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Abstract. In this tutorial we review the physical implementation of quantum
computing using a system of cold trapped ions. We discuss systematically all the
aspects for making the implementation possible. Firstly, we go through the
loading and con®ning of atomic ions in the linear Paul trap, then we describe
the collective vibrational motion of trapped ions. Further, we discuss inter-
actions of the ions with a laser beam. We treat the interactions in the travelling-
wave and standing-wave con®guration for dipole and quadrupole transitions.
We review di� erent types of laser cooling techniques associated with trapped
ions. We address Doppler cooling, sideband cooling in and beyond the Lamb±
Dicke limit, sympathetic cooling and laser cooling using electromagnetically
induced transparency. After that we discuss the problem of state detection using
the electron shelving method. Then quantum gates are described. We introduce
single-qubit rotations, two-qubit controlled-NOT and multi-qubit controlled-
NOT gates. We also comment on more advanced multiple-qubit logic gates.
We describe how quantum logic networks may be used for the synthesis of
arbitrary pure quantum states. Finally, we discuss the speed of quantum gates
and we also give some numerical estimations for them. A discussion of
dynamics on o� -resonance transitions associated with a qualitative estimation
of the weak-coupling regime is included in Appendix A and of the Lamb±Dicke
regime in Appendix B.

1. Introduction

Although trapped ions have found many applications in physics [1], they
caused a turning point in the evolution of quantum computing when the paper
entitled `Quantum computation with cold trapped ions’ was published by Cirac
and Zoller [2] in 1995. This proposal launched also an avalanche of other physical
realizations of quantum computing using di� erent physical systems, from high
®nesse cavities to widely manufactured semiconductors [3]. Through the years we
have learnt much, but also have discovered many peculiarities about the physical
realization of quantum computing which has led to many discussions concerning
the conditions under which we could in principle implement quantum computing
in certain quantum systems.

Before we give the list of requirements for the physical implementation of
quantum computing we shall introduce the fundamental terminology to appear
throughout this paper. We shall follow the de®nitions in [4].

A qubit is a quantum system in which the logical Boolean states 0 and 1 are
represented by a prescribed pair of normalized and mutually orthogonal quantum
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states labelled as j0i and j1i. These two states form a computational basis and any
other (pure) state of the qubit can be written as a superposition

jÁi ˆ ¬j0i ‡  j1i …1†

for some ¬ and  such that j¬j2 ‡ j j2 ˆ 1. It can be shown that we may choose

¬ ˆ cos # and  ˆ ei’ sin #. A qubit is typically a microscopic system, such as an
atom, a nuclear spin or a polarized photon, etc. In quantum optics a two-level atom
with a selected ground jgi and excited jei state represents a qubit. Hence the
notation jgi and jei is used for the computational basis instead of j0i and j1i. For
instance, some qubits can serve for logic operations or the storage of information.
Then we refer to logic qubits. Some others can be used especially for sympathetic
cooling of logic qubits and we may call them cooling qubits. Some further qubits
can be used as a quantum channel for transferring the information between distinct
logic qubits and then we refer to them as a quantum data bus.

A quantum register of size N refers to a collection of N qubits.
A quantum gate is a device which performs a ®xed unitary operation on selected

qubits in a ®xed period of time.
A quantum network is a device consisting of quantum gates whose computa-

tional steps are synchronized in time.
A quantum computer (processor) can be viewed as a quantum network or a

family of quantum networks.
A quantum computation (computing) is de®ned as a unitary evolution associated

with a set of networks which takes an initial quantum state (input) into a ®nal
quantum state (output) and can be interpreted in terms of the theory of informa-
tion processing.

For the moment we presume that the following ®ve requirements (termed
DiVincenzo’s checklist) should be met in order to realize quantum information
processing on a quantum system [5]. In fact, there are two more requirements for
the case of the transmission of qubits in space ( ¯ying qubits). However, it appears
that all these requirements are necessary but not su� cient for successful experi-
mental realization of a quantum processor [6].

(i) The system must provide a well-characterized qubit and the possibility to
be scalable in order to create a quantum register.

(ii) We must be able to initialize a simple initial state of the quantum register.
(iii) Quantum gate operation times must be much shorter than decoherence

times. The quantum gate operation time is the period required to perform
a certain quantum gate on a single qubit or on a set of qubits. The
decoherence time approximately corresponds to the duration of the
transformation which turns a pure state of the qubit jÁi ˆ ¬j0i ‡  j1i
into a mixture »̂» ˆ j¬j2j0ih0j ‡ j j2j1ih1j.

(iv) We need a set of quantum gates, to perform any unitary evolution
operation that can be realized on the quantum system. It has been shown
that any unitary evolution can be decomposed into a sequence of single-
qubit rotations and two-qubit controlled-NOT (CNOT) gates [7].

(v) The result of a quantum computational process must be e� ciently read
out, that is the ability to measure distinct qubits is required.

Now we introduce brie¯y the physical system under consideration. Cold
trapped ions make up a quantum system of N atomic ions con®ned in a linear
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trap. We assume an anisotropic and harmonic trapping potential. The ions are
laser cooled to a very low temperature, beyond the Doppler cooling limit, reaching
the recoil cooling limit [8]; hence we have the term cold trapped ions. The ions
form a linear crystal and oscillate in vibrational collective motional modes around
their equilibrium positions. In their internal structure, depending on the choice of
atomic species, we distinguish distinct atomic levels. The ions are individually
addressed with a laser or a set of lasers in the travelling-wave or standing-wave
con®guration. We can detect the internal state of ions using optical detection
devices. Further, we address brie¯y the requirements for the physical implemen-
tation of quantum computing (mentioned above) using cold trapped ions.

(i) The qubit is represented by a selected pair of internal atomic states denoted
as jgi and jei. This selection is discussed in detail in section 4. The quantum
register is realized by N ions forming an ion string in the linear trap,
namely the linear Paul trap, which is reviewed in section 2. A selected
collective vibrational motional mode (normal mode) is used as the quantum
data bus. The vibrational motion of the ions is treated in section 3.

(ii) Di� erent laser cooling techniques can be used for the proper initialization
of the motional state of the ions. They are described in section 5. The
initial internal state where all the ions are in the state jgi can be reached by
optical pumping to atomic states fast decaying to the ground state jgi
(sections 5 and 6).

(iii) The in¯uence of the decoherence on the motional state of the ions is
suppressed by laser cooling to ground motional states of the normal
modes. The internal levels of the ions representing the qubit states j0i
and j1i are selected such that they form slow transitions with excited states
of long lifetimes. A very detailed discussion of the decoherence bounds of
trapped atomic ions can be found in [9].

(iv) Single-qubit quantum rotations can be realized on any ion and two-qubit
controlled-NOT and multi-qubit controlled-NOT quantum gates can be
applied between chosen ions because of the possibility of individual
addressing with laser beams. The implementation of quantum gates is
discussed in section 7.

(v) The result of a computational process on cold trapped ions is encoded into
the ®nal state of the internal atomic states. This information can be very
e� ciently read out using the electron shelving method addressed in
section 6.

2. Ion trapping

Owing to the charge of atomic ions, we can con®ne them by particular
arrangements of electromagnetic ®elds. For studies of ions at low energies, two
types of traps are used. Firstly, the Penning trap uses a combination of static
electric and magnetic ®elds and, secondly, the Paul trap con®nes ions by oscillating
electric ®elds. Paul was awarded the Nobel Prize in 1990 for his work on trapping
particles in electromagnetic ®elds [10]. The operation of di� erent ion traps is
discussed in detail in [11]. For the purpose considered in this paper we shall
discuss only one trap con®guration: the linear Paul trap (®gure 1). We shall follow
[11] and [12] for the mathematical treatment.
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The linear Paul trap is basically a quadrupole mass ®lter, which is plugged at
the ends with static electric potentials. An electric potential

¿0 ˆ U0 ‡ V0 cos …Ot† …2†

oscillating with the radio frequency O is applied between two diagonally opposite
rod electrodes. The electrodes are coupled together with capacitors so that the
potential (2) is constant as a function of the z coordinate. The other two rod
electrodes are grounded. The resulting potential at the trap axis (parallel with the z
direction) has the form

¿ ˆ ¿0

2r2
0

…x2 ¡ y2† ˆ U0 ‡ V0 cos …Ot†
2r2

0

…x2 ¡ y2†; …3†

where r0 is the distance from the trap centre to the electrode surface. In this ®eld
the (classical) equations of motion for an ion of the mass m and charge q are

m�rr ˆ qE ˆ ¡q Ñ ¿; r ˆ …x; y; z†; …4†

or rewritten in the components

�xx ‡
q

mr2
0

‰U0 ‡ V0 cos …Ot†Šx ˆ 0; …5†

�yy ¡ q

mr2
0

‰U0 ‡ V0 cos …Ot†Šy ˆ 0; …6†

�zz ˆ 0: …7†

After the substitution

a ˆ 4qU0

mr2
0O2

; b ˆ 2qV0

mr2
0O2

; ± ˆ Ot

2
; …8†

equations (5) and (6) take the form of the Mathieu equation
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Figure 1. Linear Paul trap in the con®guration with two ring electrodes spaced by 2z0.
The diagonal distance between a pair of rod electrodes is 2r0. Seven ions are
con®ned at the trap axis. The potential (2) is applied between two diagonally
opposite rod electrodes. The other two are grounded. Ideally, equal static potential
is applied on both ring electrodes. (Used by kind permission of Rainer Blatt [13].)



d2x

d±2
‡ ‰a ‡ 2b cos …2±†Šx ˆ 0; …9†

d2y

d±2
¡ ‰a ‡ 2b cos …2±†Šy ˆ 0: …10†

The Mathieu equation can be solved, in general, using the Floquet solution.
However, typically we have a ½ b2 ½ 1; then the approximate stable solutions
of equations (9) and (10) are

x…t† º x0 1 ‡ b

2
cos …Ot†

³ ´
cos …!xt ‡ ’x†; …11†

y…t† º y0 1 ¡ b

2
cos …Ot†

³ ´
cos …!yt ‡ ’y†; …12†

where

!x ˆ O
2

b2

2
‡ a

³ ´1=2

; !y ˆ O
2

b2

2
¡ a

³ ´1=2

…13†

and x0, y0, ’x and ’y are constants determined by initial conditions. We see from
equations (11) and (12) that the motion of a single trapped ion in the radial
direction is harmonic with the amplitude modulated with the frequency O. The
harmonic oscillation corresponding to the frequencies !x and !y is called the
secular motion, whereas the small contribution oscillating at O is termed the
micromotion [14, 15]. We can eliminate the micromotion under certain conditions
[15]. For instance, well-chosen voltages on additional compensation electrodes
(not shown in ®gure 1) null the micromotion. Then the ion behaves as if it was
con®ned in a harmonic pseudopotential Á2D in the radial direction given by

qÁ2D ˆ m

2
!2

xx2 ‡ !2
yy2

± ²
: …14†

Typically, U0 ˆ 0 V and hence a ˆ 0; so the radial frequencies !x and !y are
degenerate. Then equation (14) reduces to

qÁ2D ˆ m!2
r

2
x2 ‡ y2

¡ ¢
; …15†

where the radial trapping frequency !r is given by

!r ˆ Ob

23=2
ˆ qV0

mr2
0O21=2

: …16†

In experiments [14±18], typical operating parameters are V0 º 300-800 V,
O=2p º 16-18 MHz and r0 ˆ 1:2 mm; so we achieve the radial frequency

!r=2p º 1:4-2 MHz for calcium ions (40Ca‡). In nature, 97% of calcium consists
of this isotope. To provide con®nement along the z direction, static potentials U1

and U2 are applied on the ring electrodes. Ideally, U1 ˆ U2 ˆ U12. Numerical
calculations show that the potential near the trap centre at the trap axis is harmonic
with the approximate axial trapping frequency !z given by

1
2
m!2

zz2
0 º ¹qU12; …17†
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where z0 is the distance from the trap centre to the ring electrode and ¹ is a
geometric factor describing how much of the static ®eld from the ring electrodes is
present along the trap axis [14]. Typical parameters are !z=2p º 500-700 kHz for
U12 º 2000 V and z0 ˆ 5 mm [17, 18]. The resulting pseudopotential for ions
con®ned in the linear Paul trap in all three directions takes the form

qÁ3D ˆ
m!2

r

2
x2 ‡ y2

¡ ¢
‡

m!2
zz2

2
; …18†

where the radial trapping frequency !r is given by equation (16) and the axial
trapping frequency !z is de®ned by equation (17). For values of experimental
parameters given above, we can calculate the depth of the potential well in the axial
direction (!z=2p º 700 kHz)

Vz ˆ
m!2

zz2

2
º 100eV …19†

and in the radial direction (!r=2p º 2 MHz)

Vr ˆ
m!2

r r2

2
º 820 eV: …20†

The potential well in the radial direction is several times deeper than along the
trap axis, that is there is a strong binding in the radial direction. Therefore we
shall not take into account radial oscillations of the ions in our further considera-
tions.

Finally we brie¯y mention how ions are loaded into the trap. We shall follow
the account of practical procedures in [15]. Before starting the loading process, the
trapping potentials are turned o� for a while in order to eliminate any unwanted
trapped residual ions. The atomic oven producing calcium atoms is switched on
and heats up. This takes about a minute. Then we turn on the electron gun
ionizing neutral calcium atoms directly in the trapping volume. Cooling lasers are
directed on the ion cloud containing several hundreds of ions with a diameter of
about 200 mm. The ion cloud gradually relaxes into a steady state where the radio-
frequency heating (from the electrodes) is balanced by laser cooling. The number
of trapped ions is reduced by turning o� the cooling. At low ion numbers, the ions
undergo a phase transition and form a linear crystal structure. Therefore, we refer
to the ion crystal or to the ion string or eventually to the ion chain. The loading
process itself takes normally about a minute.

3. Collective vibrational motion

3.1. Equilibrium positions
We have learnt that the ions form a linear crystal structure in the linear Paul

trap after the loading process. We shall assume a string of N trapped ions. Because
of the strong binding we can neglect the radial oscillations. However, if a large
number of ions is con®ned in the trap, the radial vibrations become unstable and
the ions undergo a phase transition from a linear shape to an unstable zigzag
con®guration. The relation

¬crit ˆ cN  …21†
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determines a critical value for the ratio of the trapping frequencies, ¬ ˆ …!z=!r†2,
for a given number of trapped ions N. When ¬ exceeds the critical value ¬crit, the
ions are exposed to a zigzag motion. The experimental values of the constants in
equation (21) are c º 3:23 and  º ¡1:83. For experimental details and a theor-
etical treatment we refer to [19].

Further, we describe the collective vibrational motion of the ions. We shall
follow the treatment given by James [20]. The ions are exposed to the harmonic
potential (18) due to the trap electrodes and also to the repulsive Coulomb force
from each other. Taking into account all the assumptions given above, the
potential energy of N ions con®ned in the linear Paul trap is given by the
expression

V ˆ
XN

iˆ1

m!2
zz2

i …t†
2

‡
XN

i; jˆ1
i<j

q2

4p"0

1

jzi…t† ¡ zj…t†j
; …22†

where zi…t† is the position of the ith ion numbering them from left to right with the
origin in the trap centre, m is the mass of the ion with the charge q, !z is the axial
trapping frequency (17) and "0 is the permittivity of the vacuum.

Assuming that the ions are cold enough, we can write for the position of the ith
ion

zi…t† ˆ ·zzi ‡ Di…t†; …23†

where ·zzi is the equilibrium position and Di…t† expresses small vibrations around ·zzi.
The ions placed in the equilibrium positions minimize the potential energy. Hence
these positions are determined by the condition

@V

@zi

µ ¶

zˆ·zz
ˆ 0; i ˆ 1; . . . ; N; …24†

where z ˆ …z1; . . . ; zN† and ·zz ˆ …·zz1; . . . ; ·zzN†. We introduce a scaling factor ® by the
relation

®3 ˆ q2

4p"0m!2
z

…25†

and the dimensionless equilibrium position as Z i ˆ ·zzi=®. Then one can rewrite
equation (24) in the form

Z i ¡
Xi¡1

jˆ1

1

…Z i ¡ Z j†2
‡

XN

jˆi‡1

1

…Z i ¡ Z j†2
ˆ 0; i ˆ 1; . . . ; N: …26†

N ˆ 1 is a trivial case (Z1 ˆ 0). We can ®nd the analytical solution of equation (26)
for two and three ions:

N ˆ 2; Z1 ˆ ¡…1
4
†1=3; Z2 ˆ …1

4
†1=3;

N ˆ 3; Z1 ˆ ¡…5
4
†1=3; Z2 ˆ 0; Z3 ˆ …5

4
†1=3:

…27†

Numerical calculations are necessary for N 5 4. For calcium ions 40Ca‡ and the
trap frequency !z=2p º 700 kHz, we may calculate the equilibrium positions as
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N ˆ 2; Dzmin º 7:1 mm;

N ˆ 3; Dzmin º 6:1 mm:
…28†

The minimum value Dzmin of the distance between two neighbouring ions in the
trap occurs at the centre of the ion crystal, because the outer ions push the inner
ions closer together. It has been calculated from numerical data that this minimum
distance is given approximately by the relation [20, 21]

Dzmin…N† º 2:018

N0:559
®: …29†

However, slightly di� erent numerical results may be found in [9]. Equation (29)
happens to be important when one considers individual ion addressing with a laser
beam. Quantum statistics of the ion ensemble is not considered here because the
spatial spread of the zero-point wavefunctions of the individual ions is of the order
of 10 nm and the wavefunction overlap is then negligible [21].

