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Diluting quantum information: An analysis of information transfer in system-reservoir interactions
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We design auniversalquantum homogenizer, which is a quantum machine that takes as an input a system
qubit initially in the stater and a set ofN reservoir qubits initially prepared in the same statej. In the
homogenizer the system qubit sequentially interacts with the reservoir qubits via thepartial swaptransforma-
tion. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an
arbitrarily small neighborhood of the statej irrespective of the initial states of the system and the reservoir
qubits. This means that the system qubit undergoes an evolution that has a fixed point, which is the reservoir
statej. We also study approximate homogenization when the reservoir is composed of a finite set of identically
prepared qubits. The homogenizer allows us to understand various aspects of the dynamics of open systems
interacting with environments in nonequilibrium states. In particular, the reversibility vs irreversibility of the
dynamics of the open system is directly linked to specific~classical! information about the order in which the
reservoir qubits interacted with the system qubit. This aspect of the homogenizer leads to a model of a quantum
safe with a classical combination. We analyze in detail how entanglement between the reservoir and the system
is created during the process of quantum homogenization. We show that the information about the initial state
of the system qubit is stored in the entanglement between the homogenized qubits.

DOI: 10.1103/PhysRevA.65.042105 PACS number~s!: 03.65.Yz, 03.67.2a
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I. INTRODUCTION

When a system interacts with a reservoir that is in therm
equilibrium, then after some time the system
thermalized—it relaxes towards the thermal equilibriu
This implies that the information about the original state
the system is~irreversibly! ‘‘lost’’ and its new state is deter-
mined exclusively by the parameters~temperature! of the
reservoir. If the reservoir is composed of a large numberN of
physical objects of the same physical type as the sys
itself, then the thermalization process can be understoo
homogenization: out ofN objects~the reservoir! prepared in
the same thermal state and a single system in an arbi
state, we obtainN11 objects in the same thermal state. Th
intuitive picture is based on certain assumptions about
interaction between the system and the reservoir, the phy
nature of the reservoir itself, and the concept of the ther
equilibrium. This picture is at the heart of the model
blackbody radiation, which triggered the birth of quantu
theory in the seminal work of Planck. In addition, this sam
picture is very important in understanding many processe
quantum physics as well as the fundamental concept of
irreversibility @1,2#.

In this paper we present a rigorous analysis of the ab
picture within the framework of quantum-information theo
Specifically, we will consider a systemS represented by a
single qubit initially prepared in the unknown state%S

(0) and
a reservoirR composed ofN qubits all prepared in the stat
j, which is arbitrary but the same for all qubits. We w
enumerate the qubits of the reservoir and denote the sta
thekth qubit asjk @3#. From the definition of the reservoir i
follows that initially jk5j for all k, so the state of the res
ervoir is described by the density matrixj ^ N.
1050-2947/2002/65~4!/042105~11!/$20.00 65 0421
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Let U be a unitary operator representing the interact
between a system qubit and one of the reservoir qubits
addition, let us assume that at each time step the sys
qubit interacts with just a single qubit from the reservoir~see
Fig. 1!. Moreover, the system qubit can interact with each
the reservoir qubits at most once. After the interaction w
the first reservoir qubit the system is changed according
the following rule~which is a completely positive map!:

%S
(1)5Tr1@U%S

(0)
^ j1U†#. ~1!

Let us repeat the interactionN times, that is, via a sequenc
of interactions the system qubit interacts withN reservoir
qubits all prepared in the statej. The final state of the system
is then described by the density operator

%S
(N)5TrR@UN . . . U1~%S

(0)
^ j ^ N!U1

† . . . UN
† #, ~2!

whereUkªU ^ ( ^ j Þk1j ) describes the interaction betwee
the kth qubit of the reservoir and the system qubit. Th
model of homogenization is very similar to thecollision
model since the system becomes homogenized via a

FIG. 1. The scenario of homogenization with just three reserv
qubits involved.
©2002 The American Physical Society05-1
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quence of individual interactions with the reservoir qubi
The interactions are assumed to be localized in time~i.e.,
they act like ellastic collisions! @4#.

Our aim is to investigate possible maps induced by
transformation~2! and describe the process of homogeni
tion. Homogenization means that due to the interactionU the
states of the qubits in the reservoir change only little wh
after N interactions the system’s state becomes close to
initial state of the reservoir qubits. Formally,

D~%S
(N) ,j!<d, ; N>Nd , ~3!

D~jk8 ,j!<d, ; k, 1<k<N, ~4!

whereD(,) denotes some distance~e.g., a trace norm! be-
tween the states,d.0 is a small parameter, which is chose
a priori to the determination of the degree of the homoge
ity and jk8ªTrS@U%S

(k21)
^ jU†# is the state of thekth res-

ervoir qubit after the interaction with the system qubit.
The conditions~3! and ~4! can be represented using

geometrical picture. The Bloch sphere of unit radius is
representation of the state space of a spin-~1/2! ~qubit! sys-
tem. The initial stater of the system qubit and the reservo
statej are represented by two~distinct! points of the Bloch
sphere. We can image another sphere of the radiusd centered
at the point representing the reservoir statej ~in what fol-
lows we will call this sphere thed sphere!. The task is to
‘‘shrink’’ the original Bloch sphere representing the~un-
known! initial state space of the system qubit into thed
sphere. So we start withN reservoir qubits in the statej and
the system qubit in an arbitrary stater and we end up with
N11 qubits within thed sphere centered at the point repr
senting the original reservoir statej ~see Fig. 2!.

We note that homogenization is closely related tother-
malization. There are, however, two main differences:
thermalization,~i! the statej of the reservoir qubits is no
completely unknown, but is a thermal state, that is, a s
diagonal in agiven basis ~interpreted as the basis of th

FIG. 2. Thed neighborhood of the reservoir’s statej inside the
Bloch sphere. AfterN interactions between the system and the r
ervoir, the states of all reservoir qubits and the system qubit
contained within thisd sphere.
04210
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eigenstates of a one-qubit Hamiltonian! and ~ii ! the number
of qubits in the reservoir is considered to be infinite for a
practical purpose. Thermalization is studied in Ref.@5#.

