unitary operations can be infinite, the result
the choice of the measuremeetg., the measurement basis of Nielsen and Chuang implies that no universal program-
in case of a projective measuremehy a (in principle, un- mable gate array can be constructed using finite resources.
known) quantum state of the program register. This state caifhey showed, however, that if the gate array is probabilistic,
be determined, for instance, as a result of some quantun& universal gate array is possible. A probabilistic array is one
information process. that requires a measurement to be made at the output of the
The generalized measurement is defined by the fact thgarogram register, and the output of the data register is only
the probability of each of its resulighe number of results accepted if a particular result, or set of results, is obtained.
may be, in general, larger than the dimension of the HilberThis will happen with a probability, which is less than one.

1050-2947/2002/6@)/0221125)/$20.00 66 022112-1 ©2002 The American Physical Society



MILOSLAV DUSEK AND VLADIMI R BUZEK PHYSICAL REVIEW A 66, 022112 (2002

Vidal and Cirac[7] have presented a probabilistic program- tually nonorthogonal can be distinguished with a certain
mable quantum gate array with a finite program registeprobability provided they are linearly independéfur a re-
which can realize a family of operations with one continuousview see Ref[10]). There are, in fact, two different optimal
parameter. Recently, Hillergt al. [8] have proposed a more strategied11]: First, the strategy that determines the state
general quantum processor that can perform probabilisticallyith the minimum probability for the errdd,2] and, second,
any operatiorinot only unitary on a qubit. Another aspect of unambiguous or error-free discriminatigthe measurement
encoding quantum operations in states of a program registeesult never wrongly identifies a statiat allows the possi-
has been discussed by Huelgizal. [9]. They dealt with the bility of an inconclusive resulfwith a minimal probability in
so-called teleportation of unitary operations. Unfortunatelythe optimal casgg[12—16. We will concentrate our attention
the probabilistic realization of unitary operations cannot helpto the unambiguous state discrimination. It has been first
to build a programmable quantum multimeter in the wayinvestigated by lvanovi¢12] for the case of two equally
mentioned above. The reason is that the probabilistic impleprobable nonorthogonal states. P4 solved the problem
mentation of a given operation leads, at the end,ddfarent  of discrimination of two states in a formulation with POVM
POVM than the deterministic implementation of the samemeasurement. Later Jaeger and Shimfi#] extended the
operation would lead tgThe newN+1 component POVM  solution to arbitrarya priori probabilities. Chefles and Bar-
with one more output corresponding to a “failure” is differ- nett [16] have generalized Peres’s solution to an arbitrary
ent from the desiretN component one. For example, if the number of equally probable states which are related by a
desired POVM already contains an inconclusive output thesymmetry transformation. Unambiguous state discrimination
if it is implemented probabilistically the total probability of was already realized experimentally. The first experiment,
the “failure” increases in general. designed for the discrimination of two linearly polarized
In general, we can describe a quantum multimeter as atates of light, was done by Huttnetr al.[17]. There are also
(fixed) unitary operation acting on the measured systena ~ some newer proposals of optical implementatiph&|. The
“data register”) and an ancillary systenff‘program regis- interest in the quantum state discrimination is not only “aca-
ter”) together and &fixed) projective measurement realized demic,” unambiguous state discrimination can be used, e.g.,
afterwards on the same composite system. Clearly, such @ an efficient attack in quantum cryptographg.
device can perform only a restricted set of POVMs. One can,
therefore, ask V\_/hat is the optimal unitary transformatiqn that Il “UNIVERSAL” DISCRIMINATOR
enables us to implement “the largest set of POVM&#i
comparison with the set of POVMs that would be obtainable Let us suppose that we want to discriminate unambigu-
when we allowed any unitary transformation on the sameusly between two known nonorthogonal states. However,
Hilbert space One can also ask what unitary transformationwe would like to have a possibility to “switch” the apparatus
can help to approximate all the POVMgenerated by an in order to be able to work with several different pairs of
arbitrary unitary transformationwith the highest precision states.
(fidelity) on average. Clearly, the last task requires definition Let us have twanonorthogonalinput states of a qubit.
of the distance measure between two POVMs. This is aWe can always choose such a basis that they redp)
interesting problenper se however, it goes far beyond the = gg|1p) with ay=cos(py/2) and By=sin(ey/2); the value
scope of our considerations here. Both optimization probef ¢4 can be from 0 tar/2 (¢, is the angle between the two
lems mentioned above are rather nontrivial. Moreover, thestate$. Let us have one additional ancillary qubit, initially in
introduced scheme is perhaps too general from a practical statd0,). On both the “data” and the ancilla we apply the
point of view. Therefore in the present paper we will concen-following unitary transformatio/py :
trate our attention on a more specific case: On the problem of