3.2. Normal modes
The (classical) Lagrangian of the ions in the trap is given by the formula

L º m

2

XN

kˆ1

_DD2
k ¡ 1

2

XN

k;lˆ1

@2V

@zk@zl

µ ¶

zˆ·zz
DkDl; …30†

where we have expanded the potential energy (22) in a Taylor series about the
equilibrium positions. In the expansion we have omitted the constant term and the
linear term which is zero (see equation (24)). Higher-order terms O…D3

k† have been
also neglected. However, they may cause cross-coupling between di� erent vibra-
tional modes which becomes a source of decoherence [9]. The partial derivatives in
equation (30) can be calculated explicitly and we obtain the expression

L ˆ m

2

XN

kˆ1

_DD2
k ¡ !2

z

XN

k;lˆ1

VklDkDl

Á !

; …31†

where

Vkl ˆ
1

m!2
z

@2V

@zk@zl

µ ¶

zˆ·zz
ˆ

1 ‡
XN

jˆ1
j 6ˆk

2

jZk ¡ Z j j3
; k ˆ l,

¡ 2

jZk ¡ Zl j3
; k 6ˆ l.

8
>>>>><

>>>>>:

…32†

It follows from equations (32) that Vkl ˆ Vlk. The values of Z j are given by
equation (27) for N ˆ 2 and for N ˆ 3, whereas they have to be calculated
numerically for N 5 4.

The dynamics of the trapped ions is governed by the Lagrange equations

d

dt

@L

@ _DDk

¡ @L

@Dk
ˆ 0; k ˆ 1; . . . ; N; …33†

with the Lagrangian given by equation (31). We shall search for a particular
solution of equation (33) in the form

Dk…t† ˆ Ck e¡i¸t; k ˆ 1; . . . ; N; …34†
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where Ck are constants. Substituting equation (34) into equation (33), we obtain
the condition for ¸ in the form

!2
zVkl ¡ ¸2¯kl

®® ®® ˆ 0; …35†

where ¯kl is the Kronecker symbol and k . . . k denotes the determinant. Equation
(35) has in general up to N real and non-negative solutions ¸¬. The frequencies ¸¬

are characteristic parameters of the system. They depend only on its physical
features (not on initial conditions). A general solution of equation (33) is a
superposition of particular solutions (34) and we may write

Dk…t† ˆ
XN

¬ˆ1

D
…¬†
k Q¬…t†; k ˆ 1; . . . ; N; …36†

where

Q¬…t† ˆ C¬ e¡i¸¬ t: …37†

By de®nition we shall require the vectors

D…¬† ˆ D
…¬†
1 ; . . . ; D

…¬†
N

± ²
; ¬ ˆ 1; . . . ; N; …38†

to be the eigenvectors of the matrix Vkl de®ned in equation (32), that is

XN

kˆ1

Vkl D
…¬†
k ˆ ·¬D

…¬†
l ; l; ¬ ˆ 1; . . . ; N; …39†

and also to be orthogonal and properly normalized

XN

kˆ1

D…¬†
k D… †

k ˆ ¯¬ ; ¬;  ˆ 1; . . . ; N: …40†

We shall number the eigenvectors in order of the increasing eigenvalues ·¬. It can
be shown that the ®rst two eigenvectors …¬ ˆ 1; 2† always have the form

D…1† ˆ
1

N1=2
…1; 1; . . . ; 1†; ·1 ˆ 1; …41†

D…2† ˆ 1

XN

kˆ1

Z2
k

Á !1=2
…Z1; Z2; . . . ; ZN†; ·2 ˆ 3: …42†

We should emphasize that equations (41) and (42) (they characterize two basic
collective motional modes) are not dependent on the number N of the ions in the
trap. Next eigenvectors …¬ 5 3† must be, in general, calculated numerically.
Substituting equation (41) into equation (40) we obtain the relation

XN

kˆ1

D…¬†
k ˆ 0; ¬ ˆ 2; . . . ; N: …43†

We can determine analytically the eigensystem for two and three ions:
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N ˆ 2; D…1† ˆ 1

21=2
…1; 1†; ·1 ˆ 1; …44†

D…2† ˆ
1

21=2
…¡1; 1†; ·2 ˆ 3;

N ˆ 3; D…1† ˆ 1

31=2
…1; 1; 1†; ·1 ˆ 1; …45†

D…2† ˆ
1

21=2
…¡1; 0; 1†; ·2 ˆ 3;

D…3† ˆ 1

61=2
…1; ¡2; 1†; ·3 ˆ 29

5
: …46†

For larger N, the eigenvectors and eigenvalues must be computed numerically.
The numerical values for up to ten ions can be found in [20].

Substituting equation (36) into equation (31) we obtain a new expression for
the Lagrangian

L ˆ m

2

XN

¬ˆ1

_QQ2
¬ ¡ ¸2

¬Q2
¬

¡ ¢
; …47†

where

¸¬ ˆ !z·1=2
¬ : …48†

The Lagrangian (47) has split into N uncoupled terms, where Q¬ (equation (37))
refer to the normal modes and ¸¬ de®ned in equation (48) are termed the normal
frequencies. Finally, the position of the ith ion in the trap can be rewritten in terms
of equation (36) using equation (23) in the form

zi…t† ˆ ·zzi ‡ <
XN

¬ˆ1

C¬D
…¬†
i e¡i ¸¬t

( )

; i ˆ 1; . . . ; N; …49†

where <f. . .g denotes the real part and C¬ are constants given by initial conditions.
The collective vibrational motion of trapped ions determined by the eigenvector

D…1† (equation (41)) refers to the normal mode called the centre-of-mass (COM)
mode (®gure 2)

z…1†
i …t† ˆ ·zzi ‡ < 1

N1=2
C1 e¡i!zt

» ¼
; i ˆ 1; . . . ; N; …50†

and corresponds to all the ions oscillating back and forth as if they were a rigid
body. The motion determined by the next eigenvector D…2† (equation ((42)) refers
to the breathing mode (®gure 2)

z
…2†
i …t† ˆ ·zzi ‡ < ·zzi

XN

kˆ1

·zz2
k

Á !1=2
C2 e¡i…!z31=2†t

8
>><

>>:

9
>>=

>>;

; i ˆ 1; . . . ; N: …51†

It corresponds to each ion oscillating with the amplitude proportional to its
equilibrium distance from the trap center. The COM motional mode can be
excited in experiments by applying an additional AC voltage on one of the ring
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electrodes. To excite the breathing motional mode, a 300 times higher voltage
must be applied [16]. Higher motional modes require gradient ®eld excitation
owing to the non-trivial con®guration of the ions in the ion string. However, in the
limit of large ion trap dimension in comparison with the ion crystal dimension, the
electrode electric ®elds are almost uniform across the ion crystal and the COM
mode is very susceptible to heating due to these ®elds. Therefore, it seems to be
more advantageous to use rather the breathing mode, which is much less
in¯uenced by uniform ®elds, as the quantum data bus. This shall be discussed
in more detail later in the section on sympathetic cooling (section 5.3). On the
other hand, the ions can be easily addressed with a laser beam in the COM mode,
while higher modes require accurate bookkeeping when addressing distinct ions in
the ion crystal [20, 22].

3.3. Quantized vibrational motion
The normal modes Q¬ are uncoupled in equation (47); so the corresponding

canonical momentum conjugate to Q¬ is P¬ ˆ m _Q¬Q¬ and one may write the
(classical) Hamiltonian

H ˆ 1

2m

XN

¬ˆ1

P2
¬ ‡ m

2

XN

¬ˆ1

¸2
¬Q2

¬: …52†

The quantum motion of the ions can be considered by introducing the operators
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Figure 2. Experimental observation of the collective vibrational motion of seven ions
(a) in the COM mode and (b) in the breathing mode. The ®gure is a compilation of
the snapshots taken at ®xed time intervals which are short compared with the time
scale of the vibrational motion. (Used by kind permission of Rainer Blatt [13].)

(a) (b)



Q¬ ! Q̂Q¬ ˆ ·h

2m¸¬

³ ´1=2

…âay
¬ ‡ âa¬†; …53†

P¬ ! P̂P¬ ˆ i
·hm¸¬

2

³ ´1=2

…âay
¬ ¡ âa¬† …54†

with the corresponding commutation relations

‰Q̂Q¬; P̂P Š ˆ i·h¯¬ ; ‰âa¬; âay
 Š ˆ ¯¬ : …55†

The Hamiltonian operator associated with the external (vibrational) degrees of
freedom of the trapped ions is then expressed as follows …H ! ĤHext†

ĤHext ˆ
XN

¬ˆ1

·h¸¬…âay
¬âa¬ ‡ 1

2
†; …56†

where âa¬ and âay
¬ are the usual annihilation and creation operators respectively

referring to the ¬th normal mode. We use the standard notation for the number
states associated with the collective vibrational motion of the ions

âay
¬âa¬jn¬i ˆ n¬jn¬i; …57†

where jn¬i refers to the state of the ¬th normal mode and n¬ denotes the number of
vibrational phonons in this mode. The states fjn¬ig form the complete and
orthonormal basis

hm¬jn i ˆ ¯¬ ¯mn : …58†

We can quantize the motion of the ions by applying equation (53) to the relation
(36) and expressing the displacement operator of the ith ion in the time-indepen-
dent picture:

D̂Di ˆ
XN

¬ˆ1

D
…¬†
i

·h

2m¸¬

³ ´1=2

…âay
¬ ‡ âa¬† ˆ

XN

¬ˆ1

K…¬†
i z0…âay

¬ ‡ âa¬†; i ˆ 1; . . . ; N; …59†

where (see equation (48))

K…¬†
i ˆ D…¬†

i

·
1=4
¬

; z0 ˆ ·h

2m!z

³ ´1=2

: …60†

We can easily calculate from equation (41) that, for the COM mode,

K…1†
i ˆ 1

N1=2
…61†

and, for the breathing mode (equation (42)),

K…2†
i ˆ

·ZZ i

XN

lˆ1

·ZZ2
l

Á !1=2

1

31=4
ˆ ·zzi

XN

lˆ1

·zz2
l

Á !1=2

1

31=4
: …62†

Although we have not considered the radial vibrations due to the strong
binding of the ions in the radial direction, a detailed treatment of the ion motion
in the trap would require the extension to all three dimensions. Then equation (23)
has to be replaced with
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qi ˆ ·qqi ‡ Dqi; i ˆ 1; . . . ; N; …63†

where ·qqi denotes the equilibrium position of the ith ion in three-dimensional space
and Dqi is its displacement from the equilibrium position. We can write

·qqi ˆ ·xxi x ‡ ·yyi y ‡ ·zzi z;

Dqi ˆ Di x ‡ DN‡i y ‡ D2N‡i z; i ˆ 1; 2; . . . ; N; …64†

where ·xxi, ·yyi, ·zzi are the equilibrium positions of the ith ion and x, y, z are unit
vectors in three-dimensional space. The free Hamiltonian associated with the
vibrational motion in three-dimensional space is

ĤH…3D†
ext ˆ

X3N

¬ˆ1

·h¸¬ âay
¬âa¬ ‡ 1

2

¡ ¢
…65†

and the displacement operators in equation (64) are given as follows:

D̂Di ˆ
X3N

¬ˆ1

K…¬†
i z0…âay

¬ ‡ âa¬†; i ˆ 1; . . . ; 3N; …66†

where the numerical factors K…¬†
i in general have to be determined numerically.

4. Laser±ion interactions

Information is encoded in internal (atomic) states, while it is transferred via
external (motional) states of the ions. We can manipulate these states owing to
laser±ion interactions. It can be accomplished in the travelling-wave and standing-
wave con®gurations. We shall address in detail both approaches in what follows.
However, we should ®rst comment on the selection of the two internal atomic
levels to form the qubit. There are three possibilities [20]:

(i) We can employ a ground and metastable ®ne-structure excited state. This
applies for ions with zero nuclear angular momentum (®gure 3 (a)). In this
case we refer to the single-beam scheme and we can drive transitions on
optical frequencies. This con®guration is used, for example, by the group
in Innsbruck using calcium ions (40Ca‡) [13, 24].

(ii) We can also choose two sublevels of a ground state within the hyper®ne-
structure (ions with non-zero nuclear angular momentum) (®gure 3 (b)).
The spacing of such two sublevels is in the range of gigahertz. Thus, a
two-beam Raman scheme via a third virtual level is required in order to
resolve the individual sublevels. Experiments in this con®guration with
beryllium ions (9Be‡) were performed in Boulder [1, 9, 25].

(iii) It is also possible to apply a magnetic ®eld and to consider two Zeeman
sublevels of the ground state (®gure 3 (c)). This scheme also requires
Raman excitation. In this class, we can mention, for example, magnesium
ions (24Mg‡) used by the group in Garching [26].

We have to mention also other active groups running experiments towards
quantum logic with trapped ions. For instance (in alphabetical order) IBM
Almaden using 138Ba‡ [27], Imperial College (40Ca‡ and 199Hg‡) [28], Jet
Propulsion Laboratory in Los Angeles (199Hg‡) [29], Los Alamos National
Laboratory (40Ca‡) [30, 31], University of Oxford (40Ca‡) [21, 32], University
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of Aarhus (40Ca‡) [33], University of Hamburg (138Ba‡ and 171Yb‡) [34] and
University of Mainz (40Ca‡) [35].

We can use dipole and quadrupole transitions. Theoretically, the di� erence is
only in the interaction constants as we shall see later in this section. On the other
hand, in experiments quadrupole transitions have much longer lifetimes (1 s for
calcium ions) compared with rapidly decaying dipole transitions (10¡8 s). Experi-
ments on an octupole transition in an ytterbium ion have also been realized. The
predicted theoretical lifetime in this system is of the order of 108 s [36]. However,
in this case one deals with very weak transitions with very stringent demands on
the laser sources used in the experiment (although they are of major interest as
potential ion trap clocks). Moreover, weak transitions have to be driven with a very
intense laser which enhances the possibility for o� -resonance excitations. From
now on we shall describe in this paper all experimental procedures for calcium ions
40Ca‡ (®gure 4).

In the following we shall deal with the single-beam scheme, that is transitions
being driven by a single laser beam. We shall not treat the Raman scheme here.
The derivation of the Hamiltonian in this scheme can be found in [37]. We just
mention that the ®nal Hamiltonian in the Raman scheme has the same form as that
in the single-beam scheme, except for di� erences in coupling constants and for
atomic frequencies which are Stark light shifted. In the Raman scheme the
resulting e� ective light ®eld has the direction (frequency) determined by the
di� erence in the wave-vectors (frequencies) of the two participating laser beams,
where each beam is represented (in a semiclassical approach) by a monochromatic
travelling wave. Finally, the single-beam scheme requires a very high laser
frequency stability, while in the Raman scheme we only need to control the
relative frequency stability between the two laser beams, which is technically less
demanding. With the Raman scheme we can also ensure that the relative wave-
vector of the two beams is parallel to the trap axis, which suppresses the coupling
to radial motional modes. On the other hand, the Raman scheme can introduce
signi®cant Stark light shifts [9].

In the rest of the paper we shall use the standard atomic level notation n 2S‡1LJ,
where n is the principal quantum number, S is the spin angular momentum, L is
the orbital angular momentum and J is the total angular momentum of electrons.
For the ®ne-structure case the notation is n 2S‡1LJ…mJ† where mJ is the projection
of J on to the quantization axis. The hyper®ne-structure is denoted
n 2S‡1LJ…F; mF† where F is the total angular momentum of the atom (electrons +
nucleus) and mF is the projection of F on to the quantization axis.
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Figure 3. Three possible choices for two internal atomic states representing the qubit:
(a) a ground and a metastable excited state; (b) sublevels of a ground state; (c)
Zeeman sublevels of a ground state. !L, !L1 and !L2 refer to the laser frequencies
[23].