Our paper is organized as follows. In Sec. II we show t
quantum homogenization can be realized with the help o
partial swapoperation. In Sec. III we show that the parti
swap for qubits generates a contractive map of the sys
qubit with the fixed point being the initial state of the rese
voir. This ensures the required convergence of the hom
enization process@see Eqs.~3! and ~4!#. The uniqueness o
the partial-swap operation is proved in Sec. IV. In Sec. V
estimate the fidelity of the approximate homogenization m
as a function of the numberN of reservoir qubits and the
parameterd ~the precision of the homogenization!, while in
the Sec. VI we will analyze how the reservoir qubits beco
entangled as a consequence of their interaction with the
tem qubit. In Sec. VII of the paper, finally, we address po
sible applications of the homogenization map.

II. PARTIAL-SWAP OPERATION

Let us start with the definition of the so-calledswapop-
erationS acting on the Hilbert space of two qubits, which
given by relation@6#

Suc& ^ uf&5uf& ^ uc&. ~5!

With this transformation

S% (0)
^ jS†5j ^ % (0), ~6!

after just a single interaction, the state of the systemS is
equal to the statej of the reservoir qubit and the interactin
qubit from the reservoir is left in the initial state of system
This means the condition~3! is fulfilled, while the condition
~4! is not—since recall that we want it to hold for all% (0).

In order to fulfill both conditions~3! and ~4! we have to
find some unitary transformation that is ‘‘close’’ to the ide
tity on the reservoir qubit, while it performs apartial-swap
operation, so that the system qubit at the output is close
the reservoir statej than before the interaction. The swa
operator is Hermitian and, therefore, we can define the u
tary partial swap operation

P~h!5~cosh!11 i ~sinh!S, ~7!

which serves our purposes. In what follows we den
sinh5s and cosh5c.

In the process of homogenization, the system qubit in
acts sequentially with one of theN qubits of the reservoir
through the transformationP(h). After each interaction, the
system qubit becomes entangled with the qubit of the re
voir with which it interacted~for more details on the issue o
entanglement, see Sec. VI!. The states of the system qub
and of the reservoir qubit are obtained by partial traces. S
cifically, after the first interaction the system qubit is in th
state described by the density operator

%S
(1)5c2%S

(0)1s2j1 ics@j,%S
(0)#, ~8!

while the first reservoir qubit is now in the state

-
re
5-2
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DILUTING QUANTUM INFORMATION . . . PHYSICAL REVIEW A 65 042105
j185s2%S
(0)1c2j1 ics@%S

(0) ,j#. ~9!

We can recursively apply the partial-swap transformat
and after the interaction with thenth reservoir qubit, we have

%S
(n)5c2%S

(n21)1s2j1 ics@j,%S
(n21)#, ~10!

as the expression for the density operator of the system q
while thenth reservoir qubit is in the state

jn85s2%S
(n21)1c2j1 ics@%S

(n21) ,j#. ~11!

Since we are interested only in those terms in express
~10! and ~11! that are proportional to the operatorj we can
rewrite the above equations in the form

%S
(n)5s2(

k50

n21

c2kj1r rest
(n) 5~12c2n!j1r rest

(n) ~12!

and

jn85s2~12c2(n21)!j1jn,rest . ~13!

In the following section, we are going to show thatr rest
(n)

converges monotonically to the null operator asn→`. In
this case, obviously%S

(n)→j, so the condition~3! is fulfilled
if the number of qubitsN is large enough. In addition, asn
increases,jn8 becomes more and more similar toj, since the
commutator in Eq.~11! goes to zero; in other words,

D~jn8 ,j!<D~jn218 ,j!. ~14!

Therefore, condition~4! will be fulfilled for all k if and only
if it is fulfilled for k51. This gives us a restriction on th
parameterh that enters the partial swap; this restriction w
be studied in Sec. V.

III. HOMOGENIZATION IS A CONTRACTIVE MAP

In this section we want to show that%S
(N)→j monotoni-

cally for all parametershÞ0. This means, in particular, tha
condition~3! does not put any constraint onh. To show this
convergence, we use theBanach theorem@7# that concerns
the fixed point of a contractive transformation. LetS be a
space with a distance functionD(%,j), then the transforma
tion T is called contractive if it fulfills the inequality
D(T@%#,T@j#)<kD(%,j) with 0<k,1 for all %,jPS. A
fixed point of the transformationT is an element ofS for
which T@j#5j. The Banach theorem states that a contrac
map has a unique fixed point@8# and that the iteration of the
map converges to it, i.e.,TN@%#→j for each%PS. We note
that contractive transformations within the context
quantum-information processing have been recently
cussed also in Ref.@9#.

In our caseS is the set of physical states, i.e., the set of
density matrices of a single qubit. The mapT that we are
considering is defined by%S

(0)→T@%S
(0)#5%S

(1) . We must
show that the map is contractive and thatj is a fixed point of
the map.

We begin by finding the superoperator induced by
04210
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transformationU in the left-right form, i.e., as a linear op
erator acting on the space of trace-class operatorsT(H) ~see
Ref. @10#!. We choose the operators1

2 1,sx ,sy ,sz ~wheresn
are the Pauli matrices! as a basis forT(H), whereH repre-
sents the Hilbert space of a qubit. In this case an arbitr
density operator of a qubit can be written as

%5
1

2
11wW •sW , ~15!

where uwW u<1/2. We can write a state that is an element
T(H) in a vector form, i.e.,%5(1,wx ,wy ,wz). Let j5 1

2 1
1 tW•sW 5(1,tx ,ty ,tz) be the state of the qubit in the reservo
After the first interactionP with the first reservoir qubit, the
system qubit evolves according to Eq.~10! with n51. This
transformation can be described as

%S
(0)→%S

(1)5s2j1c2%S
(0)1 ics@j,%S

(0)#

5
1

2
11~s2tW1c2wW !•sW 1 ics@ tW•sW ,wW •sW #

5
1

2
11@s2tW1c2wW 22cs~ tW3wW !#•sW

5
1

2
11wW 8

•sW , ~16!

where we used the identitysks l5dkl11 i« jkls j and

wj85s2t j1~c2d j l 22cs« jkl tk!wl ~17!