state discrimination. |0504)—€0S6|0p04) +SiN6|0p14),
We stress once again that a quantum multimeter as dis-
cussed in the present paper is a device which, in contrast to 11504)—|150,),
its classical counterpart, is controlle¢switched, pro- @

grammedl by the quantum states of a program register that e
are allowed to be mutually nonorthogonal. |0p1p)— —sin6[050,) + €086 0p14),
11p1a)—11p1a),

II. DISCRIMINATION OF QUANTUM STATES

In the following we will study a particular example of a Where co¥=tan(¢o/2). If we then make a von Neumann

squantum multimeter” serving for a programmable unam- Méasurement consisting of the projectBrs=|+)(+|, P_
biguous state discrimination. So, it is in place to say a few=|—)(~|, andPo=1-P,—P_, where
words about quantum-state discrimination now.

A generalunknownquantum state cannot be determined | =) =(10p0a) = |150a))/12, 3
completely by a measurement performed on a single copy of
the system. But the situation is differentafpriori knowl-  we can unambiguously determine the input statith a cer-
edge is availabl¢l,2,4], e.g., if one works only with states tain probability of succe$qd17]. This measurement is opti-
from a certain discrete set. Even quantum states that are mmal in the sense that the probability of an inconclusive result
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discrimination, while the last two terms correspond to incon-
clusive results. The probability of success is
< ¢
|1 ) Psucc:|q|2:PoptR(<Pa(P0):2SmZER((Py(PO)a (10
D
© where
A4
W) |W2) COS@o(Cosp+1)
05) R(¢,¢0)= (11)

1+ cosgpg—Sing singg

FIG. 1. The statesy,) and|y,) [defined by Eq(4)] with real . .
coefficientse and 8 can be visualized in a two-dimensional real 1S the ratio between the actual value of the probability of

space. The ang|@ is related to the 0ver|ap of the two states: SUCCESSfLﬂ dISCI’ImII’latIOI’l and ItS Opt'mal Value ThIS eXpreS'

(p1| )= cose=|a*+|B2=2|af>~ 1. sion is obtained from the conditio(8) together with the
normalization relatioda|?+|b|?=1.
is the lowest possiblénd it is the same for both staje$he From above it follows that it is possible to implement a
probability of the successful discrimination is 2%ip/2) “universal quantum multimeter” that is able to discriminate
[14]. probabilistically but unambiguouslyvith no errorg between
Let us suppose now the set of pairs two nonorthogonal states for the large class of nonorthogonal
pairs. The selection of the desired regifne., the selection
| 1) = a|0p)+ B[ 1p), of the pair of states that should be unambiguously discrimi-
(4)  natg is done by the choice of the quantum state of the an-
|2) = @|0p) = B|1p), cillary qubit. This program state selects the measurement to

be performed on the system. The probability of the success-

where a=Ccos@/2) and5=sin(¢/2), for all ¢ from the in- g, yiserimination can be optimal only for one such pair of
terval (Ogr). That is, we consider all pairs of states that lie states.

on a real plane and that are located symmetrically around the In the limit case whenp,=0, i.e., 6=m/2 (this is the

state|OD} » See Fig. 1. Further, let us suppose that the anCiITixed parameter of the employed unitary transformatidime
lary qubit is allowed to be in an arbitrary pure state probability of the successful discrimination for differeps

|Z)a=a|0n) +b|1,). (5) (i.e., for different settings of the ancilla and different pairs of
input states is the same as in the “quasi-classical” case,
Thus the total input state reads P<.c= & Sirfe. By a quasiclassical approach we mean the
probabilistic measurement when one randomly selg2i
|¥)pa=(a|0p) = B|1p))®(al0) +b|1p)) = aa|0p04) the projective measurement in one of two orthogonal basis

that both span the two-dimensional space containing both
nonorthogonal states of interég). One basis consists of the
After the action of transformatiof2) on this state one ob- state|y;) and its orth(_)gonallcomplemehﬁ). If one finds
tains the resulting state in the following forfthe transfor- the result corresponding {@/;) he/she can be sure that the