Let us consider that the ion has two internal levels, denoted jgi (lower) and jei
(upper) with corresponding energies Eg and Ee, where the transition frequency is

!0 ˆ …Ee ¡ Eg†=·h. Then the free Hamiltonian associated with the internal degrees

of freedom is given by

ĤHint ˆ Eejeihej ‡ Egjgihgj ˆ ·h!0

2
¼z ‡

Ee ‡ Eg

2
int; …67†

where ¼z ˆ jeihej ¡ jgihgj and int ˆ jeihej ‡ jgihgj. Finally, we can write the total
free Hamiltonian for the jth ion of N ions con®ned in the trap communicating via

one of the collective vibrational modes (see equation (56))

ĤH0j ˆ ĤHint ‡ ĤHext ˆ ·h!0

2
¼zj ‡ ·h¸âayâa; …68†

where we have omitted constant terms …Ee ‡ Eg†=2, ·h¸=2 and dropped the index ¬
denoting a vibrational mode. The motional mode used for manipulations (espe-

cially quantum logic operations) with the ions is called the quantum data bus

because, as we shall see later, it serves to transfer the information between distinct

ions within the ion crystal (representing a quantum register). We shall consider for

this purpose only the COM mode …¸ ˆ !z† or the breathing mode …¸ ˆ !z31=2†.
Further, we assume a powerful laser, that is the interaction with the ions has no

in¯uence on the laser photon statistics. Therefore, we shall employ a semiclassical

description of the laser beam. We shall consider the laser beam in both the

travelling-wave con®guration and the standing-wave con®guration.

4.1. Travelling-wave con®guration
There are two di� erent ways for addressing the ions. We can set the laser beam

at a ®xed position and shift the ion string by a very slight variation in the DC

voltage on the ring electrode. On the other hand, we can ®x the ion string and scan

the laser across the string. In this case an acousto-optical modulator is used for

laser beam de¯ection [16].

Let us approximate the laser beam as a monochromatic travelling wave (®gure

5). We can write
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isotope is zero, that is, there is no hyper®ne structure. For the spectroscopic
notation of the levels see the text.



E ˆ E0° cos …!Lt ¡ j ¢ q ‡ ¿†;

ˆ E0°

2
e¡i…!L t¡ j ¢q‡¿† ‡ ei…!Lt¡ j ¢q‡¿†

h i
; …69†

where E0 is the real amplitude, ° is the polarization vector with j°j ˆ 1, !L is the
laser frequency, j ˆ µn ˆ …!L=c†n is the wave-vector with jnj ˆ 1, c is the speed of
light, q is the position vector and ¿ is the phase factor. The full Hamiltonian for
the jth ion is given by

ĤHj ˆ ĤH0j ‡ V̂Vj; …70†

where the interaction Hamiltonian (assuming a hydrogen-like atomic con®gura-
tion) expanded to second order (neglecting magnetic dipole interaction) has only
two terms

V̂Vj ˆ V̂VDP
j ‡ V̂VQD

j : …71†

The electric dipole term is de®ned as follows

V̂VDP
j ˆ ¡qe

X

a

…r̂rj†a Ea…t; R̂Rj† ˆ ¡qer̂rj ¢ E…t; R̂Rj†; …72†

summing over a ˆ x; y; z. We refer to equation (72) as the dipole approximation.
The electric quadrupole term is

V̂VQD
j ˆ ¡ qe

2

X

a;b

…r̂rj†a…r̂rj†b

@Eb…t; R̂Rj†
@qa

; …73†

where the sum is applied over a; b ˆ x; y; z and we refer to equation (73) as the
quadrupole approximation. qe is the electron charge, r̂rj is the internal position
operator associated with the position of the valence electron in the jth ion and

R̂Rj ˆ …0; 0; ẑzj† is the external position operator corresponding to the position of the
jth ion in the trap.

For the present we shall consider only the dipole term (72) regarding the
situation when the dipole interaction is present and the quadrupole contribution
(73) is then negligible. Later we shall also comment on the quadrupole interaction.
If we consider only a single motional mode, we obtain from equation (66) for the
external position operator of the jth ion

ẑzj ˆ ·zzj ‡ Kjz0…âay ‡ âa†: …74†
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Figure 5. The travelling-wave con®guration corresponds to illuminating the jth ion in
the ion string with the laser beam of the frequency !L at the angle # to the trap axis.



Then we can sandwich the internal position operator r̂rj with the unity operator

j ˆ jejihej j ‡ jgjihgjj and rewrite equation (72) in the form

V̂Vj ˆ ¡qe‰…reg†j ¼̂¼‡j ‡ …reg†¤
j ¼̂¼¡j Š ¢ E0°

2
…e¡i !Lt¡²j…âay‡âa†‡¿j‰ Š ‡ Hc); …75†

where …reg†j ˆ hej ĵrrjjgji, ¼̂¼‡j ˆ jejihgjj, ¼̂¼¡j ˆ jgjihej j, µ ˆ !L=c, ²j ˆ Kj ·²², ·²² ˆ µ#z0,

µ# ˆ µ cos #, ¿j ˆ ¿ ¡ µ# ·zzj with Kj and z0 de®ned by equation (60). In equation
(75), we consider that hej ĵrrjjeji ˆ hgj ĵrrjjgji ˆ 0, because we assume spatial symme-
try of the wavefunctions associated with the internal atomic states jgji and jeji. The
schematic con®guration is depicted in ®gure 5. It is useful to transform to the
interaction picture de®ned by the prescription

i·h
@

@t
jCi ˆ ĤHjCi ¡! i·h

@

@t
jÁi ˆ ĤHjÁi; jÁi ˆ ÛUy

0jCi;

ĤH ˆ ĤH0 ‡ V̂V ¡! ĤH ˆ ÛUy
0 V̂V ÛU0; ÛU0 ˆ exp ¡ iĤH0t

·h

Á !

:

…76†

The Hamiltonian (75) after the transformation to the interaction picture (76) is

ĤHj ˆ ·h¶j

2
¼̂¼‡j exp ‰i²j…âay ei¸t ‡ âa e¡i¸t†Š e¡i¯t ‡ Hc; …77†

where ¯ ˆ !L ¡ !0 and we have neglected rapidly oscillating terms at the fre-
quency !L ‡ !0 compared with low-frequency terms at !L ¡ !0. In practice,

!L º !0; therefore to a good degree of approximation for times of interest, high-
frequency terms average to zero [38]. This approximation is called the rotating
wave approximation. In equation (77) we substitute ²j ˆ ·²²=N1=2 for the COM
mode or ²j ˆ ·²²·zzj=…31=4

PN
lˆ1 ·zz2

l † for the breathing mode. The laser coupling
constant ¶j introduced in equation (77) is de®ned by the relation

¶DP
j ˆ ¡ qeE0

·h

X

a

hej j…̂rrj†ajgji°a

µ ¶
e¡i¿j ˆ ¡ qeE0

·h
‰…reg†j ¢ °Š e¡i¿j : …78†

However, for a dipole forbidden transition when hej ĵrrj jgji ˆ 0, the dipole term (72)
does not contribute (¶DP

j ˆ 0) and the key role is played by the weaker quadrupole
interaction. In that case the laser coupling constant in the Hamiltonian (77) is

¶QD
j ˆ ¡ iqeE0!L

2·hc

X

a;b

hejj…̂rrj†a …̂rrj†bjgjina°b

³ ´
e¡i¿j ; …79†

where all parameters are de®ned in equation (69).
Next, let us assume the detuning ¯ of the laser frequency !L from the atomic

frequency !0 for the vibrational frequency ¸ in the form

¯ ˆ !L ¡ !0 ˆ k¸; k ˆ 0; §1; §2; . . . ; …80†

and apply the Baker±Campbell±Hausdor� theorem [38] eÂA‡B̂B ˆ eÂA eB̂B e¡‰ÂA;B̂BŠ=2 on
equation (77). Then we can write

ĤHj ˆ ·h¶j

2
¼̂¼‡j e¡…²2

j
=2†

X1

¬; ˆ0

i²j

¡ ¢¬‡ …âay†¬

¬!

âa

 !
ei¸t…¬¡ ¡k† ‡ Hc: …81†
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If the laser is tuned at the frequency !L such that k > 0, the spectral line is termed
the kth blue sideband. For k ˆ 0 the line is called the carrier and for k < 0 we refer
to the kth red sideband because the laser is red (blue) detuned from the atomic
frequency !0 (®gure 6).

When the constant ¶j is su� ciently small we can assume that there are no
excitations on o� -resonant transitions (weak-coupling regime). Then the level
structure of the ion can be considered as a series of isolated two-level systems
[39]. Precisely what is meant by su� ciently small is detailed in appendix A.
Assuming the weak-coupling regime, we can neglect o� -resonance terms
(¬ ¡  ¡ k 6ˆ 0) and rewrite equation (81) for k 5 0 in the form

ĤH…‡†
j ˆ ·h¶j

2
¼̂¼‡j …âay†jkj F k…âayâa† ‡

·h¶¤
j

2
¼̂¼¡j F y

k…âayâa† âajkj …82†

and for k < 0 in the form

ĤH…¡†
j ˆ ·h¶j

2
¼̂¼‡j F k…âayâa† âajkj ‡

·h¶¤
j

2
¼̂¼¡j …âay†jkj F y

k…âayâa†: …83†

In the last two relations we introduce the operator function

F k…âayâa† ˆ e¡…²2
j
=2† i²j

¡ ¢jkjX1

¬ˆ0

…¡²2
j †¬ …âayâa†¬

¬!…¬ ‡ jkj†! : …84†

Although we allow the parameter k to be positive or negative, we keep writing its
absolute value jkj in both cases in order to avoid tricky notation of the form …âay†¡k

and âa¡k in equation (83) and also in what follows next. The ®nal form of the
Hamiltonian is given by

ĤH…‡†
j ˆ ·h

X1

nˆ0

On;k
j

2

³
jejihgjj « jn ‡ jkjihnj

´
‡

…On;k
j †¤

2

³
jgjihej j « jnihn ‡ jkjj

´" #

…85†

and

ĤH…¡†
j ˆ ·h

X1

nˆ0

On;k
j

2

³
jejihgjj « jnihn ‡ jkjj

´
‡

…On;k
j †¤

2

³
jgjihej j « jn ‡ jkjihnj

´" #

:

…86†
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Figure 6. Scheme for the transition driven (a) on the carrier, (b) on the ®rst red
sideband and (c) on the ®rst blue sideband, where !L denotes the laser frequency,
!0 is the atomic frequency and ¸ is the vibrational frequency of the respective
motional mode. The parameter ¯ is the detuning de®ned as ¯ ˆ !L ¡ !0.



We have de®ned a new coupling constant

On;k
j ˆ ¶j e¡…²2

j
=2† i²j

¡ ¢jkj n!

…n ‡ jkj†!

³ ´1=2

Ljkj
n ²2

j

± ²
; …87†

where

La
n…x† ˆ

Xn

mˆ0

…¡1†m xm

m!

n ‡ a

n ¡ m

± ²
…88†

is the generalized Laguerre polynomial and
n ‡ a

n ¡ m

± ²
ˆ …n ‡ a†!

…n ¡ m†!…a ‡ m†!
. Finally,

we may write the unitary evolution operator for the time-independent Hamilto-
nians (85) and (86):

ÛU …§†
j ˆ exp ¡

iĤH…§†
j t

·h

Á !

; …89†

which is given for k 5 0 by

ÛU …‡†
j ˆ

X1

nˆ0

cos
jOn;k

j jt
2

Á !µ³
jejihejj « jn ‡ jkjihn ‡ jkjj

´
‡

³
jgjihgj j « jnihnj

´¶

¡ i
X1

nˆ0

sin
jOn;k

j jt
2

Á !µ³
jejihgj j « jn ‡ jkjihnj

´
e¡i ~¿¿j ‡

³
jgjihej j « jnihn ‡ jkjj

´
ei ~¿¿j

¶

‡
Xjkj¡1

nˆ0

jejihej j « jnihnj …90†

and for k < 0 by

ÛU …¡†
j ˆ

X1

nˆ0

cos
jOn;k

j jt
2

Á !µ³
jejihejj « jnihnj

´
‡

³
jgjihgj j « jn ‡ jkjihn ‡ jkjj

´¶

¡ i
X1

nˆ0

sin
jOn;k

j jt
2

Á !µ³
jejihgj j « jnihn ‡ jkjj

´
e¡i ~¿¿j ‡

³
jgjihej j « jn ‡ jkjihnj

´
ei ~¿¿j

¶

‡
Xjkj¡1

nˆ0

jgjihgjj « jnihnj: …91†

We have de®ned ~¿¿j ˆ ¿j ¡ …p=2†jkj. For each value of k the phase factor ~¿¿j can be
chosen arbitrarily for the ®rst application of ÛU …§†

j . However, once chosen, it must
be kept track of if subsequent applications of ÛU …§†

j are performed on the jth ion
[29]. The real parameter jOn;k

j j is called the Rabi frequency of the transition
jejijni $ jgjijn ‡ jkji or jejijn ‡ jkji $ jgjijni respectively. This term comes ori-
ginally from the ®eld of nuclear magnetic resonance, where it refers to the periodic
¯ipping of a nuclear spin in the magnetic ®eld. The following hold.

(i) A 4p pulse (jOn;k
j jt ˆ 4p) returns the system back to its initial state. For

example

jejijni ¡!4p jejijni: …92†
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(ii) A 2p pulse (jOn;k
j jt ˆ 2p) changes the sign of the state. For instance

jgjijn ‡ jkji ¡!2p ¡ jgjijn ‡ jkji: …93†

(iii) A p pulse (jOn;k
j jt ˆ p) implies that

jejijn ‡ jkji ¡!p jgjijni; …94†

(iii) where we set the phase factor ~¿¿j to be zero. Other cases may be easily
calculated from equations (90) and (91) given above.

In what follows we shall assume that all motional modes are in the Lamb±Dicke
regime characterized by the Lamb±Dicke limit (appendix B). Hence ²j introduced in
equation (75) is called the Lamb±Dicke parameter. The Lamb±Dicke regime
facilitates ground state cooling (section 5.2) and enables one to maintain the
contrast of Rabi oscillations on a longer time scale (see equation (118)). Then
the coupling constant (87) simpli®es to the form

On;k
j º ¶j i²j

¡ ¢jkj …n ‡ jkj†!
n!

³ ´1=2 1

jkj! : …95†

For the purpose of coherent manipulations with internal states of cold trapped ions
we shall be primarily interested in the interaction on the carrier (k ˆ 0) and on the
®rst red sideband (k ˆ ¡1) which shall be used for the construction of a wide class
of quantum logic gates. The corresponding unitary evolution operators in the
Lamb±Dicke regime for the transition on the carrier …ÂA† and on the ®rst red
sideband …B̂B† may be determined from equations (90) and (91) as follows:

ÂAj ˆ
X1

nˆ0

cos
jAn

j jt
2

³ ´µ³
jejihej j « jnihnj

´
‡

³
jgjihgj j « jnihnj

´¶

¡ i
X1

nˆ0

sin
jAn

j jt
2

³ ´µ³
jejihgj j « jnihnj

´
e¡i¿j ‡

³
jgjihej j « jnihnj

´
ei¿j

¶
…96†

and

B̂Bj ˆ
X1

nˆ0

cos
jBn

j jt
2

³ ´µ³
jejihej j « jnihnj

´
‡

³
jgjihgj j « jn ‡ 1ihn ‡ 1j

´¶

¡ i
X1

nˆ0

sin
jBn

j jt
2

³ ´µ³
jejihgj j « jnihn ‡ 1j

´
e¡i ~¿¿j ‡

³
jgjihejj « jn ‡ 1ihnj

´
ei ~¿¿j

¶

‡ jgjihgj j « j0ih0j: …97†

The respective Rabi frequencies in the Lamb±Dicke limit (equation (95)) for k ˆ 0
and k ˆ ¡1 are given by

jAn
j j ˆ j¶jj; …98†

jBn
j j ˆ j¶jj²j…n ‡ 1†1=2: …99†

We could by analogy obtain evolution operators for other sideband transitions.
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4.2. Standing-wave con®guration
As an alternative approach to the laser±ion interactions we could choose a

standing light ®eld (®gure 7). One can place a mirror in the set-up and let the laser
beam re¯ect from it. The counter propagating waves interfere and create a
standing-wave con®guration with nodes and antinodes. However, it is experi-
mentally very demanding to place an ion precisely at a node or an antinode. Let us
approximate the incident laser beam as a monochromatic travelling wave

Ei ˆ E0° cos …!Lt ¡ j ¢ q ‡ ¿† …100†

and the re¯ected beam as a counter propagating travelling wave

Er ˆ E0° cos …!Lt ‡ j ¢ q ‡ ¿ ¡ p†; …101†

where the re¯ected wave acquires an additional phase p on re¯ection at the perfect
lossless mirror. Then we can write for the resulting standing wave

E ˆ Ei ‡ Er ˆ 2E0° sin …!Lt ‡ ¿† sin … j ¢ q†; …102†

where the notation is adopted from equation (69). Following equations (72) and
(73) we can write the corresponding relations for the standing wave in the
semiclassical representation:

E…t; R̂Rj† ˆ ¡iE0°‰ ei…!L t‡¿† ¡ e¡i…!L t‡¿†Š sin ‰Àj ‡ ²j…âay ‡ âa†Š; …103†

and

@Eb…t; R̂Rj†
@qa

ˆ ¡iE0µa°b‰ ei…!Lt‡¿† ¡ e¡i…!Lt‡¿†Š cos ‰Àj ‡ ²j…âay ‡ âa†Š; …104†

where the new parameter Àj ˆ µ# ·zzj determines the position of the jth ion in the
standing wave and µa ˆ …!L=c†na. The notation is adopted from equations (69) and
(75). The condition Àj ˆ 0 refers to the jth ion placed in the node, whereas

Àj ˆ p=2 refers to the ion positioned in the antinode of the standing wave.
Following the derivation for the travelling-wave con®guration, one can easily

derive the Hamiltonian in the interaction picture for the standing-wave con®g-
uration. It takes the form of equations (82) and (83), except that the laser coupling
constant ¶j and the operator function F k are replaced by ~¶¶j and ~FFk respectively.
They are given in the dipole approximation (assuming a dipole allowed transition)
by
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Figure 7. The standing-wave con®guration corresponds to illuminating the jth ion in
the ion crystal with the laser beam of the frequency !L at the angle # to the trap
axis.