with j 5x,y,z. Now we can express the transformation%S
(0)

→%S
(1) as

S 1

wx8

wy8

wz8

D 5S 1 0 0 0

s2tx c2 2cstz 22csty

s2ty 22cstz c2 2cstx

s2tz 2csty 22cstx c2

D S 1

wx

wy

wz

D ,

~18!

or more formally, as%S
(1)5T%S

(0) , where T is the matrix
representing the superoperator acting on the linear sp
T(H). If we express the matrixT as

T5S 1 0W T

s2tW T
D , ~19!

then it is easy to check that in our caseT tW5c2tW. This implies
that the statej is a fixed point of the map under consider
ation, i.e.,Tj5j. The system state after thenth iteration
then reads
5-3
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%S
(n)5

1

2
11F (

j 50

n21

s2T j tW1TnwW G•sW

5
1

2
11Fs2(

j 50

n21

c2 j tW1TnwW G•sW

5
1

2
11@~12c2n! tW1TnwW #•sW , ~20!

where for the last equality we summed the geometric s
( j 50

n21(c2) j5(12c2n)/(12c2). Of course,c2n→0 unlessc
5cosh51. Numerically one can check thatTn→O, where
O represents the zero operator. Thus%S

(n)→j. In what fol-
lows we prove this convergence for all values of the para
eterh.

To prove that the mapT is contractive, we must define
distance function onS. Let us introduce the trace distanc
D(%,v)5Tru%2vu and the vectorsv5(1,vx ,vy ,vz) and
rW5wW 2vW . For a qubit we have

D~%,v!5Tru~wW 2vW !•sW u5TrurW•sW u52urWu , ~21!

since the eigenvalues of the operatorrW•sW are given byl6

56urWu. In order to find the contraction parameterk for our
transformationT we proceed as follows. From the Eqs.~19!
and ~21! we obtain

D~T@%#,T@v#!5TrurW 8
•sW u52urW 8u, ~22!

where rW 85wW 82vW 85s2tW1TwW 2s2tW2TvW 5T(wW 2vW )5TrW

5c2rW22cs tW3rW. Since u tWu2<1/4 and urW 8u25c4urWu2

14c2s2u tW3rWu25urWu2c2(c214s2u tWu2sin2b), where b<p is
the angle between the vectorstW and rW, we find that the con-
traction coefficientk5c. This last equality is due to the fac
that urW 8u<urWuc. If c5cosh,1 then the mapT is contractive
and the convergence to the fixed pointj is assured.

IV. UNIQUENESS OF THE PARTIAL-SWAP OPERATION

In what follows we will discuss the question of the choi
of the unitary transformationU that describes the interactio
between a system from the reservoir and the initial sys
undergoing the homogenization process. If both the sys
and the reservoir state are the same, the interaction sh
not affect either qubit, and this should be true no matter w
the state of the system and reservoir qubit are. This imp
that the unitary operator must satisfy the following two co
ditions:

Tr1~Ur ^ rU†!5r, ~23!

TrS~Ur ^ rU†!5r ~24!

for any single-qubit stater. Let us first discuss the case o
pure states. Ifr represents a pure state then the condit
~23! says thatUr ^ rU†5r ^ j1, wherej1 needs to be de
termined. However from the second condition~24! it follows
04210
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thatUr ^ rU†5j2^ r, wherej2 is unknown. Putting the las
two results together we obtain that

Ur ^ rU†5r ^ r ~25!

for anyr representing a pure state. From here it follows th
the unitary transformationU acting on the joint Hilbert space
H 25H^ H must be of the form

U:uc& ^ uc&→eiwuc& ^ uc&, ~26!

where the parameterw is independent of the stateuc&. There-
fore, the action of the unitary transformation is fixed on t
symmetric subspace ofH 2 up to a phase factoreiw. Neither
the two conditions~23! and~24! nor the condition~26! tell us
anything about the action of the unitary transformationU on
the antisymmetric subspace ofH 2. This means that the ac
tion of U on the antisymmetric subspace is arbitrary. Ho
ever, in the case of qubits the antisymmetric subspace is
dimensional and we can proceed further. Because the a
symmetric subspace is one dimensional and invariant un
the action of the unitary transformationU, we have

U~ uc&uc'&2uc'&uc&)5eiu~ uc&uc'&2uc'&uc&), ~27!

whereu is a constant depending onU. Now the transforma-
tion U is given by Eqs.~26! and ~27! up to two constantsw
andu. What we would now like to show is that these cond
tions require thatU be a partial-swap operator up to a glob
phase factor. This phase factor has no physical conseque
If we define the unitary operatorU8 to be

U85expi (2u2w)/2U,

then Eqs.~26! and ~27! give us

uc&uc&→
U8

ei (w2u)/2uc&uc&,

uc&uc'&2uc'&uc&→
U8

ei (u2w)/2~ uc&uc'&2uc'&uc&).

Comparing these equations to Eq.~7!, we see thatU8 is just
the partial-swap operator withh5(w2u)/2. We can, there-
fore, conclude that in the case of qubits, the partial swap
the only possible operator that satisfies the conditions of
mogenization Eqs.~23! and ~24!. The partial swap uniquely
determines yet another universal quantum machine@11#: the
universal quantum homogenizer.

V. APPROXIMATE HOMOGENIZATION

In what follows we will analyze homogenization not a
the limit of the infinite number of interactions, but as a
approximate process after a finite number of steps. Let
suppose that the parameterd from Eqs.~3! and ~4! is fixed.
This parameter characterizes our approximation. We will
the partial-swap evolution for the description of the homo
enization.

In the first step we give a condition on the parameterh of
the partial swap ~7!. For our map T, we have that
D(%S

(N) ,j)<D(%S
(N21) ,j)<D(%S

(0) ,j). On the other hand
5-4
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from Eq. ~14! we know thatD(jN8 ,j)<D(jN218 ,j). As we
have discussed earlier, we can adjust the parameterh so that
the conditionD(j18 ,j)<d is fulfilled. Obviously, the dis-
tanceD(j18 ,j) depends on the initial state of the syste
%S

(0) , and onh. Therefore we have to determine the ma
mum value ofh, for which the distance is less than or equ
to d, independent~the universality condition! of the initial
states of the system and reservoir. For a qubit the maxim
value of trace distance is achieved forwW 52 tW, correspond-
ing to the situation in which the states are pure and mutu
orthogonal. The argument for this can be easily seen fro
geometric representation of a qubit. In this case

D~j18 ,j!52s2Tru tW•sW u52s2, ~28!

since for a pure stateu tWu5 1
2 . From Eq.~28! we get the simple

relation

sinh<Ad/2. ~29!