+ab|0pla)*+ Ba|150,) = Bb|1p1,). (6)

mation is fixed for allg; still cosé=tan(py/2)] state|¢,) was not present. Analogously, the other basis con-
sists of the statéy,) and its orthogonal complement.
Upa| W) pa= (aa cosd— ab sin #)|0p0,) + (aasing On the other hand wheqy= /2, i.e., #=0, there is no

way to fulfill the condition(8) with a#0 (and Pg,.#0)
+abcos6)|0pla) = Bal1p0a) + Bb[1p1a). unlessa=B=1/\/2. That is, only two orthogonal staté3)
(7)  can be unambiguously discriminated.
o . ) If the parametekp, is somewhere in between 0 andl2
If the cgefflmentsa and b in the state of the ancilla are the probability of succes@s a function ofp) is very close to
chosen in such a way that the optimal value in the relatively large vicinity of,; see
) Fig. 2. However, for small values ap it goes below the
(aacosé—absing)=pa:=q/\2 ®  success probability of the quasiclassical case andgfor
= /2 (orthogonal statgsthe probability of successful dis-
crimination is lower than unity.
Upa| ¥ )pa=0q| =)+ const|0pla) = consp|1pls), (9) One can ask for the optimal value ¢f, in the sense that
the average probability of successful discriminatjon al-
where the statest ) are defined by Eq3). Clearly, applying  ternatively, functiorR(¢,¢o)] over some chosen interval of
the projective measurement introduced above one is able tp's is maximal. For example, if we are interested in the
discriminate unambiguously statgd) for any given ¢ average value oR(¢,¢p) over the interval ofp from 0 to
€ (0,7) provided he/she has prepared the proper state of the/2 we find that it is maximized wherpy~0.2357 (the
ancilla. The first term in Eq9) corresponds to the successful corresponding average value Rfis 0.92).

then the expressiof¥) simplifies to the form
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1.0 y any two states that are symmetrically located around some
fixed state[in the sense of Eq(4)]. The setting is done
09T through the state of a program register that is represented by
R another qubit. This means that the particular pair of states
081 that can be unambiguously discriminated is specified by the
074 state of a “program” qubit. Two possible input states of the
' “data qubit” that are in correspondence with the program
061 | setting are never wrongly identified but from time to time we
can get an inconclusive result. The probability of successful
0.5 " discrimination is optimal only for one program setting. How-
0 w4 P 2 ever, the device can be designed in such a way that the prob-

ability of successful discrimination is very close to the opti-
FIG. 2. The ratioR(¢,¢o) of the actual probability of success- mal value for a relatively large set of program settings. Let
ful discrimination to the optimal value of this probability as a func- Us stress thejuantum natureof the “programming:” The
tion of the anglep between two considered state vectors. Curve Astates of the program register that represent different pro-
shows the “quasiclassical” limit o=0). Curve B represents the grams can b&onorthogonal
case whenpy= /4. We have also discussed some general questions concern-
ing the possibilities to build multipurpose quantum measure-
ment deviceg“quantum multimeters) that could perform a
For pedagogical reasons, until now we have only workedequired POVM depending on a quantum state of their pro-
with the states from a particular real subspace of the H”bel’gram register. Most of these questions remain unanswered.
space of the data qubit. However, it should be stressed th@or instance, let us suppose a set of all POVMs that can be
the method works for any two “input” states that are sym- gbtained if we combine the measured system with an ancilla
metrically displaced with respect {0p). In other words, the  of some fixed dimension in an arbitrary state and carry out an
condition(8) can be fulfilled for any complex andg. Sim-  arbitrary projective(von Neumanh measurement on the

ply, composite system. This is equivalent to carrying out an arbi-
trary unitary operation followed by some fixed projective
E: i( coso—é) ' measurement. Imagine now that we can change only the state
a siné of the ancilla but our projective measuremdpt unitary

- L transformationis fixed. The question is: What measurement
The probability of the successful discrimination of States(operatior) do we need to approximate all the POVMs from
then reads the set introduced above with the maximal average fidelity?
2 singlap|? Apparently, _this ques_tion raises the other interesting task:
sue= , (12 How to define the distance between two POVMs? Such
1-2 cost Re(ap) problems are not trivial, however, they open perspectives in
investigation of programmable quantum devices.

P

where Re@B) denotes the real part @fg.
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