~¶¶DP
j ˆ ¡ i2qeE0

·h
‰…reg†j ¢ °Š e¡i¿; …105†

~FF DP
k …âayâa† ˆ e¡…²2

j
=2† sin

³
Àj ‡ p

2
jkj

´
²

jkj
j

X1

¬ˆ0

…¡²2
j †¬ …âayâa†¬

¬!…¬ ‡ jkj†!
…106†

and in the quadrupole approximation (assuming a dipole forbidden transition) by

~¶¶QD
j ˆ ¡ iqeE0!L

·hc

X

a;b

hej j…r̂rj†a…r̂rj†bjgjina°b

Á !
e¡i¿; …107†

~FF QD
k …âayâa† ˆ e¡…²2

j
=2† cos Àj ‡ p

2
jkj

± ²
²

jkj
j

X1

¬ˆ0

…¡²2
j †¬ …âayâa†¬

¬!…¬ ‡ jkj†!
: …108†

Comparing the expressions for the coupling constant in the travelling-wave
con®guration (equations (78) and (79)) with those for the standing-wave con®g-
uration (equations (105) and (107)), we ®nd that j ~¶¶DP

j j ˆ 2j¶DP
j j and

j ~¶¶QD
j j ˆ 2j¶QD

j j. The factor 2 arises from the expression for the standing wave
(102) where we have superposed two travelling waves with equal amplitudes.
Finally, the Hamiltonian can be written in the form given by equations (85) and
(86) with the coupling constant in the dipole approximation

…~OOn;k
j †DP ˆ¶DP

j e¡…²2
j
=2† sin Àj ‡ p

2
jkj

± ²
²

jkj
j

n!

…n ‡ jkj†!

³ ´1=2

Ljkj
n …²2

j † …109†

and in the quadrupole approximation

…~OOn;k
j †QD ˆ ¶QD

j e¡…²2
j
=2† cos Àj ‡

p
2

jkj
± ²

²
jkj
j

n!

…n ‡ jkj†!

³ ´1=2

Ljkj
n …²2

j †: …110†

It follows from equation (109) that, for the jth ion in the dipole approximation
placed in the node of the standing wave (Àj ˆ 0), only transitions on odd sidebands
(jkj ˆ 2p ‡ 1) are present. For the same ion in the antinode (Àj ˆ p=2), only even
sidebands (jkj ˆ 2p) are present, where p is an integer or zero. In the quadrupole
approximation the statements above are valid in the opposite order (compare
equation (109) with equation (110)). The reason for missing transitions in the
standing-wave con®guration comes from the destructive interference between the
two counter propagating travelling waves in the standing-wave ®eld.

We could easily write the coupling constant ~OOn;k
j in the Lamb±Dicke limit (see

equation (95)). We could also write the unitary evolution operator for the standing-
wave con®guration. However, it di� ers from the evolution operator in the
travelling-wave con®guration (equations (90) and (91)) only in the coupling
constant and in the phase factor, but it produces no fundamental problem for
further applications. Therefore, in what follows we shall consider the expressions
and formulae for the travelling-wave con®guration, keeping in mind how to
convert to a standing-wave con®guration.

5. Laser cooling
Laser cooling is the process in which the kinetic energy of atoms is reduced

through the action of one or more laser beams. The last decade brought rapid
progress in this research ®eld and this e� ort culminated in 1997 with the award of
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the Nobel Prize in physics for laser cooling and trapping of atoms [40±42]. A
recent review of di� erent experimental techniques for laser cooling can be found in
[43].

One of the requirements for the practical implementation of quantum comput-
ing is the ability to prepare well de®ned initial states of the qubits [5]. In our case
the qubits are represented by trapped ions with vibrational (external) and atomic
(internal) degrees of freedom. Laser cooling allows the preparation of well-de®ned
initial states of motion and electron shelving serves for the proper initialization of
the ion register. We shall describe this method later in section 6. Laser cooling of
trapped ions with the axial trapping frequency !z has two stages depending on the
linewidth G of the cooling transition [14, 15].

Firstly, Doppler cooling is applied when the vibrational frequency of the ions is
smaller than the linewidth of a transition used for cooling (!z 4 G). In other
words, this means that the velocity of the ion due to the trapping potential changes
on a longer time scale than the time that it takes the ion to absorb or emit a photon
(strong laser driving is assumed). Therefore, we can assume that these processes
change the momentum of the ion instantaneously. For !z 4 G we refer to the
weak-con®nement regime (in the sense of weak binding of the ions to the ion trap).

Secondly, sideband cooling is used for further cooling below the Doppler
cooling limit and requires the vibrational frequency to be much larger than the
linewidth (!z ¾ G). Under this condition the ion develops well resolved sidebands
and cooling to a lowest vibrational state is realized through driving a lower
sideband. For !z ¾ G we refer to the strong-con®nement regime. One can use
instead a novel technique called laser cooling using electromagnetically induced
transparency [44].

5.1. Doppler cooling
This stage of laser cooling is based on the Doppler e� ect. The technique is

based on the fact that moving atoms absorb photons from a counter propagating
red detuned laser beam (tuned slightly below the atomic frequency) and emit
spontaneously in a random direction. After several such cooling cycles (absorption
followed by spontaneous emission), we can write for the total momentum p of
atoms

p ˆ p0 ‡
X

j

·hk…abs†
j ‡

X

j

·hk…em†
j ; …111†

where p0 is the initial momentum of atoms, k…abs†
j and k…em†

j denotes the wave-
vectors of the absorbed and emitted photons respectively in the jth cooling cycle.
We usually use a rapidly decaying dipole transition for the Doppler cooling;
therefore the spontaneous emission is much faster than stimulated emission. The
average total momentum of atoms after many cooling cycles takes the form

hpi ˆ p0 ‡ ·hkLhni; …112†

where hni is the average number of absorption and emission events (typically
hni º 103-104) and by the de®nition kL ˆ k…abs†

j (kL is the wave-vector associated
with the laser light). The spontaneous contribution averages to zero because it is
randomly distributed over the solid angle 4p. If the laser is red detuned and
counter propagating to the motion of atoms (p0 "# kL), then the velocity of the
atoms is signi®cantly decreased (see equation (112)). For more details see [12, 43].
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The discussion above is valid for free atoms but it also applies for trapped ions
[45], where the motion towards the laser is provided by the periodic vibrations.
The Doppler cooling limit corresponds to the ®nal temperature TDopp ˆ ·hG=2k,
where G is the linewidth of the cooling transition and k is the Boltzmann constant.
This temperature is typically of the order of mK [23]. However, the Doppler
cooling limit can be also translated into the minimum average phonon number in
the axial direction [12]

hnzimin ˆ G
!z

1 ‡ ¬

4

³ ´
G
¯

‡ ¯

G

³ ´
¡ 1

2
; …113†

where G is the natural linewidth of the cooling transition, ¬ is determined from the
angular distribution of the emitted radiation and ¯ is the laser detuning from the
atomic frequency. For a dipole radiation pattern we obtain ¬ ˆ 2=5. The cooling is
optimal for the detuning ¯ ˆ G ¾ !z. Concerning this condition we can rewrite
equation (113) for a dipole transition to the form

hnzimin º
7

10

G
!z

: …114†

We have omitted the factor 1/2 corresponding to the zero-point energy because it
has a negligible contribution. The Doppler cooling limit is associated with the
recoil of the atoms at the spontaneous emission.

Equation (114) leads us to a discussion of how to choose the axial trapping
frequency !z. In order to be able to address individually each ion with a single
laser beam, the minimum spacing between the ions (see equation (29)) has to be
large enough, which requires small !z. On the other hand, we do not want the
frequency !z to be too small in order to make the result of Doppler cooling as
e� cient as possible (equation (114)). Thus, the design of ion traps is also
determined by the trade-o� between these two options.

For calcium ions 40Ca‡ the S1=2 $ P1=2 transition with the natural linewidth

G ˆ 20 MHz is used for the Doppler cooling. The lifetime of the P1=2 level is about
7 ns and this level decays with 6% probability to the metastable D3=2 level (®gure
8). Therefore, optical pumping between the P1=2 and D3=2 levels is present at
866 nm. The laser on the cooling transition S1=2 $ P1=2 is red detuned by

G=2 º 10 MHz. On the other hand, the pumping laser at 866 nm is kept on the
resonance in order to prevent population trapping in the superposition of the S1=2

and D3=2 levels [15]. For ¬ ˆ 2:5, !z=2p º 700 kHz and ¯ ˆ G=2 we can calculate
from equation (113) the minimum average phonon number to be hnzimin º 3:5.
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Figure 8. Doppler cooling. The S1=2 $ P1=2 is the cooling transition. The cooling laser
on 397 nm is red detuned by 10 MHz. The ion spontaneously decays from the P1=2

level. There is a 6% probability of the decay to the metastable state D3=2; therefore
the pumping laser at 866 nm is switched on.



This number di� ers from experimentally measured values (which are larger)
because equation (113) has been derived for a two-level system while the experi-
mental realization of Doppler cooling involves a three-level system. Nevertheless,
hnzimin º 3:5 is still not hnzimin ˆ 0 required for proper operation of the quantum
processor with cold trapped ions. Therefore a second cooling stage must be
launched.

5.2. Sideband cooling
Doppler cooling represents the precooling stage in experiments with trapped

ions. The ®nal stage can be realized by the sideband cooling technique which may
prepare the ions to the ground motional state, that is a well-de®ned initial quantum
state. Firstly, we address the basic idea of sideband cooling. Then we illustrate this
cooling technique on two trapped ions in and outside the Lamb±Dicke regime.
Finally, we describe how sideband cooling is realized experimentally.

In the strong-con®nement regime (!z ¾ G) a single trapped ion exhibits in its
absorption spectrum well-resolved sidebands at !0 § k!z (k is an integer) spaced
on both sides of the carrier on the atomic frequency !0. Sideband cooling occurs
when the cooling laser is tuned to a lower sideband at !L ˆ !0 ¡ k!z. In the
Lamb±Dicke limit, cooling works e� ciently with the laser tuned on the ®rst red
sideband at !L ˆ !0 ¡ !z. Then the ion absorbs photons of the energy ·h…!0 ¡ !z†
and spontaneously emitted photons of the average energy ·h!0 ¡ Er bring the ion
back to its initial internal state (see appendix B). In every cooling cycle (absorption
+ emission) the motional energy of the ion is damped by one vibrational quantum
if ·h!z ¾ Er. This condition implies that in this form the sideband cooling requires
the ion to be in the Lamb±Dicke limit. The whole process consists of cooling
cycles in which the absorption is followed by the spontaneous emission until the
ion reaches the ground motional state jn ˆ 0i and decouples from the cooling laser.
For the sideband cooling of the single trapped ion initially in the internal state jgi
and in the motional state jni, where a denotes the absorption and e stands for the
spontaneous emission, we may schematically write

jgijni !a jeijn ¡ 1i !e jgijn ¡ 1i !a . . . !e jgij1i !a jeij0i !e jgij0i:

The minimum average phonon number in the axial direction that can be reached
by sideband cooling is then given by [12]

hnzimin ˆ G
!z

³ ´2

…¬ ‡ 1
2
†; …115†

where the parameter ¬ has been de®ned in equation (113). It is evident that now
one can achieve e� cient cooling to the ground motional state, that is hnzimin º 0,
assuming the strong-con®nement regime (!z ¾ G). The limit for the sideband
cooling (equation (115)) is constrained by the recoil of the ion and is determined by
the equilibrium between cooling and heating processes. Heating is caused mainly
by o� -resonance excitations on the carrier (jgijni $ jeijni) and on the ®rst blue
sideband (jgijni $ jeijn ‡ 1i). The sideband cooling of a single ion beyond the
Lamb±Dicke limit also exists and is based on the creation of a dark state in the
energy level structure [46]. A single trapped mercury ion (198Hg‡) was ®rst cooled
to the ground motional state in 1989 in Boulder [47], while sideband cooling of a
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single beryllium ion (9Be‡) in all three dimensions was ®rst reported in 1995 also
by the group in Boulder [48].

5.2.1. Sideband cooling of two ions
The key di� erence between one ion and more ions lies in the energy spectrum

[20, 21]. While single ions have discrete energy levels (three motional degrees of
freedom), a chain of N oscillating ions (3N motional degrees of freedom) exhibits a
quasicontinuous energy spectrum due to the incommensurate frequencies of the
motional modes. For instance, in the axial direction we have the frequencies

!z; !z31=2; !z…5:8†1=2; !z…9:3†1=2, etc.
We shall discuss in detail the case of two trapped ions to illustrate the situation

of sideband cooling of more than a single ion [49]. The state of each ion (j ˆ 1; 2)
shall be expressed in the basis fjgjijni; jejijnig, where n ˆ …n1; n2†, n1 is the
vibrational number associated with the COM mode (¸1 ˆ !z) and n2 with the
breathing mode (¸2 ˆ !z31=2). The absorption spectrum of the jth ion shall be
considered in the form (equation (14) of [49])

Ij…¯† ˆ
X

En¡Emˆ¯

jhnj exp …iDjµ#†jmij2P…n†; …116†

where En ˆ ·h!zn1 ‡ ·h!z31=2n2, ¯ is the detuning (equation (80)), µ# is de®ned by
equation (75) and Dj is the displacement operator of the jth ion (equation (66)).
P…n† ˆ P…n1; n2† is a probability distribution associated with the vibrational
motion of the ions. The Lamb±Dicke parameter distinguishes between two very
di� erent regimes of sideband cooling of more ions.

(a) In the Lamb±Dicke regime (appendix B) and in the strong-con®nement
regime (!z ¾ G), only the ®rst sidebands of the motional modes at !0 § !z

and !0 § !z31=2 appear around the signi®cant carrier peak at !0 in the
absorption spectrum (®gure 9 (a)). The higher sidebands are suppressed
because their strength is proportional to higher powers in the Lamb±Dicke
parameter than ² denoted as O…²2†. Tuning the laser on the ®rst red
sideband of the COM mode (¯ ˆ ¡!z) we can reach its ground state
jn1 ˆ 0i at the same cooling rate as for a single ion [49]. However, in the
case of two ions the breathing mode is decoupled from the COM mode and
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Figure 9. Absorption spectrum I…¯† of two ions for a thermal distribution P…n† (a) in
the Lamb±Dicke regime and (b) outside the Lamb±Dicke regime as a function of
detuning ¯ (in units of the axial vibrational frequency !z) where I…¯† is de®ned in
equation (116) and ¯ in equation (80). (Used by kind permission of Giovanna
Morigi and JuÈ rgen Eschner [49].)



its cooling is almost frozen. Simultaneous cooling of more modes requires
the modes to be coupled to the cooling laser and then the requirement of
the strong-coupling regime (!z ¾ G) has to be reconsidered or one has to
use alternative techniques.