The second step is to determine the minimum number
interactions,N, that ensures for an arbitrary initial state of th
system that the final state is in a sphere of radiusd around
the reservoir statej. The worst case, i.e., when the numb
of necessary iterations is maximal, is intuitively the ca
whenD(%S

(0) ,j) is maximal. In Sec. III we proved the con
vergence of the system state toj for anyhÞ0. Therefore we
are sure that such anN exists. As was just discussed in th
previous paragraph, the distanceD(%S

(0) ,j) is maximal when
the two states are pure and mutually orthogonal. Moreo
our transformationT does not change the commutation re
tion, which is initially equal to zero, i.e.,@%S

(N) ,j#50 for all

N. IntroducingwW 52 tW for the commuting states we obtain

%S
(N)5

1

2
11~122c2N! tW•sW , ~30!

and for the distance we find

D~%S
(N) ,j!5Tru~wW 82 tW !•sW u52c2NTru tW•sW u. ~31!

This distance is maximal if we fixN and maximize over all
%S

(0) andj. Again, sinceu tWu5 1
2 for pure states, we obtain th

distanceD(%S
(N) ,j)52c2N52(cosh)2N. If the parametersh

ands in the experession~29! are such that sinh5Ad/2, then
we can find the lower boundNd on the number of reservoi
qubits that are necessary to achieve the homogenization
a required fidelity,

N>Nd5
ln d/2

ln~12d/2!
. ~32!

Both bounds on the parametersh andN are completely de-
termined by the parameterd. After performingN iterations,
N11 qubits are in states belonging to thed neighborhood of
the initial state of the reservoir, no matter what the statej
and%S

(0) were.
04210
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We see that if we fix the number of reservoir’s qubitsN,
then the other two parameters are determined by the relat
~32! and ~29!.

VI. ENTANGLEMENT VIA HOMOGENIZATION

In spite of all the progress in the understanding of t
nature of quantum entanglement, there are still open qu
tions that have to be answered. In particular, a problem
waits for a thorough illumination is the nature of multipa
ticle entanglement@13#. There are several aspects of qua
tum multiparticle correlations that have been investigated
cently. One example is the investigation of intrinsicN-party
entanglement ~i.e., generalizations of the Greenberge
Horne-Zeilinger state@14#!. Another is the realization that in
contrast to classical correlations, entanglement cannot fr
be shared among many objects.

Coffman et al. @15# have recently studied a set of thre
qubits, and have proved that the sum of the entanglem
~measured in terms of the tangle! between qubits 1 and 2 an
qubits 1 and 3 is less than or equal to the entanglem
between qubit 1 and the rest of the system, i.e., the s
system 23. Specifically, let us define the bipartite conc
rence@16# of a two-qubit system in the state% jk to be

Cjk[C~% jk!ªmax$0,l12l22l32l4%, ~33!

where thel i ’s are the square roots of the eigenvalues of
matrix R5% jk(sy^ sy)(% jk)* (sy^ sy) listed in decreasing
order. The tangle is equal to the square of the concurre
i.e., t jk5(Cjk)2. Using this definition we can express th
Coffman-Kundu-Wootters~CKW! @15# inequality as

C12
2 1C13

2 <C1,(23)
2 . ~34!

In the same paper they conjectured that a similar inequa
might hold for an arbitrary numberN of qubits prepared in a
pure state. That is, one has

(
k51;kÞ j

N

Cj ,k
2 <Cj , j̄

2 , ~35!

where the sum on the left-hand side is taken over all qu
except the qubitj, while Cj , j̄

2 denotes the concurrence b

tween the qubitj and the rest of the system~denoted asj̄ ).
Several interesting results in the investigation of the va

ous bounds on entanglement in multipartite systems h
been reported recently. In particular, Wootters@17# has con-
sidered aninfinite collection of qubits arranged in an ope
line, such that every pair of nearest neighbors is entang
In this translationally invariantentangled chainthe maxi-
mum closest-neighbor~bipartite! entanglement~measured in
the concurrence! is bounded by the value 1/A2 ~it is not
known whether this bound is achievable! @17#. Later Koashi
et al. @18# considered afinite system ofN qubits in which
each pair out ofN(N21)/2 possible pairs is entangled~the
so-called web of entanglement!. It has been proved that th
maximum possible bipartite concurrence in this case is eq
5-5
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to 2/N. Dür @19# considered other possible inequalities as
ciated with variously entangled qubits in multipartite sy
tems.

Within the context of our investigation it is very natural
ask, what is the nature of the entanglement created during
process of homogenization. In this section we will addr
several questions related to this issue. First, we will study
bipartite entanglement between the system qubit and the
ervoir qubits, and then we will analyze entanglement
tween reservoir qubits, which is induced by the interact
with the system qubit. We will show that the CKW boun
are saturated, that is, theN11 qubit state created by a se
quence of partial-swap operations in the homogeniza
process satisfies the inequality in Eq.~35! as an equality.

A. Bipartite concurrence

Let us consider the concurrenceCjk
(n) between thej 2th

andkth qubits~irrespective of whether these are reservoir
system qubits! after thenth interaction, assuming that ini
tially the system was in the state% and the reservoir qubits
were in the statej. Without loss of generality we shall al
ways assume thatj ,k. The valuej 50 denotes the system
qubit andj 51,2, . . . ,N denote the qubits of the reservoir.

The reduced density operator% jk
(n) describing the two qu-

bits under consideration is given by the expression

% jk
(n)5Trj k̄~Un•••U1@% ^ j ^ N# !, ~36!

with Ul@s#5PlsPl
† , wherePl is the partial-swap operatio

acting between the system qubit and thel th qubit of the
reservoir@see Eq.~7!#. The line over the indices in the trac
formula denotes the partial trace over all subsystems ex
those with the line over them.

Using the definition~33! of the concurrence, it is trivial to
see thatCjk

(n)50 for j ,k.n, that is, the qubits that have no
interacted yet are not entangled. On the other hand, a ge
expression for the concurrence is difficult to derive, so
concentrate our attention on a special case, when the r
voir is initially in a purestateuj& while the system qubit is in
an arbitrary state%.

Following the homogenization scenario the system qu
after (k21) interactions is in the state%0

(k21) , which can be
expressed in terms of the basis$uj&,uj'&% as

%0
(k21)5ak21uj&^ju1~12ak21!uj'&^j'u1bk21uj&^j'

u1bk21* uj'&^ju. ~37!

After we apply thekth partial-swap operation between th
system and thekth reservoir qubit we find the bipartite den
sity operator in the matrix form~in the given basis!

%0k
(k)5S ak21 cbk21 isbk21 0

bk21* c ~12ak21!c2 isc~12ak21! 0

2 isbk21* 2 isc~12ak21! s2~12ak21! 0

0 0 0 0

D ,

~38!
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wherec5cosh, s5sinh.
The matrixR constructed from%0k

(k) has only one nonzero
eigenvalue 4c2s2(12ak21)2. This implies for the concur-
rence,

C0k
(k)52cs~12ak21!. ~39!

From Eq.~10! we find the recurrence formula for the param
etersak ,

ak5ak21c21s2512c2k~12a0!, ~40!

from which we obtain

C0k
(k)52csc2(k21)~12a0!, ~41!

wherea0ª^ju%uj& and C0k
(k) is the concurrence measurin

the entanglement between the system qubit andkth reservoir
qubit just after their joint interaction~i.e., it is supposed tha
the system qubit has interacted all together justk times!. We
can conclude that the system qubit is entangled with thekth
reservoir qubit. On the other hand we can ask whether
entanglement will persist after the system interacts later w
other reservoir qubits. In order to make the discussion s
pler we will study a particular case when initially the syste
is in the stateu1& while the reservoir qubits are in the sta
u0&. Nevertheless, prior to this task we study another asp
of multipartite entanglement within the context of homoge
zation. Specifically, we will study how a given qubit is e
tangled with the rest of the system.

B. One qubit vs rest of the system

In the case of pure multiqubit states one can defin
measure of the entanglement between a single qubit and
rest of the system@15# with the help of the determinant of th
density operator of the specific qubit under consideration
particular, let us begin the homogenization process with
system and the reservoir qubits initially in pure states. Af
n partial swaps the j th qubit is in the state% j

(n)

5Tr j̄ (Un•••U1@ uc&uj& ( ^ N)]). The degree of entanglemen
between thej th qubit and the rest of the system is given
the expression@15#

t j
(n)[@Cj , j̄ #

2
ª4 det% j

(n) , ~42!

wheret j
(n) is the tangle, which is equal to the square of t

corresponding concurrence.
Obviously, for thej th qubit of the reservoir, the tangle i

zero until it interacts with the system qubit. After the inte
action its value remains constant, irrespective of the furt
evolution of the system qubit during the homogenizati
process. This means that

t j
(n)5H 0 if n, j <N

4 detj j8 if j <n<N.
~43!

In order to justify the last equation we note that all measu
of entanglement remain unchanged under local unitary tra
5-6
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formations, and that all transformationsUk ~except thej th
one! are local with respect to the partitionj % j̄ ~where j̄
denotes all qubits exceptj th!.

The tangle between the system qubit and the reservo
given by the expression

t0
(n)54 det%0

(n) , ~44!

from which it follows that the shared entanglement betwe
the system qubit and the whole reservoir depends on the
number of interactionsn, unlike in the case~43! of the res-
ervoir qubits.

C. The casezc‹0Äz1‹ and zj‹ jÄz0‹

In order to have a deeper insight into the problem of
tanglement induced by the homogenization process, le
consider a specific initial state of the system and the re
voir: uc&05u0& and uj& j5u1&. In this case we find for the
tangle between the system and the rest of the reservoir q
after thenth interaction, the expression

t0
(n)54 det%0

n54c2n~12c2n!, ~45!

since %0
(n)5(12c2n)u0&^0u1c2nu1&^1u @cf. Eq. ~12!#. It is

clear from this expression that asn→` the degree of en-
tanglement between the system and the reservoir is m
tonically decreasing. On the other hand, the state
the j th qubit after the interaction with the syste
qubit is j j85s2%0

( j 21)1c2u0&^0u5(12s2c2( j 21))u0&^0u
1s2c2( j 21)u1&^1u @cf. Eq. ~13!# from which it follows that

t j
( j )54s2c2( j 21)~12s2c2( j 21)!. ~46!

In other words, after its interaction with the system qubit,
j th qubit is constantly entangled with the rest of the syste
These simple examples illustrate the more general con
sions presented in the previous paragraph.

Let us turn our attention to the bipartite concurrenc
Cjk

(n) . With the given initial conditions, we easily find th
state vector describing the whole system aftern interactions,

uC&5cnu1&0^ u0& ^ N1(
l 51

n

u1& l ^ u0& ^ Nl̄ @ iscl 21~c1 is!N2 l #.

~47!

We recall thatN is the total number of reservoir qubits, an
that we have assumed thatj ,k. The stateu0& ^ Nl̄ denotes all
qubits except the qubitl in the stateu0&. Tracing over the
appropriate subsystems we find the density matrices foj
,n,k,

% jk
(n)5j j8^ u0&^0u,

%0k
(n)5%0

( j )
^ u0&^0u. ~48!