(b) Outside the Lamb±Dicke regime, higher sidebands with a strength
proportional to O…²2† also contribute and the absorption spectrum exhibits
a structure with many overlapping sidebands at !0 § k!z § l!z31=2 where
k; l are integers (®gure 9 (b)). In this situation the laser tuned on a lower
sideband (it does not have to be strictly the ®rst red sideband of the COM
mode) excites simultaneously all sideband transitions around this lower
sideband in the interval of the linewidth G. Then the COM and the
breathing mode are coupled and cooled at once. However, the cooling
process is much slower in comparison with cooling of a single ion beyond
the Lamb±Dicke limit. It is partly caused by, ®rstly, the increase in the
number of the motional modes but also, secondly, by the appearance of
dark states [49]. The dark states are almost decoupled from a resonantly
excited state because their motional wavefunction after the absorption
overlaps with the motional wavefunction of the excited state only a little.
Thus, the ions may be trapped in these dark states and slow the cooling
process down. This problem can be solved by escaping from the strong-
con®nement regime (!z ¾ G), that is by increasing the linewidth G. It shall
ensure that a single level shall be coupled to more levels (more sidebands
are in the resonance) and the ions shall be cooled more e� ciently owing to
more cooling channels. As a result the dark states shall disappear because
more channels provide more ways for the ion to escape from dark
(population trapping) states. Moreover, the rate of the cooling cycles
(absorption + emission) is proportional to the linewidth G. Summarizing
both e� ects we can conclude that the total cooling time beyond the Lamb±
Dicke limit can be shortened signi®cantly for G º !z.

5.2.2. Experimental sideband cooling
Two ions were cooled for the ®rst time to the ground motional state in 1998 in

Boulder. It was achieved on beryllium ions (9Be‡) illuminating both ions at once
[50]. However, it is su� cient to illuminate only one ion from the entire ion string
because other ions are cooled sympathetically because of the strong Coulomb
coupling. Although we need only one motional mode (COM or breathing axial
mode) as the quantum data bus, which has to be in the ground motional state, we
require also other modes to be cooled close to the ground state. Uncooled motional
modes with thermal phonon distributions signi®cantly a� ect the Rabi frequency in
the data mode and spoil the ®delity of the coherent state manipulation (see
equation (118)).

The group in Innsbruck has realized di� erent approaches in the sideband
cooling of two calcium ions [17, 18]. If they cool only one motional mode, while
the other modes are left in the thermal state, they achieve a ground-state
population greater than 95% (hni º 0:05) in the respective mode. However, they
can cool sequentially all motional modes close to the ground state. For this purpose
they use a small modi®cation to the sideband cooling scheme. The laser frequency
and laser power have to be set sequentially for the respective ®rst red sideband of
the given motional mode. After sequential cooling of all modes, the corresponding
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average phonon numbers are from hni º 0:05 to hni º 2:3 because the recoil energy
from the spontaneous emission in the cooling process of one motional mode reheat
other modes.

For calcium ions (40Ca‡) the quadrupole transition between the two Zeeman
sublevels S1=2…mJ ˆ ¡1=2† and D5=2…mJ ˆ ¡5=2† is used for the sideband cooling

(®gure 10). The laser at 729 nm is tuned on the ®rst red sideband of the respective
motional mode and a weak magnetic ®eld is applied for Zeeman splitting of energy
levels. The lifetime of the metastable D5=2 level is about a second; therefore there is
the pumping at 854 nm to the rapidly decaying P3=2…mJ ˆ ¡3=2† level in order to
decrease the duration of one cooling cycle, that is to increase the cooling rate. The
P3=2…mJ ˆ ¡3=2† level decays spontaneously to the initial state S1=2…mJ ˆ ¡1=2†
and closes the cooling cycle. However, the P3=2 level may decay with a small
probability to the D3=2 level; therefore the pumping laser at 866 nm recycles the

population to the P1=2 state which decays to the S1=2 state. The S1=2 $ P1=2

transition is driven with the ¼¡ polarized laser at 397 nm to counteract the
population of the S1=2…mJ ˆ ‡1=2† level [15].

5.3. Sympathetic cooling
In the previous section we have mentioned that it is su� cient to illuminate with

cooling lasers only one ion from the ion string because the other ions are cooled
sympathetically owing to the Coulomb interaction between them. Hence we have
the term sympathetic cooling. However, instead of identical ions, one can consider
di� erent atomic species (eventually isotopes) in the ion crystal [51]. Then the
addressing of cooling ions avoids the disturbance of internal states of logic ions
which store the information [52].

Electric ®elds from the trap electrodes are one of the sources of the motional
decoherence of the ion crystal because of heating of collective vibrational motional
modes (normal modes). If one assumes the dimension of the ion trap to be much
larger than the dimension of the ion crystal, then we can expect the electrode
electric ®elds to be nearly uniform across the ion crystal. Such uniform ®elds
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Figure 10. Sideband cooling with cooling and pumping transitions. The blue
transitions correspond to the cooling cycle. The laser at 729 nm is tuned on the
®rst red sideband. The laser at 854 nm couples the metastable D5=2 level with the
rapidly decaying P3=2 level. The cooling cycle is closed by the spontaneous emission
on the fast S1=2 $ P3=2 dipole transition. The P3=2 level may decay to the state D3=2.
The ion is recycled to the state P1=2 by the laser at 866 nm, followed by the
spontaneous emission back to the state S1=2. Decay to the sublevels S1=2(m=+1/2)
is counteracted by driving the S1=2 $ P1=2 transition with the ¼¡ polarized laser at
397 nm.



in¯uence and heat only collective motional modes involving the COM motion of

the ion crystal. Uniform electric ®elds can directly heat the normal mode used for
quantum logic as the quantum data bus. We can overcome this constraint by

selecting a speci®c normal mode for quantum logic which is decoupled from

heating. However, not all motional modes are prevented from heating. In what

follows we shall discuss this point following [22].

Let us consider the ion crystal with an odd number N of ions which consists of

N ¡ 1 ions of mass m and of a central ion of the mass M de®ning the ratio

± ˆ M=m. Now we can follow the lines in section 3 and ®nd the normal modes and

frequencies of the ion string with unequal ions. Firstly, we ®nd that there are

…N ¡ 1†=2 axial normal modes for which the central ion does not move and

corresponding eigenvectors D…¬† and eigenfrequencies ¸¬ ˆ !z·1=2
¬ do not depend

on the parameter ±. Moreover, these modes do not have a component associated

with the axial COM motion. Secondly, there are also other …N ‡ 1†=2 modes

having a component of the COM motion and coupling to any uniform electric ®eld
which causes their heating.

For very small or very large values of ± the motional modes become degenerate

and pair up (®gure 11). From this point of view the value ± º 1 seems to be

suitable. It has also been calculated that those modes having the central ion at rest
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Figure 11. Normalized axial frequencies (48) as a function of ± for (a) three, (b) ®ve, (c)
seven and (d) nine ions. (Used by kind permission of David Wineland and David
Kielpinski [22].)



(neglecting gradient electric ®elds) do not heat at all (we refer to these as cold
modes), while all other motional modes heat to some extent depending on the value

of ±. Their heating rate (average number of phonons gained per second) drops
rapidly for ± ! 1 (®gure 12). We refer to these modes as hot modes.

Thus, it seems that the optimal choice is ± º 1. That means the central
(cooling) ion should be chosen such that it is identical with N ¡ 1 other (logic)

ions or is an isotope of logic ions. For ± º 1 we can choose the lowest cold mode
(the second lowest motional mode called the breathing mode) to be used for

quantum logic as the quantum data bus because, in the case when ± º 1, only the
lowest motional mode (corresponding to the COM mode for equal ions) shall heat

signi®cantly and can be cooled via the central cooling ion. If the value of ± di� ers
very much from 1, we have to cool all …N ‡ 1†=2 hot modes via the central ion.

The group in Garching runs experiments where the ion string consists of
indium ions (115In‡) and magnesium ions (25Mg‡). The numerical analysis for the

ion crystal containing these two atomic species ordered in di� erent con®guration
can be found in [51]. The mass ratio is ± ˆ 4:6 which is not within the optimal

range discussed above (± º 1). On the other hand, it can be quite advantageous
because the heavy ion ful®ls the Lamb±Dicke limit (appendix B) more easily than

the light ion. Distinct atomic species can also have very di� erent atomic spectra
which may be found convenient when laser addressing closely spaced ions.
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Figure 12. Normalized heating rates for hot axial modes as a function of ± for (a) three,
(b) ®ve, (c) seven and (d) nine ions. (Used by kind permission of David Wineland
and David Kielpinski [22].)



However, for the heavy central cooling ion we pay the price in the form of heating
rates of higher motional modes. Indium ions can be e� ciently cooled to the ground
motional state [53] and magnesium ions can serve for quantum logic operations
and storing the information.

Finally, we have to mention that the demonstration of sympathetic cooling
using two di� erent atomic species is very demanding on current experimental
technology because of problems of loading the ion trap with distinct atoms in a
desired con®guration.

5.4. Laser cooling using electromagnetically induced transparency
Quantum computing with cold trapped ions requires one of the motional

modes (the mode used as the quantum data bus) to be cooled to the motional
ground state and other modes to be inside the Lamb±Dicke regime. For this
purpose one could eventually use Doppler cooling assuming the axial trapping
frequency !z comparable with the linewidth of the cooling transition G (equation
(114)). However, it would cause very close spacing of the ions in the trap (equation
(29)) with di� culties on individual addressing with the laser beam and optical
resolving. On the other hand, we can use sequential sideband cooling of the
motional modes described in section 5.2. However, cooling of one motional mode
causes heating of the other modes. Moreover, sideband cooling requires a very
narrow bandwidth to excite the ®rst red sideband of the respective motional mode
only. Otherwise, o� -resonance transitions (especially carriers) are also driven,
which causes heating as well [17].

A novel cooling technique was developed in 2000 with a lower cooling limit
than Doppler cooling and with a wider cooling bandwidth than sideband cooling.
It was named laser cooling using electromagnetically induced transparency (EIT) [44,
54]. It is based on a quantum interference e� ect called EIT or coherent population
trapping or also dark resonance [55]. It employs a three-level system with a ground
state jgi, a stable or metastable state jri and an excited state jei (®gure 13 (a)). The
transition jri $ jei is driven with a laser beam of the intensity Ir blue detuned by

Dr. The transition jgi $ jei is coupled by a weak laser with the intensity Ig (where
Ir=Ig º 100) also blue detuned by Dg. The intense laser with jOrj2 / Ir introduces a
signi®cant Stark light shift D! where (equation (4) of [55])

D! ˆ …D2
r ‡ jOrj2†1=2 ¡ jDrj

2
: …117†

Thus, the laser on the transition jri $ jei designs the absorption spectrum seen by
the weak laser on jri $ jei via the level jei. Then there is a broad resonance at

Dg º 0, a dark resonance (EIT) at Dg ˆ Dr and a bright narrow resonance at

Dg ˆ Dr ‡ D! (see the inset in ®gure 13 (a)). Therefore, ®rstly, taking into account
also the motional degrees of freedom, secondly, setting the detunings such that
Dg ˆ Dr and, thirdly, setting the Stark light shift equal to the vibrational frequency
(D! º ¸), we obtain the absorption spectrum depicted in ®gure 13 (b). We see that
the absorption on the ®rst red sideband (cooling transition) is enhanced while the
absorption on the carrier (heating transition) is eliminated.

The bright resonance width can be wide enough to cover several motional
modes which can be consecutively cooled at once. It was experimentally demon-
strated in Innsbruck on two motional modes separated in the frequency by
1.73 MHz. The modes were cooled to their ground motional states with 74%
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(hni º 0:35) and 58% (hni º 0:72) occupation [54]. A great improvement of these
results should be possible for a rebuilt apparatus allowing optimal access of laser
beams to the ions [56].

Following the advantages of laser cooling using EIT it has been estimated that
all 3N motional modes can be cooled to a mean phonon number hni < 1 for

!z=2p ˆ 700 kHz and N ˆ 10 [55]. It is very important to cool 3N ¡ 1 spectator
motional modes to the Lamb±Dicke regime. Otherwise, thermally excited specta-
tor modes cause the fractional ¯uctuations (blurring) in the Rabi frequency of the
mode used as the quantum data bus for quantum logic operations [9]. These
¯uctuations in the Rabi frequency of the ¬th mode can be estimated as (equation
(126) of [9])

DO
O

³ ´

¬

º
X

 6ˆ¬

²4
 hn i … hn i ‡ 1†

Á !1=2

; …118†

where ² is the Lamb±Dicke parameter of the  th motional mode and hn i is the
respective average phonon number. The ratio O=DO determines the maximal
number of Rabi cycles [18]. A detailed description of experimental laser cooling
using EIT on calcium ions can be found in [55].

6. Electron shelving

Electron shelving is the experimental method for the discrimination between
two electronic levels with an e� ciency approaching 100%. It was ®rstly demon-
strated in 1986 [57]. Let us assume a three-level atom consisting of a ground level
jgi, a metastable excited state jei and an auxiliary excited fast decaying state jri
(®gure 14). The jgi $ jei transition is coupled by a weak laser forming a super-
position ¬jgi ‡  jei, while the jgi $ jri transition is driven with a strong laser. If
the atom collapses to the jgi state during the measurement, a strong ¯uorescence
signal is collected on the fast transition jgi $ jri, that is the atom is excited from jgi
to jri and spontaneously decays back to the jgi state, which is observed as the
¯uorescence. However, if the atom stays shelved in the metastable excited state jei,
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Figure 13. (a) Levels and transitions of the cooling technique using EIT. The inset
shows the absorption on jgi $ jei while strongly driving the transition jri $ jei. (b)
Absorption on the carrier (jni ! jni) and on the ®rst sidebands (jni ! jn § 1i).
(Used by kind permission of Giovanna Morigi and JuÈ rgen Eschner [44].)



no ¯uorescence can be observed on the driven jgi $ jri transition. Hence we have
the name electron shelving. Even though the detection e� ciency is low, we can
keep exciting the measuring transition jgi $ jri and detect some spontaneously
emitted photons. Thus, we are able to discriminate between the jgi and jei states
with almost 100% e� ciency. We can also obtain the occupation probability j¬j2 for
the jgi state and j j2 for the jei state averaging over many repetitions of the same
experiment [16].

In the case of calcium ions, the ground state jg ˆ S1=2i and the metastable
excited state je ˆ D5=2i form the qubit [15]. The auxiliary state corresponds to the
P1=2 level. The S1=2 $ D5=2 transition is illuminated with a weak laser pulse at
729 nm and the S1=2 $ P1=2 transition is driven with a strong laser at 397 nm.
However, the ion can decay from the P1=2 level with a small probability to the D3=2

level. Therefore, there is pumping on the P1=2 $ D3=2 transition at 866 nm (see
®gure 8).

To clarify the e� ciency of the electron shelving method we report brie¯y some
results measured in Innsbruck [16]. When the ion is found in the S1=2 state it
scatters about 2000 photons in 100 ms to the detector. However, for the ion in the
dark D5=2 state the number of events drops to only about 150 photons in 100 ms.
These 150 photons appear to be due to dark counts of the photomultiplier and
some scattered light from the laser at 397 nm. The ion string in the linear ion trap
may represent a quantum register, where the internal state of each ion, that is the
state of the qubit, can be detected using a charge-coupled device (CCD) camera.
Then the ion in the jg ˆ S1=2i state appears as a bright spot. Alternatively, if the
ion is in the state je ˆ D5=2i it looks like a dark spot [14±16].

7. Quantum gates
One of the requirements for the physical implementation of quantum comput-

ing in a certain quantum system is a set of quantum gates that can be realized in the
quantum system under consideration. It has been shown that any unitary opera-
tion can be composed of single-qubit rotations and two-qubit NOT gates [7]. In
what follows we shall describe how these and some more complex quantum gates
can be implemented on cold trapped ions. We shall use the notation jgi and jei of
the logical states for the qubit rather than j0i and j1i owing to the representation of
the qubit by the internal states of the ion.
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Figure 14. Electron shelving. The jgi $ jei transition is coupled with a laser pulse
forming the superposition ¬jgi ‡  jei. The jgi $ jri transition is driven with a
strong laser. The ¯uorescence detection signal is collected on the jgi $ jri transition
if the ion collapses to the state jgi. If the ion is shelved in the dark state jei, no
¯uorescence is observed because the jei state is a metastable state.



7.1. Single-qubit rotations

A general single-qubit gate corresponds to a unitary evolution operator that acts

on a single qubit and is represented in the basis fjgi; jeig by the matrix

W ˆ
Wgg Wge

Weg Wee

Á !