For k<n we find
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% jk
(n)5Fc2n1 (

l 51,lÞk, j

n

s2c2(k21)G u00&^00u

1s2c2(k21)u01&^01u1s2c2( j 21)u10&^10u

1s2cj 1k22~c1 is!k2 j u01&^10u

1s2cj 1k22~c2 is!k2 j u10&^01u ~49!

and

%0k
(n)5 (

l 51,lÞk

n

s2c2(l 21)u00&^00u1c2nu10&^10u

1s2c2(k21)u01&^01u1 iscn1k21~c1 is!n2ku01&^10u

2 iscn1k21~c2 is!n2ku10&^01u, ~50!

which determines the values of the concurrences. The co
sponding eigenvaluesE of the matricesRjk

(n) , constructed
from the density matrices% jk

(n) ~in the casen.k), are

E~Rjk
(n)!5$4s4c2( j 1k22),0,0,0%,

E~R0k
(n)!5$4s2c2(n1k21),0,0,0%. ~51!

The square roots of these eigenvalues are thel i ’s in Eq. ~33!.
For the concurrences we find

Cjk
(n)5H 0 for n,k<N

2s2cj 1k22 for k<n<N,
~52!

C0k
(n)5H 0 for n,k<N

2scn1k21 for k<n<N.
~53!

We see that the concurrence between any two qubits of
reservoir is zero until both of them have interacted with t
system qubit. Then the concurrence rises during the inte
tion to a new value and remains constant in the subseq
evolution. On the other hand, the value of the entanglem
between the system qubit and any qubit from the reser
becomes nonzero after their joint interaction, but then
tends back to zero.

This means that the system qubit acts as a ‘‘mediator’
entanglement between the reservoir qubits, which have n
interacted directly. It is obvious that later the two reserv
qubits interact with the system qubit, smaller is the degree
their mutual entanglement. Nevertheless, this value is c
stant and does not depend on the subsequent evolution o
system qubit~i.e., it does not depend on the number of i
teractionsn).

Once we have derived expressions for the bipartite c
currences, we can verify the CKW inequality~35!, which in
our notation takes the form

Sj~n!ª(
k51

N

@Cjk
(n)#2<t j

(n)[@Cj , j̄
(n)

#2. ~54!

First, let us consider the entanglement of the system q
with the reservoir. Using Eq.~53! we can explicitly evaluate
5-7
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the expression for the left-hand side of the inequality~54!
and we can compare it with expression~45! representing the
right-hand side of this inequality. We find that

S0~n!5 (
k51

n

@C0k
(n)#254c2n~12c2n!5t0

(n) , ~55!

which means that the bound on the bipartite entanglem
between the system and the reservoir qubits is saturated
the two sides are equal.

In fact, this property is also valid for the reservoir qubi
So, let us consider a qubitj of the reservoir. In the casen
, j all the Cjk

(n) vanish. That meansSj (n)505t j
(n) . If n

> j then

Sj~n!5@C0 j
(n)#21 (

k51

j 21

@Ck j
(n)#21 (

k5 j 11

n

@Cjk
(n)#2

54s2c2(n1 j 21)14s4c2( j 22)S (
k51

j 21

c2k1 (
k5 j 11

n

c2kD
54s2c2(n1 j 21)14s4c2( j 22)~c22s2c2 j2c2(n11)!

54s2c2( j 21)~12s2c2( j 21)!. ~56!

In the calculation we used the equality

(
k51

j 21

c2k1 (
k5 j 11

n

c2k5 (
k50

n

c2k212c2 j . ~57!

Comparing this result with Eq.~46! we obtain again the
equality in Eq.~54!,

Sj~n!5t j
(n)5H 0 for n<N

4s2c2( j 21)@12s2c2( j 21)# for j <n<N.
~58!

To understand in greater detail the meaning of the ab
expressions, let us consider the entanglement in the limN
→` of a very large number of qubits in the reservoir. W
have to be careful with the definition of this limit. Let us fir
recall the definition of homogenization. We want to obta
homogenized qubits in states within somed neighborhood of
the reservoir’s state (u0&^0u in our case!. In Sec. V we
showed that if we have a large number of qubitsN, we can
achieve an arbitrarily good homogenization, since in
bound~32! we can letd→0. In turn, the bound~29! means
that d→0 is obtained fors→0. The behavior of the expres
sion c2N in this limit is as follows: Sinces→0, thenc→1,
but still c,1, therefore limN→`c2N50, too. Now, looking at
Eqs. ~52!, ~53!, ~55!, and ~58!, we see that in the limitN
→` all the concurrencies vanish. Therefore, the shared
tanglement between any pair of qubits is zero in this ca
i.e., limN→`Cjk

(N)50. Also the entanglement shared betwe
a given qubit and the rest of the homogenized system,
pressed in terms of the functionSk(N), is zero,

lim
N→`

Sk~N!50, k50,1, . . .N. ~59!
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So, that is how we define the limitN→`: first, we assume
that the system qubit has interacted with all theN qubits in
the reservoir forN finite, then, we letN go to infinity, always
assuming that we make the best possible homogeniza
according to the bounds of Sec. V.

As a first result, it is instructive to realize that in the lim
N→` ~whend→0) the functionsS0(N) andSj (N) are such
that

lim
N→`

S0~N!

Sk~N!
51, j 51, . . . ,N, ~60!

which means that the entanglement of the system qubit w
the reservoir is the same as the entanglement of an arbi
reservoir qubit to the rest of the homogenized system. T
reflects the fact that not only states of individual qubits a
the same but also the amount of entanglement between
of the qubits and the rest of the system are equal~see Fig. 3!.

In spite of the fact that the pairwise entanglement betw
qubits in the limitN→` tends to zero, the information abou
the initial state of the system qubit is distributed among
homogenized qubits. Thus we have infinitely many infinite
small correlations between qubits and it seems that the
quired information is lost. However, asN goes to infinity we
have infinitely many qubits and the information redistribut
among them has to be vanishingly small. If we sum up all
mutual concurrences between all qubits we obtain a fin
value,

lim
N→`

(
j ,k

N

@Cjk
(N)#25 lim

N→`

1

2 (
j 50

N

Sj~N!52. ~61!

FIG. 3. In this figure we schematically describe the process
entanglement between the system qubit and the reservoir qubit
homogenization. The initial state of the whole system is shown
the left part of the figure: We have the system qubit denoted by
black circle, while the reservoir qubits are denoted as white circ
After the interactionU01 between the system and the first reserv
qubits a corresponding change of states~represented in differen
degrees of gray color! and establishment of the entanglement~rep-
resented by the thick black line! is exhibited. After the interaction
U02 with the second reservoir qubit, a three-particle entangled s
is created, with various degrees of bipartite entanglement~repre-
sented by black and gray lines, where the gray line correspond
the entanglement between reservoir qubits that have not intera
directly!. In the right section of the figure we see the situation af
the interactionU03 of the system qubit with the third reservoir qu
bit. All qubits are now entangled, black lines describe the entan
ment between the system and the reservoir qubits, which is es
lished due to the direct interaction, while gray lines correspond
the entanglement between reservoir qubits induced by the inte
tion with the system qubit.
5-8
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This supports our argument that the information about
initial state of the system is ‘‘hidden’’ in mutual correlation
between qubits of the homogenized system. In the conc
ing section of the paper we will study how this informatio
can be recovered.

To clarify the meaning of Eq.~61!, we recall the recen
results of Koashiet al. @18#. These authors have considered
system ofN qubits composing theweb of entanglement. That
is, each of theN(N21)/2 possible pairs of qubits is en
tangled, while the degree of entanglement is equal for
pairs. It has been shown that the maximal degree of pairw
entanglement in the web of entanglement is given byCjk

(N)

52/N, that is, the maximum tangle ist54/N2. Given that
there areN(N21)/2 possible pairs we find that the tot
value of the pairwise tangle is

lim
N→`

N~N21!

2

4

N2
52, ~62!

which is the same value as found in the homogenized sys
under consideration.

VII. CONCLUSIONS AND DISCUSSION: APPLICATIONS
OF HOMOGENIZATION

In this paper we have shown that one can choose a un
transformation that exchanges information between a sys
qubit and a qubit from a reservoir, which, when applied
quentially to the system and each qubit in the reservoir, w
generate an evolution that has the resevoir state as a
point. In fact, the state of the system qubit and those of
reservoir qubits become the same. Moreover, this uni
transformation, which we call thepartial-swapoperation, is
the only transformation, which is independent of the initi
states of the system and the reservoir qubits, which will
complish this.

This result is interestingper sesince it allows us to un-
derstand in greater detail the dynamics of open systems@2#.
It is also a nontrivial fact that the partial-swap operati
applied to the system qubit and a set of reservoir qubits
lows us to realize an arbitrary contractive map of the sys
qubit @12#.

On the other hand, the results presented in the paper
be used in the context of quantum-information process
Specifically, quantum homogenization can be utilized
quantum cloning and in a protocol realizing aquantum safe
with a classical combination.

A. Quantum cloning

It is well known that unknown quantum states cannot
copied perfectly. Specifically, Wootters and Zurek@20# have
presented a very simple proof that a perfect cloning trans
mation for unknown quantum states is impossible. The id
quantum-cloning scenario would look as follows: The qua
tum cloner is initially prepared in a stateuS& that does not
depend on theunknownstateuc& of the input qubit that is
going to be cloned. In addition, a qubit onto which the info
mation is going to be copied is available. This particle
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prepared in aknownstate denoted asu0&. The perfect copy-
ing transformationC should be of the form

uc&u0&uS&→
C

uc&uc&uS8&. ~63!

From the linearity of quantum mechanics it follows that t
cloning transformation~63! is not possible.

Even though ideal cloning, i.e., the transformation~63!, is
prohibited by the laws of quantum mechanics for anarbi-
trary ~unknown! stateuc&, it has been shown that it is stil
possible to design quantum cloners that operate reason
well @21#. These quantum cloners have been specified by
following conditions.

~i! The state of the original system and its quantum co
at the output of the quantum cloner, described by den
operatorsr̂1

(out) and r̂2
(out) , respectively, are identical, i.e.,

r̂1
(out)5 r̂2

(out) . ~64!

~ii ! If no a priori information about thein state of the
original system is available, then it is reasonable to requ
that all pure states should be copied equally well. One w
to implement this assumption is to design a quantum co
such that the distances between density operators of
system at the outputr̂ j

(out) ~where j 51,2) and the ideal den

sity operatorr̂ j
( id) , which describes thein state of the origi-

nal mode, are input-state independent.
~iii ! Finally, it is also required that the copies are as clo

as possible to the ideal output state, which is, of course,
the input state. This means that the quantum-copying tra
formation has to minimize the distance between the out
stater̂ j

(out) of the copied qubit and the ideal stater̂ j
( id) .

It has been shown by various authors that quantum c
ers satisfying the above conditions do exist@21,22#. Re-
cently, experimental realizations of these quantum mach
have been reported as well@23,24#.

However, this is not the only approach to quantum clo
ing; one can formulate the problem from a slightly differe
perspective using the ideas of quantum homogenizat
First, one can lift the condition~64! that the qubits at the
output are in the same state, that is, it can be assumed
the qubits at the output are in the states that aresimilar, but
not identical. The second condition, which might be lifted
that the ‘‘blank’’ qubit is initially in theknownstateu0&. We
can instead assume that both the input state of the orig
and that of the ‘‘blank’’ are unknown. If this point of view is
adopted, then the quantum homogenization as characte
by the conditions~3! and ~4! can be successfully used fo
approximate cloning. Specifically, in this scenario the res
voir qubits play the role of originals, that is, it is the statej
we want to copy, while the system, which is supposed to
homogenized~this system is initially in an unknown stat
%S

(0)), plays the role of the ‘‘blank’’ system onto which th
information is going to be copied. From the description
quantum homogenization we see that quantum cloning
this context is a process in which we start withN reservoir
qubits, all in the same statej, and end up withN11 qubits
5-9
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in states that are very close~how close depends on the valu
of N) to the statej, so we have performed a version ofN
→N11 cloning on the reservoir state.

B. Quantum safe with a classical combination

After the system qubit is homogenized it is in the sa
state as the reservoir qubits, so we can ask: What happ
to the information encoded in the initial state of the syst
qubit? Is it irreversibly lost? Certainly not, because we co
sidered only unitary transformations, and that means that
information encoded in the initial state of the system qubi
not lost but is transferred into quantum correlations betw
all of the qubits. The parameters characterizing the stat
the system are transformed into parameters determining
entanglement shared among the system and reservoir qu
One question is whether the initial state of the system q
can be recovered.