: …119†

A special case of the single-qubit gates is a single-qubit rotation (®gure 15). Its
parametrization depends on the choice of the coordinates on the Bloch sphere. We

shall de®ne it in the matrix form in the basis fjgi; jeig as follows:

…³; ¿† ˆ
Rgg Rge

Reg Ree

Á !
ˆ

cos
³

2

³ ´
ei¿ sin

³

2

³ ´

¡ e¡i¿ sin
³

2

³ ´
cos

³

2

³ ´

0

BBB@

1

CCCA; …120†

where ³ refers to the rotation and ¿ to the relative phase shift of the states jgi and

jei in the corresponding Hilbert space.

The single-qubit rotation can be performed on a selected ion from the ion
string in the Lamb±Dicke regime by applying the unitary evolution operator (96).

We may rewrite this operator in the form

ÂAj …¿j† ˆ
X1

nˆ0

cos
p
2

³ ´µ³
jejihej j « jnihnj

´
‡

³
jgjihgjj « jnihnj

´¶

‡
X1

nˆ0

sin
p
2

³ ´µ
¡

³
jejihgj j « jnihnj

´
e¡i¿j ‡

³
jgjihej j « jnihnj

´
ei¿j

¶
; …121†

where we have applied the arbitrary choice of the phase factor (¿j ! ¿j ‡ p=2) with

respect to the remark below equation (91). The operator (121) corresponds to the
jth ion illuminated with the laser beam on the carrier (!L ˆ !0) with the laser pulse

duration t ˆ p=j¶j j, where the laser coupling constant ¶j depends on the type of

the driven transition and the laser con®guration (see section 4). We shall refer to
the operation expressed by equation (121) as the p pulse on the carrier.

7.2. Two-qubit controlled-NOT gates
A two-qubit CNOT (or XOR) gate acts on two qubits denoted as a control and

a target qubit (®gure 16). If the control qubit (m1) is in the state jei, then the state

of the target qubit (m2) is ¯ipped. Otherwise, the gate acts trivially, that is as the

unity operator . We may characterize this gate with the help of the following truth
table
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Figure 15. Schematic representation of a single-qubit rotation. R is de®ned by equation
(120) in the basis fjgi; jeig.



jgm1
ijgm2

i¡!jgm1
ijgm2

i;

jgm1
ijem2

i¡!jgm1
ijem2

i;

jem1
ijgm2

i¡!jem1
ijem2

i;

jem1
ijem2

i¡!jem1
ijgm2

i:

…122†

The implementation of the two-qubit CNOT gate on two selected ions in the
ion string requires the introduction of a third auxiliary internal level jri. In the
original proposal [2] the selective excitation of two sublevels of the jei level is used
instead. The selection depends on the laser polarization, where the je; p ˆ 0i and
je; p ˆ 1i sublevels are considered. Proposals have also appeared on how to avoid
the establishment of the auxiliary internal level to the scheme [58±60]. Two of
these shall be discussed later on in this section.

Now we are ready to write two unitary evolution operators corresponding to
laser pulses driven on the ®rst red sideband in the Lamb±Dicke regime on the jth
ion (equation (97)) between the internal levels jgi $ jei with the atomic frequency

!eg
0 ˆ …Ee ¡ Eg†=·h and for jgi $ jri with !rg

0 ˆ …Er ¡ Eg†=·h. They are given by

B̂B ;I
j …¿j† ˆ cos

p
2

³ ´µ³
jejihej j « j0ih0j

´
‡

³
jgjihgjj « j1ih1j

´¶

¡ i sin
p
2

³ ´µ³
jejihgjj « j0ih1j

´
e¡i¿j ‡

³
jgjihejj « j1ih0j

´
ei¿j

¶

‡ jgjihgj j « j0ih0j ‡ O …123†

and

B̂B ;II
j …¿j† ˆ cos

p
2

³ ´µ³
jrjihrjj « j0ih0j

´
‡

³
jgjihgj j « j1ih1j

´¶

¡ i sin
p
2

³ ´µ³
jrjihgj j « j0ih1j

´
e¡i¿j ‡

³
jgjihrj j « j1ih0j

´
ei¿j

¶

‡ jgjihgj j « j0ih0j ‡ O; …124†

where we have applied again the arbitrary choice of the phase factor
( ~¿¿j ˆ ¿j ¡ p=2 ! ¿j). The symbol O in equations (123) and (124) corresponds to
the terms in equation (97) associated with the dynamics on higher vibrational
levels for n 5 2. We do not have to consider them because the ions are assumed to
be cooled to the ground motional state jn ˆ 0i. We use the Hilbert space spanned
only by the motional states jn ˆ 0i and jn ˆ 1i forming an auxiliary qubit used as
the quantum data bus.

The operators (123) and (124) correspond to kp pulses on the ®rst red sideband
(!L ˆ !eg

0 ¡ ¸ and !L ˆ !rg
0 ¡ ¸) for n ˆ 0 with the laser pulse duration

t ˆ p=j¶jj²j. Finally, the two-qubit CNOT gate on two ions corresponds to the
evolution operator sequence (acting from right to left) [2]
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Figure 16. Schematic representation of a two-qubit CNOT quantum gate. The m1 (m2)
qubit is control (target). The gate is de®ned by the truth table (122).



ÂA1=2
m2

…p† B̂B1;I
m1

B̂B2;II
m2

B̂B1;I
m1

ÂA1=2
m2

…0†; …125†

where ÂA1=2
m2

…0† and ÂA1=2
m2

…p† are given by equation (121) and stand for the p=2 pulses
on the carrier (!L ˆ !eg

0 ) on the m2th ion with the phase, ¿j ˆ 0 and ¿j ˆ p,
respectively. The operator B̂B1;I

m1
is de®ned by equation (123) and represents the p

pulse on the ®rst red sideband (!L ˆ !eg
0 ¡ !z) on the m1th ion with the phase

factor ¿j ˆ 0. The operator B̂B2;II
m2

de®ned in equation (124) stands for the 2p pulse
on the ®rst red sideband (!L ˆ !rg

0 ¡ !z) on the m2th ion with ¿j ˆ 0. The middle
sequence B̂B1;I

m1
B̂B2;II

m2
B̂B1;I

m1
in the evolution operator (125) can be schematically

represented as follows:

jgm1
ijgm2

ij0i¡!
B̂B1;I

m1 jgm1
ijgm2

ij0i¡!
B̂B2;II

m2 jgm1
ijgm2

ij0i¡!
B̂B1;I

m1 jgm1
ijgm2

ij0i;

jgm1
ijem2

ij0i¡! jgm1
ijem2

ij0i¡! jgm1
ijem2

ij0i¡! jgm1
ijem2

ij0i;

jem1
ijgm2

ij0i¡! ¡ ijgm1
ijgm2

ij1i¡! ijgm1
ijgm2

ij1i¡! jem1
ijgm2

ij0i;

jem1
ijem2

ij0i¡! ¡ ijgm1
ijem2

ij1i¡! ¡ ijgm1
ijem2

ij1i¡! ¡ jem1
ijem2

ij0i:

…126†

Finally, the evolution operator (125) refers to the transformation

jgm1
ijgm2

ij0i¡!jgm1
ijgm2

ij0i;

jgm1
ijem2

ij0i¡!jgm1
ijem2

ij0i;

jem1
ijgm2

ij0i¡!jem1
ijem2

ij0i;

jem1
ijem2

ij0i¡!jem1
ijgm2

ij0i;

…127†

on two selected ions labelled as m1 and m2 in the string of N ions.
It is evident from the discussion above that this realization of the CNOT logic

gate on the ion system requires the ions to be cooled to the ground motional state
jn ˆ 0i in order to maintain the ®delity of the computational process. Otherwise, as
the ions heat up, higher terms O in equations (123) and (124) also contribute and
introduce signi®cant imperfections into the implementation of the quantum gate.

The two-qubit CNOT was ®rstly demonstrated in Boulder in 1995 [48]. A single
beryllium ion was used, where the control qubit was stored into two lowest
vibrational states jn ˆ 0i and jn ˆ 1i and the target qubit was represented by
two hyper®ne levels jg ˆ S1=2…F ˆ 2; mF ˆ 2†i and je ˆ S1=2…F ˆ 1; mF ˆ 1†i.

7.3. Alternative implementation of two-qubit controlled-NOT gates
7.3.1. Simpli®ed quantum logic

Monroe et al. [59] have proposed the realization of the two-qubit quantum
logic gate based on the precise setting of the Lamb±Dicke parameter. The control
qubit is assumed to be encoded into two lowest vibrational states jn ˆ 0i and

jn ˆ 1i of the considered collective vibrational mode, while the target qubit is
represented by two internal levels jgji and jeji of the jth ion from the string of N
ions in the linear Paul trap. The CNOT gate under consideration is then described
by the truth table
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j0ijgji¡!j0ijgji;

j0ijeji¡!j0ijeji;

j1ijgji¡!j1ijeji;

j1ijeji¡!j1ijgji:

…128†

Further, we adopt the main idea of the original proposal [59]. Driving the jth ion
with the laser on the carrier (!L ˆ !0) is described by the evolution operator (90).
The coupling constant On;k

j is introduced by the equation (87). Then for n ˆ 0 and
n ˆ 1 with k ˆ 0 we obtain

O0;0
j ˆ ¶j e¡²2

j =2; …129†

O1;0
j ˆ ¶j e¡²2

j
=2…1 ¡ ²j

2†: …130†

Let us set the Lamb±Dicke parameter such that

²2
j ˆ 1

2p
; …131†

where p is an integer. The realization of the transformation (128) requires driving
the carrier transition on the jth ion with the duration t such that

O0;0
j t ˆ 2pp: …132†

We can calculate using equation (131) that

O1;0
j t ˆ …2p ¡ 1†p: …133†

Substituting equations (132) and (133) into equation (90) we ®nd that the internal
state of the jth ion is ¯ipped only if the collective vibrational state is jn ˆ 1i. We
can write

j0ijgji¡!j0ijgji;

j0ijeji¡!j0ijeji;

j1ijgji¡!i e¡i¿j j1ijeji;

j1ijeji¡!i e‡i¿j j1ijgji:

…134†

This transformation corresponds to the CNOT gate (128) apart from the phase
factor ¿j which can be eliminated by the appropriate phase settings of subsequent
operations.

The CNOT gate between distinct ions representing two logic qubits can be
implemented (using the proposal being discussed) by two additional laser pulses
on the ®rst red sideband (!L ˆ !0 ¡ ¸). We have in mind the CNOT gate given by
the truth table (127). Firstly, we apply a p pulse on the ®rst red sideband on the
m1th ion (corresponding to the evolution operator (91) with O0;1

j t ˆ p) mapping the
internal state of this ion on to the collective vibrational state. We can write
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jgm1
ij0i¡!jgm1

ij0i;

jem1
ij0i¡! ¡ i e‡i ~¿¿m1 jgm1

ij1i;

jgm1
ij1i¡! ¡ i e¡i ~¿¿m1 jem1

ij0i:

…135†

Secondly, we apply a laser pulse on the carrier on the m2th ion representing the
reduced CNOT gate (128) and, ®nally, we map back the collective vibrational state
on to the internal state of the m1th ion by reapplying a p pulse on the ®rst red
sideband on this ion. This sequence of three laser pulses corresponds to the
complete CNOT gate (127) between two distinct ions with the appropriate choice
of the phase factors.

Comparing this scheme with the original proposal (125) of Cirac and Zoller, we
need fewer laser pulses to realize a two-qubit CNOT gates on trapped ions and
there is no need for a third internal auxiliary level. However, more important is the
overall time needed to complete the gate and the sensitivity to imprecisions. The
main limitation of this Monroe scheme is that it is slow compared with other
methods at the same level of in®delity (caused by o� -resonance transitions) and it
is rather sensitive to imprecision in the laser intensity (jOj2 / I) [61].

7.3.2. Fast quantum gates
Jonathan et al. [60] have proposed another alternative realization of two-qubit

quantum gates on cold trapped ions scalable on N ions. It is based on, ®rstly, using
carrier transitions and, secondly, taking into account Stark light shifts of atomic
levels. Following [60] the basic idea of fast quantum gates is that the resonant
driving of a carrier transition (jgijni $ jeijni) with an intense laser causes the
splitting of dressed states j§i ˆ 1=21=2…jgi § jei† in the interaction picture by
amount 2·hO, where the coupling constant O is proportional to the laser intensity
I (®gure 17 (a)). When we set the laser intensity such that the splitting of the
dressed states j¡i and j‡i is equal to one motional quantum ·h¸, then Rabi
oscillations appear between the state j‡ij0i and j¡ij1i with j0i and j1i referring
to the lowest collective vibrational states of the ions (®gure 17 (b)). Using this
swapping between the j‡ij0i and j¡ij1i states one can construct a CNOT gate
between two distinct ions following the truth table (127). Quantum gates using this
idea are faster than standard quantum gates on trapped ions (discussed in section
7.2) approximately by the factor of 1=² assuming the Lamb±Dicke regime. The
speed of quantum gates shall be discussed in section 9.
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Figure 17. Fast quantum gates on cold trapped ions are based (a) on the splitting of the
dressed states j§i ˆ 1=21=2…jgi § jei† by an amount proportional to the laser intensity
(O ˆ O…I†) when the laser is tuned on the carrier transition (!L ˆ !0) and (b) on
setting the splitting such that it is proportional to one motional quantum (¸ ˆ 2O).



7.4. Multi-qubit controlled-NOT gates
A multi-qubit CNOT gate is de®ned by analogy to the two-qubit CNOT gate.

The only di� erence is the number of control qubits (®gure 18). The multi-qubit

(controlled) q-NOT gate acts on q ‡ 1 qubits with q control qubits …m1; . . . ; mq) and

the mq‡1th qubit is target. If all control qubits are in the state jei, then the state of

the target qubits is ¯ipped. Otherwise, the gate acts as the unity operator . The

truth table of the multi-qubit (controlled)q-NOT gate acting on m1; . . . ; mq‡1

qubits is

jCnoijgmq‡1
i ¡! jCnoijgmq‡1

i; jCnoi 6ˆ
Qq

jˆ1

«jemj
i;

jCnoijemq‡1
i ¡! jCnoijemq‡1

i;

jCyesijgmq‡1
i ¡! jCyesijemq‡1

i; jCyesi ˆ
Qq

jˆ1

«jemj
i;

jCyesijemq‡1
i ¡! jCyesijgmq‡1

i:

…136†

The multi-qubit (controlled)q-NOT gate acting on q ‡ 1 ions (m1; . . . ; mq ions
represent the control qubits, while the mq‡1th ion stands for the target qubit) can

be realized by applying the evolution operator (acting from right to left)

ÂA1=2
mq‡1

…p† B̂B1;I
m1

Yq

jˆ2

B̂B1;II
mj

Á !
B̂B2;II

mq‡1

Y2

jˆq

B̂B1;II
mj

Á !
B̂B1;I

m1
ÂA1=2

mq‡1
…0†; …137†

where the B̂B operators are taken for the value ¿ ˆ 0. However, this choice of the
phase factor has no fundamental importance. Equation (137) applies for three and

more ions and the scheme requires again the auxiliary qubit encoded into two

lowest levels jn ˆ 0i and jn ˆ 1i of the collective vibrational mode used as the

quantum data bus.

Now we verify whether the evolution operator (137) corresponds to the truth

table of the multi-qubit CNOT gate given by equation (136). At ®rst we consider
only the B̂B operators and then we comment on the action of the ÂA operators. For

q ‡ 1 ions involved in the multi-qubit CNOT gate the following hold.

(i) If the m1th ion is in the ground state jgm1
i, then the action of the B̂B

operators in equation (137) corresponds to the unity operator.

(ii) If the m1th ion is excited with all other ions in the ground state jem1
ijgiq,

we obtain
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Figure 18. Schematic representation of a multi-bit …controlled†q
-NOT gate acting on

q ‡ 1 qubits with q control qubits and the mq‡1th qubit as the target. The gate is
de®ned by the truth table (136).



jem1
ijgiqj0iB̂B1;I

m1
¡! ¡ ijgiq‡1j1iB̂B1;II

m2
¡! ¡ jrm2

ijgiqj0iB̂B1;II
m2

¡! ijgiq‡1j1iB̂B1;I
m1

¡!jem1
ijgiqj0i: …138†

(iii) Thus, the transformation is performed on the m1th ion and then on the
®rst next ion in the ground state. The state of all other ions in the ground
state is not transformed. If more ions (besides the m1th ion) are excited
(except if they all are excited), their state does not change because the B̂B ;II

mj

operator acts only in the Hilbert space spanned by fjgmj
i; jrmj

ig (see
equation (124)).

(iii) If all the ions are excited, that is jeiq‡1, it follows that

jeiq‡1j0i¡!
B̂B1;I

m1 ¡ ijgm1
ijeiqj1i¡!

B̂B1;I
m1 ¡ jeiq‡1j0i: …139†

Finally, the ÂA operators complete the operation (137) such that it corresponds to
the transformation (136) by analogy to equations (126) and (127).

7.5. Multi-qubit controlled-R gates
A multi-qubit (controlled)q-R gate acts again on q ‡ 1 qubits. However, it

performs a single-qubit operation (120) on the mq‡1th (target) qubit if all
m1; . . . ; mq control qubits are in the state jei. Otherwise, it acts trivially (®gure
19). Speaking precisely, if all control qubits are in the state jei, then the rotation
R ˆ Ry

1 rRy
2 rR2 R1 is applied (from right to left) on the target qubit. In the basis

of the target qubit fjgimq‡1
; jeimq‡1

g we introduce the matrices

R ˆ
cos ³ ei2¿ sin ³

¡ e¡i2¿ sin ³ cos ³

Á !

; r ˆ
0 1

1 0

Á !

;

R1 ˆ
0 ei¿

¡ e¡i¿ 0

Á !

; Ry
1 ˆ

0 ¡ ei¿

e¡i¿ 0

Á !

;

R2 ˆ
cos

³

2

³ ´
sin

³

2

³ ´

¡ sin
³

2

³ ´
cos

³

2

³ ´

0

BBBB@

1

CCCCA
; Ry

2 ˆ
cos

³

2

³ ´
¡ sin

³

2

³ ´

sin
³

2

³ ´
cos

³

2

³ ´

0

BBBB@

1

CCCCA
;

…140†
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Figure 19. Scheme of a multi-qubit …controlled†q
-R quantum gate. The gate acts on

q ‡ 1 qubits with q control qubits and the mq‡1th qubit as the target. R is de®ned by
equation (140) in the basis fjgimq‡1

; jeimq‡1
g of the target qubit. R1, R

y
1, R2 and R

y
2 are

also de®ned by equation (140) in the same basis.



where R1 ˆ …p; ¿†, Ry
1 ˆ y…p; ¿†, R2 ˆ …³; 0† and Ry

2 ˆ …³; 0†. The rotation
…³; ¿† is de®ned by equation (120). The matrix r denotes the NOT operation. If

not all control qubits are in the state jei, then the gate performs on the target qubit
the unity operator ˆ R

y
1 R

y
2 R2 R1. Finally, we may write the truth table of the

multi-qubit …controlled†q-R gate as follows:

jCnoijgmq‡1
i¡!jCnoijgmq‡1

i;

jCnoijemq‡1
i¡!jCnoijemq‡1

i;

jCyesijgmq‡1
i¡!jCyesi…cos ³ jgmq‡1

i ¡ e¡i2¿ sin ³ jemq‡1
i†;

jCyesijemq‡1
i¡!jCyesi… ei2¿ sin ³ jgmq‡1

i ‡ cos ³ jemq‡1
i†;

…141†

where jCnoi and jCyesi are de®ned in equation (136). The multi-qubit controlled-R
(CROT) gate (®gure 19) is performed on cold trapped ions by applying the
evolution operator (137) for the multi-qubit CNOT gates and the corresponding
operator for the single-qubit rotations (equation (121)).

If the preparation of a particular class of quantum states does not require the
introduction of a relative phase shift ¿ between the basis states jgi and jei, then a
reduced quantum logic network is su� cient (®gure 20). In particular, the rotation
~RR ˆ rRy

2 rR2 on the target qubit conditioned by the state of control qubits can be
realized according to the following truth table

jCnoijgmq‡1
i¡!jCnoijgmq‡1

i;

jCnoijemq‡1
i¡!jCnoijemq‡1

i;

jCyesijgmq‡1
i¡!jCyesi…cos ³ jgmq‡1

i ¡ sin ³ jemq‡1
i†;

jCyesijemq‡1
i¡!jCyesi…sin ³ jgmq‡1

i ‡ cos ³ jemq‡1
i†:

…142†

The results for the multi-qubit CROT gates are compatible with the scheme
proposed in [7], where the decomposition of multi-qubit CNOT gates into the
network of two-qubit CNOT gates has also been presented. However, this
decomposition may require many elementary operations in a particular realization
of quantum logic gates. It seems to be more appropriate for some practical
implementations of quantum computing to implement directly multi-qubit
CNOT gates (see section 9).
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Figure 20. Scheme of a reduced multi-qubit …controlled†q
-~RR quantum gate. The gate

acts on q ‡ 1 qubits with q control qubits and the mq‡1th qubit as the target. ~RR is
de®ned by equation (142). R2 and R

y
2 are de®ned by equation (140) in the basis

fjgimq‡1
; jeimq‡1

g of the target qubit.



8. Quantum logic networks

In this section we present quantum logic networks as e� ective tools for the
synthesis of quantum coherent superpositions of internal atomic states. We

provide two particular networks, where both of them apply to an arbitrary register

of qubits. The networks consist of single-qubit rotations, multi-qubit CNOT and

multi-qubit CROT gates. Their implementation on cold trapped ions is described

in detail in sections 7.4 and 7.5. The generation of non-classical motional states of a

trapped ion experimentally has been described in [62].
We keep the notation jgi and jei for the logical states of the qubit also in this

section. Firstly, let us introduce the network for the preparation of a totally

symmetric state (with respect to the permutations) of N qubits, such that all qubits

except one are in the excited state

jCi ˆ 1

N1=2
…jgee . . . ei ‡ jege . . . ei ‡ jeeg . . . ei ‡ . . . ‡ jeee . . . gi†: …143†

It has been shown that the maximal degree of bipartite entanglement measured in

the concurrence [63] is equal to 2=N and is achieved when a system of N qubits is

prepared just in the state (143). The synthesis of this state realizes the network in

®gure 21 assuming all qubits to be initially prepared in the state jei. The rotations
Qj are given as follows:

Qj ˆ

N ¡ j

N ¡ j ‡ 1

³ ´1=2 1

…N ¡ j ‡ 1†1=2

¡
1

…N ¡ j ‡ 1†1=2

N ¡ j

N ¡ j ‡ 1

³ ´1=2

0

BBBBB@

1

CCCCCA
; j ˆ 1; . . . ; N ¡ 1: …144†

For more details we refer to our original paper [64].

Secondly, we propose an array of quantum logic networks for the synthesis of
an arbitrary pure quantum state for illustration depicted on three qubits. However,

the scheme is quite easily scalable on N qubits [64]. Let us assume a general state

of three qubits in the form
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Figure 21. The network for the synthesis of the symmetric entangled state (143). The
rotations Qj are given by equation (144). N qubits are assumed to be initially
prepared in the state jeee:::ei.



jÁi ˆ ¬0jgggi ‡ ei’1 ¬1jggei ‡ ei’2 ¬2jgegi ‡ ei’3 ¬3jeggi

‡ ei’4 ¬4jgeei ‡ ei’5 ¬5jegei ‡ ei’6 ¬6jeegi ‡ ei’7 ¬7jeeei: …145†

The state (145) can be realized by applying the array of networks in ®gure 22
(shown in a more compact form in ®gure 23) on the initial state jgggi, that is all
three qubits in the state jgi. We have denoted the rotations Uj as follows

Uj ˆ
aj ei2¿j bj

¡ e¡i2¿j bj aj

Á !

; j ˆ 0; . . . ; 6; …146†

where aj ˆ cos ³j and bj ˆ sin ³j. The state (145) is given by 14 real parameters and
the network in ®gure 23 preparing this state is also determined by 14 parameters
(seven rotations), where

¿0 ˆ 1
2
…p ¡ ’7†; ¿j ˆ 1

2
…’j ¡ ’7†; j ˆ 1; . . . ; 6 …147†

and

b0 ˆ …1 ¡ ¬2
0†1=2; bj ˆ ¬j

1 ¡
Xj¡1

kˆ0

¬2
k

Á !1=2
; j ˆ 1; . . . ; 6: …148†
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Figure 22. An array of networks for the synthesis of an arbitrary pure quantum state
(145) on three qubits. The initial state is jgggi and the rotations Uj are given by
equations (146)±(148). The networks (a)±(g) generate gradually the respective terms
in the superposition (145).
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Figure 23. A compact form of the array of the networks shown in ®gure 22.



Thus, the mapping between the state under preparation (145) and the network
(®gure 23) is clearly de®ned.

9. Speed of quantum gates

One of the most important requirements for the implementation of quantum
logic (section 1) on a particular candidate quantum system is the physical
realization of quantum gates on time scales which are much shorter than time
scales associated with decoherence e� ects. We have represented quantum gates on
cold trapped ions with unitary evolution operators (121), (123) and (124) associated
with laser pulses on the carrier and on the ®rst red sideband. However, these
operators are valid only in the Lamb±Dicke and the weak-coupling regimes.
Taking into account the complete Hamiltonian (81) we have to deal with resonant
and o� -resonance transitions accompanied with Stark light shifts of the energy
levels (appendix A). A detailed treatment of this problem was presented by Steane
et al. [65] and we adopt some of their results in this section. The analysis of the
speed of gate operations in ion traps was ®rstly discussed by Plenio and Knight
[66, 67]. Firstly we discuss the speed of single-qubit rotations and two-qubit
CNOT gates. Then we include some estimations for the speed of multi-qubit
CNOT gates with cold trapped ions.

(i) The single-qubit rotations are associated with the transition on the carrier
(121) with the duration TA ˆ p=j¶j, that is a p pulse on the carrier
applied on a given ion. However, we have to consider rather the evolution
operator corresponding to the Hamiltonian (81) when we want to discuss
unwanted o� -resonance transitions. Directing the laser beam such that it is
perpendicular to the z axis, the Lamb±Dicke parameter ² becomes equal to
zero and o� -resonance transitions jeijni $ jgijn § jkji for k 6ˆ 0 do not
appear in the dynamics. Therefore, one can make the laser coupling
constant j¶j large without the restriction on the weak-coupling regime
characterized by the condition j¶j ½ ¸ (appendix A). We can assume that
j¶j=2p º 300 kHz; then we obtain typically for a p=2 pulse on the carrier
TA º 1 ms.

(ii) The two-qubit CNOT gate (125) is realized by two p=2 pulses on the
carrier [ÂA1=2

m2
…0†, ÂA1=2

m2
…p†], two p pulses (B̂B1;I

m1
) and a single 2p pulse (B̂B2;II

m2
) on

the ®rst red sideband. A pulse on the ®rst red sideband is represented with
the unitary evolution operator (91) for k ˆ ¡1. However, it was derived for
an ideal case when o� -resonance transitions and Stark light shifts were not
considered. We can correct for the light shifts by tuning the laser on the
frequency !L ˆ !0 ¡ !z ‡ D!, where D! corresponds to the light shifts
caused by the presence of the carrier transitions. The imprecision caused
by the excitation of o� -resonance transitions can be corrected by applying a
correction laser pulse with a correspondingly adjusted phase. This was
accomplished in [65] and the limit for the duration of the operation
corresponding to the p pulse on the ®rst red sideband is given as

1

TB
4 23=2°

Er

Nh

!z

2p

³ ´1=2

; …149†
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(ii) where ° ˆ …1 ¡ F†1=2 is the imprecision de®ned via the ®delity F,
Er ˆ ·h2µ2

#=2m is the recoil energy of a single ion of the mass m,

µ ˆ …2p=L† cos #, L is the laser wavelength, h ˆ 2p·h and !z is the axial
trapping frequency. The limit for the duration of the operation corre-
sponding to the 2p pulse on the ®rst red sideband is the double of the
expression given by equation (149).

In table 1 we give the estimations for calcium ions (40Ca‡). We assume the
angle between the laser beam and the z axis to be # ˆ 60¯, the laser wavelength is

L ˆ 729 nm and the axial trapping frequency is !z=2p º 700 kHz. Then we obtain
the recoil frequency Er=h º 2:33 kHz and ² ˆ …Er=·h!z†1=2 º 0:06.

The multi-qubit CNOT (137) on Q ions di� ers from the two-qubit CNOT
gate only in the number of laser pulses required for its realization. The multi-qubit
CNOT gate corresponds to two p=2 pulses on the carrier [ÂA1=2

mq‡1
…0†, ÂA1=2

mq‡1
…p†], a

single 2p pulse on the ®rst red sideband (B̂B2;II
mq‡1

) and …2Q ¡ 2† p pulses also on the
®rst red sideband (B̂B1;I

m1
, B̂B1;II

m2
, . . ., B̂B1;II

mq
). Thus, it requires altogether 2Q ‡ 1 laser

pulses, where Q ˆ q ‡ 1 refers to the number of the ions involved in the gate (q
control ions and one target ion). Then, in the spirit of the previous discussion the
minimal total time for the realization of the multi-qubit CNOT gate on Q ions is

T ˆ 2…TA ‡ QTB†; …150†

where we assume that TA ˆ 5 ms and TB is given by equation (149) for a total
number N (Q 4 N) of the ions con®ned in the trap. We give some estimations for
the realization of multi-qubit CNOT gates in table 1, where the number Q of the
ions involved in the gate and the total number N of the ions in the trap are equal
(N ˆ Q). We stress this point because there is a di� erence if we realize a two-qubit
CNOT gate (Q ˆ 2) having just two ions in the trap (N ˆ 2); then we obtain for
the total time of the gate

T1 ˆ 2…TA ‡ 2TNˆ2
B † º 0:5 ms …151†

or, having a larger register of ten ions in the trap (N ˆ 10), we ®nd that

T2 ˆ 2…TA ‡ 2TNˆ10
B † º 1:1 ms …152†

at the same ®delity F ˆ 99%.
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Table 1. N is the total number of the ions con®ned in the trap and also the number of
the ions involved in the realization of the multi-qubit CNOT gate, TB is the
duration of the operation corresponding to the p pulse on the ®rst red sideband
given by equation (149) calculated for two values of the ®delity (F ˆ 99% and
F ˆ 75%) and T is the total minimal time (equation (150)) for the realization of the
multi-qubit CNOT gate on N ions (see equation (137)) evaluated for two di� erent
®delities.

TB …ms† T …ms†

N F ˆ 99% F ˆ 75% F ˆ 99% F ˆ 75%

2 124 24.8 0.50 0.10
3 152 30.3 0.91 0.18
6 214 42.9 2.58 0.52
9 263 52.5 4.74 0.98
10 277 55.4 5.55 1.12



Any multi-qubit gate on a register of size N can be decomposed into a network
of single-qubit rotations and two-qubit CNOT gates [7]. However, there might be
a possibility to realize this multi-qubit directly, if a given physical system allows it.
For instance, the multi-qubit CNOT gate on six qubits can be decomposed into
the network of 12 two-qubit CNOT gates including three additional auxiliary
qubits [7]. In the case of cold trapped ions it requires the total time for the
realization of the whole network (Q ˆ 2, N ˆ 9)

T3 ˆ 12 £ 2…TA ‡ 2TNˆ9
B † º 12:7 ms: …153†

However, the direct implementation (137) would take only (Q ˆ N ˆ 6)

T4 ˆ 2…TA ‡ 6TNˆ6
B † º 2:6 ms; …154†

which is about ®ve times less than the former case. We have again assumed almost
perfect ®delity F ˆ 99% of the operation. We conclude that there can be quantum
systems that may support a direct implementation of multi-qubit gates, rather than
their decomposition into fundamental gates, which may bring advantages for
experimental realization as well as in quantum state synthesis [64].

10. Discussion

10.1. Decoherence
Throughout the paper we have discussed many aspects of cold trapped ions for

quantum computing but we have not dealt with decoherence which appears to be a
main obstacle in achievements of experimental quantum computing. The reason
was that our main goal has been to give a basic review of the issue and the detailed
discussion on sources and e� ects of decoherence would be relevant to a more
advanced study [66±72]. Nevertheless, for completeness we would like to mention
at this point some decoherence aspects met in the laboratory. We shall follow a
detailed study of experimental issues in quantum manipulations with trapped ions
given by Wineland et al. [9]. The decoherence shall be met in a more general usage
of this term. Thus, by the decoherence we mean any e� ect that limits the ®delity
(the match between desired and achieved realization). Further, we shall distinguish
three categories.

(i) Motional state decoherence is the most troublesome source of decoherence
in ion trap experiments and refers to the relaxation of two vibrational
states jn ˆ 0i and jn ˆ 1i of a given motional mode used as the quantum
data bus. The ions are cooled to the ground motional state jn ˆ 0i and the
excitation to the jn ˆ 1i state is used for the transfer of information on a
distinct ion. However, this scenario is not ideal for several reasons:

(iii) (a) Instability of trap parameters occurs. We are simply not able to control
all voltages as they undergo ¯uctuations and dephasing.