The process of homogenization is described by a
quence of unitary operations. Consequently, it can be
versed: That is, the homogenized system can be ‘‘unwou
and the original state of the system%S

(0) and the reservoirj
can be recovered. Perfect unwinding can be performed o
when theN11 qubits of the output state interact, via th
inverse of the original partial-swap operation, in the ‘‘co
rect’’ order. The system particle must be identified fro
among theN11 output qubits, and this and the reservo
particles must interact in the reverse of the order in wh
they originally interacted. Therefore, in order to unwind t
homogenized system, the classical information about the
dering of the particles is vital. Obviously, if there are at t
outputN11 particles, then there exist (N11)! permutations
of possible orderings, only one of which will reverse t
original process. The probability to choose the system p
ticle, which is in the state%S

(N) , correctly is 1/(N11). Even
when this particle is chosen successfully, then there are
N! different possibilities of choosing the sequence of int
actions with the reservoir qubits. If one has no knowled
about the output particles, the probability of successfully
winding the homogenization transformation is 1/(N11)!. As
we shall see, if at the beginning of the unwinding process
reservoir particle is chosen incorrectly then the whole p

FIG. 4. The result of the unwinding process with a trial-an
error strategy when the system qubit is correctly chosen from a
of ten homogenized particles. We plot a histogram representing
number of reconstructed states of the system qubit withs falling
into the bin withz5zn60.05. There are altogether 9! sequenc
that we have checked and just one results in a correct reversal o
homogenization process.
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cess leads to a completely wrong result.
Therefore we can consider the quantum homogeniza

as a process that generates a combination to a quantum
The combination is the sequence in which the reservoir p
ticles interact with the system particles, and the object in
safe is the initial state of the system particle. The combi
tion consists of classical information, and the object in t
safe consists of quantum information. The security here
given by the homogeneity of the final ensemble; it is diffic
to distinguish among the particles by measuring them. T
unwinding process can be performed reliably only when
combination is available. An important aspect of this sche
is that if one has tried one possible unwinding of the sta
and measured the result to gain some information about
is not possible at that point to try to unwind it in a differe
way. That is, the nature of quantum-mechanical meas
ment prevents repeated unwinding procedures on the s
homogenized set of particles.

To illustrate the above protocol let us assume that
begin with the system qubit in the stateu1& and nine reser-
voir qubits in theu0&. After quantum homogenization we try
randomly, to unwind the process. Let us assume that we
lucky and we have chosen the first qubit in the unwindi
process correctly, that is, it is the original system qubit. Ev
with this good start, we have to find the rest of the com
nation, the proper sequence of the reservoir qubits, in o
to completely ‘‘open’’ the quantum safe. Here we adopt
trial-and-error strategy, and we test all possible permutati
of the reservoir qubits. Obviously, in this case justone se-
quence is correct, i.e., justonesequence will result in open
ing the quantum safe and recovering the system state.
9!5362 880 possible permutations of the reservoir qub
were tested. Since we have chosen the states of the sy
and the reservoir qubits to be two orthogonal basis state
a single qubit, we can parametrize the reconstructed sys
state with just a single parameters, i.e., runwound5

1
2 (1

1zsz)5@(11z)/2#u0&^0u1@(12z)/2#u1&^1u, such that
21<z<1. In Fig. 4 we plot the histogram representing t
numberNs of reconstructed states of the system qubit withs
falling into the bin withz5zn60.05. We see that a randoml
chosen combination will not open the quantum safe. In fa
most of the reconstructed states are within the interval21

-
et
he

s
the

FIG. 5. The result of the unwinding process with a trial-an
error strategy when the system qubit is chosen incorrectly from
set of ten homogenized particles. In the figure we represent re
of 939! random unwindings. None of these sequences lead to
correct reversal of the original homogenization. We plot the his
gram representing the number of reconstructed states of the sy
qubit with s falling into the bin withz5zn60.05.
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<z<0, i.e., between the reservoir state and the comple
random state.

Let us now consider what happens when we choose
wrong qubit as the system qubit, i.e., what we have chose
the system qubit was, in fact, one of the original reserv
qubits. As can be checked explicitly, in this case there is
way to correctly unwind the homogenization process. Ob
ously, with no prior knowledge, the probability to choose
incorrect system qubit from a set ofN11 homogenized qu-
bits is N times larger than the probability to choose the s
tem qubit correctly. In addition, there areN3N! different
sequences for the unwinding procedure in this case and n
of them result in the initial state. In Fig. 5 we plot the resu
of these unwinding procedures for the same choice of
initial states as in the previous case.

We can conclude that the process of quantum homog
zation can be unwound~i.e., reversed! if and only if classical
information about the order of reservoir qubits is available
sh
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this information is discarded, the process becomes irrev
ible even though the overall dynamics is unitary. This irr
versibility can be used to protect quantum information.
detailed analysis of the security of the protocol that we ha
proposed for this remains to be done, but the example
have treated numerically strongly suggests that quantum
formation protected in this way is very secure.

ACKNOWLEDGMENTS

This was work supported in part by the European Un
projects EQUIP ~IST-1999-11053!, QUBITS ~IST-1999-
13021!, by the National Science Foundation under Grant N
PHY-9970507, and by the Slovak Academy of Scienc
N.G. and V.S. acknowledge partial financial support from
Swiss FNRS and the Swiss OFES within the Europe
project EQUIP~IST-1999-11053!.
-
l.

r,

nd

d

@1# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,
Dordrecht, 1993!.

@2# E. B. Davies,Quantum Theory of Open Systems~Academic,
London, 1976!.

@3# We implicitly assume that the reservoir qubits are distingui
able. The validity of this assumption depends on the phys
realization of the qubit. For instance, if the qubits are nucl
spins—or more generally, if each qubit is a degree of freed
of a given atom—the assumption is valid, since atoms
distinguishable from one another under normal conditions.

@4# R. Alicki and K. Lendi,Quantum Dynamical Semigroups an
Applications, Lecture Notes in Physics Vol. 286~Springer-
Verlag, Berlin, 1987!.

@5# V. Scarani, M. Ziman, P. Sˇ telmachovicˇ, N. Gisin, and V.
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