(iii) (b) We also have to consider, ®rstly, the micromotion, secondly, the
Coulomb repulsion between the ions making the motional modes
(except the COM mode) anharmonic in reality and, thirdly, stray
electrode ®elds causing possible excitations of the ion motion.

(iii) (c) We have considered just a single motional mode in our approach, but
there are also other 3N ¡ 1 modes present and the cross-coupling
between the modes appears. If spectator 3N ¡ 1 modes are not cooled
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to their ground motional states, the energy can be transferred to the
mode of interest. This happens because the trapping potential is
anharmonic in real and these higher anharmonic terms are responsible
for the cross-coupling.

(iii) (d) We should mention also inelastic and elastic collisions with the
background gas, even though experiments are carried out in an
excellent environment (p º 10¡8 Pa).

(ii) Internal state decoherence corresponds to the evolution when a pure state of
the ion jÁi ˆ ¬jgi ‡  jei transforms into a mixture »̂» ˆ j¬j2jgihgj ‡ j j2jeihej.
The ions demonstrate internal decoherence times of the order of seconds
(calcium) up to minutes and hours (beryllium). The type of the decoher-
ence discussed here can be eliminated by a proper choice of metastable
excited states with long lifetimes.

(iii) Operational decoherence refers to the precision of coherent laser±ion
manipulations. There are several aspects that we have to consider.

(iii) (a) When the ion is illuminated with a laser beam, one has to control the
pulse duration and the phase adjustment in order to avoid the
preparation of unwanted states.

(iii) (b) Owing to the laser spatial intensity pro®le, there is a probability (if the
ions are spaced too closely) that the state of a neighbouring ion shall be
a� ected.

(iii) (c) If we consider the standing-wave con®guration we have to take care of
the precise position of the ion in the node or the antinode of the
standing wave, which seems to be very troublesome.

(iii) (d) Finally, o� -resonance transitions are always present and we have to
control the laser power very carefully to avoid their excitations.

However, there is a way to eliminate the e� ect of the decoherence. We can
encode information into a decoherence-free subspace whose states are invariant
under coupling to the environment [52, 73, 74].

10.2. Ion trap systems
We have been discussing cold trapped ions so far. Cold refers to the fact that all

motional modes have to be cooled to their ground motional states because the
dynamics assume precise control over the motional state. However, there have
appeared other proposals referring to warm or hot trapped ions which assume an
arbitrary motional state.

(i) Poyatos et al. [75] proposed a scheme for the realization of two-qubit
CNOT gates between two trapped ions using ideas from atomic inter-
ferometry. They split the wave packet of the control ion into two
directions depending on its internal state with a laser pulse. Then they
address one of the wave packets of the target ion, changing conditionally
its internal state and ®nally they bring together the wave packets of the
ions using another laser pulse. The ions communicate through the
Coulomb repulsion and under ideal conditions the scheme is independent
on the motional state of the ions.

(ii) Milburn et al. [76] described two schemes for manipulations with warm
trapped ions. Firstly, they use the adiabatic passage for the conditional
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phase shift, that is the phase of the ion is ¯ipped if the motional mode is in
the superposition of odd-number states and the ion is excited. The COM
mode in an arbitrary vibrational state is used for quantum logic but all
other motional modes are assumed to be cooled to their ground motional
states. Secondly, they apply the idea of the collective spin [77] for faster
gates. This idea has been also used for the introduction of multi-qubit
gates for quantum computing [78].

(iii) Mùlmer and Sùrensen [79] and Sùrensen and Mùlmer [80] proposed a
novel scheme based on the idea of bichromatic light (!1; !2). Realizing the
two-qubit CNOT gate they illuminate two ions with the bichromatic light
coupling the states jggijni and jeeijni. They choose detunings far enough
from the resonance with the ®rst red and blue sidebands such that the
intermediate states jegijn § 1i and jgeijn § 1i are not populated in the
process. The scheme is not sensitive on ¯uctuations of the number of
phonons in the relevant motional mode. It is also possible to illuminate
with the bichromatic light more ions and generate a multiparticle
entangled state. In fact, these experiments have already been realized by
the National Institute of Standards and Technology [82] and they have
generated the entangled state with two ions jÁ2i ˆ 1=21=2…jggi ¡ ijeei† with
a ®delity F ˆ 83% and also the entangled state with four ions
jÁ4i ˆ 1=21=2…jggggi ‡ ijeeeei† with a ®delity F ˆ 57% using beryllium ions
and the Raman scheme. Jonathan and Plenio [81] proposed light-shift-
induced quantum gates for trapped ions insensitive to phonon number in
motional modes (thermal motion).

(iv) Finally, there has appeared a proposal of a scalable quantum computer
with the ions in an array of microtraps by Cirac and Zoller [83] detailed in
[84]. The ions are placed in a 2D array of independent ion microtraps [85]
and there is another ion (head) that moves above this plane. If we position
the head above a particular ion from the array and switch on the laser in
the perpendicular direction, we can realize a two-qubit gate. This
operation allows us to swap the state of the ion to the head which can
be moved immediately above a distinct ion in the array and transfer the
information on to it. The ions oscillating in the microtraps are not
assumed to be cooled to their ground motional states. However, their
motion can couple to the environment. It becomes relevant during the
time when the ion interacts with the head but not in the case when the
head moves.

11. Conclusion

In this paper we have tried to review achievements accomplished in the ®eld of
cold trapped ions. In the ®rst part we have discussed in detail the ion loading and
trapping process: the collective vibrational motion of the ions. We have also given a
detailed derivation of the Hamiltonian governing the dynamics of the system
including the discussion of the weak-coupling regime and the Lamb±Dicke
regime. Further, we have reviewed laser cooling techniques and a detection
process with experimental illustrations on calcium ions. In the second part we
have discussed the implementation of quantum computing using cold trapped
ions. In particular, we have described how to realize single-qubit, two-qubit and
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multi-qubit quantum logic gates. Finally, we have estimated the speed of quantum
gates with cold trapped ions. The aim of this paper is to give an introduction to this
®eld with many references to relevant papers and studies.
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Appendix A. The weak-coupling regime

Equation (81) corresponds to the complete Hamiltonian in the sense that it
includes also o� -resonance transitions. For instance, even though a laser is tuned
on the carrier, the o� -resonance transitions on the sidebands are also present and
they cause imprecisions and perturbations in the dynamics. This can be avoided by
setting the laser intensity I / j¶j2, that is the laser coupling constant (equations
(78) or (79)), su� ciently small. In what follows we shall determine conditions
(characterizing the weak-coupling regime) under which we can neglect o� -reso-
nance transitions.

A.1. O� -resonance transitions
The implementation of quantum gates on cold trapped ions requires laser

pulses on the carrier (®gure 6 (a)) and on the ®rst red sideband (®gure 6 (b)).
Therefore, we shall discuss the dynamics of these two spectral lines. Firstly, let us
assume that the laser is tuned on the carrier …¯ ˆ 0†. The closest o� -resonance
transitions (detuned by the frequency ¸) are on the ®rst blue and on the ®rst red
sideband (®gure A 1 (a)). We shall consider only the respective terms in the
Hamiltonian (81) and drop the index j. In the Lamb±Dicke limit we can write

ĤH1 ˆ ·h¶

2
¼̂¼‡ ‡ ·h¶

2
…i²†¼̂¼‡âay ei¸t ‡ ·h¶

2
…i²†¼̂¼‡âa e¡i¸t ‡ Hc: …A 1†

Further, we assume the ion to be initially in the state jgijni, we apply the
Hamiltonian (A 1) and calculate the probability of o� -resonance transitions. The
dynamics governed by a time-dependent Hamiltonian ĤH…t† are described to the
®rst order by the unitary evolution operator

ÛU…t; t0† º ¡ i

·h

…t

t0

ĤH…t 0† dt 0: …A 2†

Then the probability of ®nding the ion (initially prepared in the state jgijni) in the
state jeijn ‡ 1i (that is undergoing the o� -resonance transition on the ®rst blue
sideband) is
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PB ˆ j hejhn ‡ 1j ÛU1 jgijni j2 ˆ j¶j2²2…n ‡ 1†
¸2

sin2 ¸…t ¡ t0†
2

µ ¶
; …A 3†

where ÛU1 is given by equation (A 2) for the Hamiltonian (A 1). The probability of
®nding the ion in the state jeijn ¡ 1i corresponding to the o� -resonance transition
on the ®rst red sideband is given as

PR ˆ j hejhn ¡ 1j ÛU1 jgijni j2 ˆ j¶j2²2n

¸2
sin2 ¸…t ¡ t0†

2

µ ¶
: …A 4†

If there is no population transferred via the o� -resonance transitions to the states
jeijn ‡ 1i and jeijn ¡ 1i, that is PB ½ 1 and PR ½ 1 at any time t, we can neglect
these o� -resonance transitions. Then we obtain the conditions of the weak-coup-
ling regime for the transition on the carrier in the form

j¶j²…n ‡ 1†1=2 ½ ¸ …A 5†

and

j¶j²n1=2 ½ ¸: …A 6†

We can also avoid the o� -resonance transitions by setting the laser beam
perpendicular to the z axis (# ˆ p=2). Then the Lamb±Dicke parameter (see
equation (75)) is equal to zero (² º µ cos #z0) and the coupling on the o� -
resonance transitions vanishes.

Analogously, we can assume the laser to be tuned on the ®rst red sideband
(¯ ˆ ¡¸) and the closest o� -resonance transitions are on the carrier and on the
second red sideband (®gure A 1 (b)). However, the strength of the second red
sideband is of the order of ²2 and we can omit it in the Lamb±Dicke limit. Then
the respective Hamiltonian is given as

ĤH2 ˆ ·h¶

2
…i²†¼̂¼‡âa ‡ ·h¶

2
¼̂¼‡ ei¸t ‡ Hc: …A 7†

The probability of ®nding the ion (initially in the state jgijni) in the state jeijni
(after the o� -resonance transition on the carrier) can be calculated as
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Figure A 1. (a) The laser is tuned on the carrier (¯ ˆ 0) with the coupling constant ¶.
The o� -resonance transitions are present on the ®rst blue and red sideband with the
coupling constant ²¶. (b) The laser is tuned on the ®rst red sideband (¯ ˆ ¡¸) with
the coupling constant ²¶. The o� -resonance transitions are present on the carrier
with the coupling constant ¶ and on the weak second red sideband (²2¶).



PC ˆ j hejhnj ÛU2 jgijni j2 ˆ
j¶j2

¸2
sin2 ¸…t ¡ t0†

2

µ ¶
; …A 8†

where ÛU2 is given by equation (A 2) for the Hamiltonian (A 7). We can neglect the
o� -resonance dynamics if PC ½ 1 at any time t. Then, for the weak-coupling
regime on the ®rst red sideband holds

j¶j ½ ¸: …A 9†

Even though the transition on the carrier is o� -resonance, it has stronger coupling
in the Lamb±Dicke limit than the ®rst red sideband. Therefore, it is very
important to follow in the experiment the constraint given by equation (A 9).

A.2. Stark light shifts
Besides the population of the o� -resonance levels there is another source of

imprecisions in the state manipulation. However, it is weaker and it does not
require any special constraints on physical parameters except those for the weak-
coupling regime. When the laser drives a transition between two levels, there
appears a frequency shift called Stark light shift caused by the presence of other
spectator levels. Therefore, in the experiment we have to consider the detuning
(80) rather in the form

~̄̄ˆ !L ¡ !0 ¡ D!; …A 10†

where D! corresponds to the Stark light shift. The higher the laser intensity, the
more signi®cant the light shift is. We can correct for this e� ect by shifting the laser
frequency (!L ! !L ‡ D!) which tunes the transition back to the resonance.
Further, we shall estimate the frequency shift D!.

Let us consider the Hamiltonian (70) and transform it to the interaction picture
(76) with ÛU0 ˆ exp …¡iĤH0t=·h†, where ĤH0 ˆ …·h!L=2†¼̂¼z. Then we obtain

ĤH ˆ ĤH0 ‡ V̂V ˆ ¡ ·h¯

2
¼̂¼z ‡ ·h¸âayâa

³ ´
‡ ·h¶

2
¼̂¼‡ ei²…âa‡âay† ‡ Hc

³ ´
; …A 11†

where in the Lamb±Dicke limit the interaction term reduces to

V̂V º ·h¶

2
¼̂¼‡ ‡ ·h¶

2
…i²†¼̂¼‡âay ‡ ·h¶

2
…i²†¼̂¼‡âa ‡ Hc …A 12†

with the ®rst term corresponding to the transition on the carrier, the second term
to the ®rst blue sideband and the last term to the transition on the ®rst red
sideband. In the second order of the time-independent perturbation theory (the
®rst order gives no contribution) we can write for the shift of the energy levels

DEjgijni ˆ
X

m
¯ 6ˆ¸…m¡n†

hgjhnjV̂VjeijmihejhmjV̂Vjgijni
·h¯ ‡ ·h¸…n ¡ m† …A 13†

and

DEjeijni ˆ
X

m
¯ 6ˆ¸…n¡m†

hejhnjV̂VjgijmihgjhmjV̂Vjeijni
¡·h¯ ‡ ·h¸…n ¡ m† : …A 14†

For instance, for the transition on the ®rst red sideband (¯ ˆ ¡¸) we can calculate
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DEjgijni º ¡ ·hj¶j2

4¸
; DEjeijn¡1i º ·hj¶j2

4¸
…A 15†

and the corresponding light shift can be estimated as

D! ˆ …DEjeijn¡1i ¡ DEjgijni†=·h º j¶j2

2¸
: …A 16†

If we choose j¶j=2p ˆ 50 kHz and ¸=2p ˆ 700 kHz so that the condition (A 9)
holds, then D!=2p º 1:8 kHz.

Appendix B. The Lamb±Dicke regime

In equation (87) for the coupling constant we can expand the exponential
function to the Taylor series about the value ²j ˆ 0 and use equation (88) for the
Laguerre polynomial. Then we obtain

On;k
j …²† ˆ ¶j i²j

¡ ¢jkj n!

…n ‡ jkj†!

³ ´1=2

1 ¡
²2

j

2
‡ O…²4

j †
Á !

£ n ‡ jkj
n

³ ´
¡ ²2

j

n ‡ jkj
n ¡ 1

³ ´
‡ O…²4

j †
µ ¶

; …B 1†

where O…²4
j † denotes the terms proportional to the fourth and higher powers of ²j.

In the Lamb±Dicke regime we consider the dependence of On;k
j on the parameter ²j

only to its lowest order, that is in equation (B 1) we neglect all terms with any
higher power than ²

jkj
j and we obtain the coupling constant On;k

j given by equation
(95). This approximation holds only if the conditions

²2
j

2
½ 1 …B 2†

and

²2
j

n ‡ jkj
n ¡ 1

³ ´
½

n ‡ jkj
n

³ ´
) ²2

j

n

jkj ‡ 1
½ 1 …B 3†

are satis®ed. We shall refer to the condition (jkj ˆ 0)

²j…hni ‡ 1
2
†1=2 ½ 1 …B 4†

as the Lamb±Dicke limit, where hni is the average number of phonons in the
respective vibrational mode [86].

(i) The Lamb±Dicke limit corresponds physically to the situation where the
spatial extent of the vibrational motion of the ion z0 is much smaller than
the wavelength L of the laser, where ²j º µz0 and µ ˆ 2p=L (see de®nition
in equation (75)).

(ii) The Lamb±Dicke limit can be physically interpreted also from a di� erent
point of view. We may rewrite the Lamb±Dicke parameter of the jth ion of
N ions in the COM mode in the form ²2

j ˆ Er=·h!z, where Er ˆ ·h2µ2=2mN
is the recoil energy. It can be shown [87] that the trapped ion emits
spontaneously photons of the average energy ·h!0 ¡ Er, where !0 is the
atomic frequency. Taking into account the Lamb±Dicke limit (Er ½ ·h!z)
we may say that, during the spontaneous emission, change in the
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vibrational state of the ion is very unlikely. In other words, the trapped ion
in the Lamb±Dicke regime decays spontaneously mostly on the carrier
…!0 º !0 ¡ Er=·h†.

(iii) The Lamb±Dicke parameter for a single trapped ion equals ·²² and for an
ion from the string of N ions in the COM mode is given as ²j ˆ ·²²=N1=2.
This means that we can reach the Lamb±Dicke limit (B 4) for N ions even
if the limit is not ful®lled for single ions [49].
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