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Reconstruction of motional states of neutral atoms via maximum entropy principle
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We present a scheme for a reconstruction of states of quantum systems from incomplete tomographiclike
data. The proposed scheme is based on the Jaynes principlaxahum entropyWe apply our algorithm for
a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data
obtained by Salomon and co-workers and we reconstruct Wigner functions of motional quantum states of Cs
atoms trapped in an optical lattice.
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I. INTRODUCTION IIl. MAXENT PRINCIPLE AND RECONSTRUCTION
OF DENSITY OPERATORS

A reconstruction of states of quantum systems from ex- Let us assume a set of observabfs (v=1, ... n) as-
perimental data represents an important tool for a verificatiosociated with the quantum system under consideration. This

of predictions of quantum theory. It also allows us to checksystem is prepared in an unknown stateé et us assume that
the fidelity of quantum state preparation as well to study therom a measurement performed over the system mean values

fidelity of processing of information. encoded. in states ofgv of the observable§, are found. The task is to determine
quantum systems. Complementary discrepancies between §gstimate the unknown state of the quantum system based
timated (reconstructed states based on the measured datg, the results of the measurement. Providing the set of the

and thgoretlcal predictions can SEIVE as an '”d'C?tor of V"’_‘”c')bservableév is not equal to thguorum(i.e., the complete
ous noise sources that occur during the quantum informatio

! . alloBet of system observabl§g)), then the measured mean val-
processing or in the measurement of quantum states. Withoykg 4o not determine the state uniquely. Specifically, there is

a priori assumptions about the character of physical proy jarge number of density operators that fulfill the conditions
cesses and properties of reconstruction schemes the recon-

struction cannot distinguish between imperfections related to

an incoherent quantum state processing and nonideal mea- Trpg=1,
surementg 1]. Determination of limits for coherent control
of quantum degrees of freedom or identification of sources of Tr(ﬁ{é}év)=§,,, v=12,...n, (2.1)

decoherence are essential for systems that are considered for
quantum computing and information processj2g

In atomic optics a highly coherent control of motional
degrees of freedom has been achieved for trapped[®hs
and regently a'59 _for neutral atorf,5]. qud aFoms can be the Jaynes principle of maximum entroffmaxentprinciple)
cooled into specific quantum states within microwells of anrg_g 10 according to which among those operators that ful-
optical lattice that is induced by laser beams. Cold neutrafj the constraints2.1) the most reliable reconstructides-
atoms in optical lattices represent a promising system fo{imation) 5. is the one with the maximal value of the von

guantum information processing. To verify a deg(gelity) A A Al
of coherent control over motional degrees of freedom of neuNeumann entrop(p) = —Tr(p In p):

tral atoms a reconstruction of their motional quantum states

from measured data has to be considered. We develop a re- S(pr)=max{ S(p;&y;V piéy - 2.2
construction procedure based on the Jaynes principle of

maximum entropy(maxent [6—8] to achieve this goal. This As shown by Jaynek6] the operator that fulfills the con-
scheme allows us to perform a state reconstruction from thgtraints (2.1) and simultaneously maximizes the von Neu-

experimental data obtained by Salomon and co-workers. mann entropy can be expressed in the generalized canonical
In Sec. Il we present a brief description of the reconstrucform

tion procedure of a density operator of a quantum system

that is, the normalization condition and the constraints im-
posed by the results of the measurement. To estimate the
unknown density operator in the most reliable way we utilize

based on the Jaynes principle of maximum entropy. In Sec. A 1 A

[l we utilize the maxent principle for development of the pr:Z—Aexp< -> )\VG,,), 2.3
reconstruction scheme of motional states of atoms and we {G} v

perform numerical tests of our approach. Our reconstruction

scheme is applied to the experimental data in Sec. IV. where
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tions (e.g., density operators that are not properly normal-
(2.9 ized, etc). In general, a consistent reconstruction scheme has
to avoid nonphysical resultée.g., occurrence of negative
probabilitieg. In the maxent reconstruction a physical esti-
mate is guaranteed by the canonical form of the density op-
erator (2.3). The maxent principle ishe most conservative
posed by the results of the measurement. It is then obviou%ss'gmnent n the sense ihat It does not permit one to gra

— ) , any conclusions not warranted by the dafrom this point

that the mean valueS, that determine the density operator ot yiew the maxent principle has a very close relationcan
are related to the Lagrange multipliers via the derivatives of)q \nderstood as the generalizajiohLaplace’s principle of

the partition function indifference which states that where nothing is known one
should choose a constant valued function to reflect this igno-
G,=Tr(p,G,)=— im Zigy(\y, . \p). (2.5 rance. Then it is just a question how to quantify a degree of
I\, this ignorance. If we choose an entropy to quantify the igno-
rance, then the relation between the Laplace’s indifference
If we solve the last equation with respect to the Lagranggyrinciple and the Jaynes principle of the maximum entropy is
multipliers we can express them in terms of the measuregtansparent, i.e., for a constant-valued probability distribu-
mean values tion the entropy takes its maximum value.
_ _ The maxent reconstruction has been applied for various
N=N(Gy, . Gy). (2.6)  quantum systems, such as light field mode, spin systems
[11]. In what follows we adopt it for the reconstruction of
When we substitute the Lagrange multipli€gs6) into the  vibrational states of neutral atoms. We assume the experi-
expression for the generalized canonical density operatanental setup realized Salomon and co-worKé:§].
(2.3 we obtain the explicit expression for the reconstructed
(estimatedl density operator. o IIl. RECONSTRUCTION OF MOTIONAL STATES
As a typical example of the application of the maxent OF NEUTRAL ATOMS
principle we can consider a measurement of a single-mode
electromagnetic field, modeled as a harmonic oscillator. Recently, experimental manipulations of motional quan-
Imagine, that as a result of the measurement we know thtim states of neutral atoms have been reported by Salomon
mean photon number in the given field mode. Certainly, @nd co-worker$4,5]. Cold Cs atoms can be cooled into spe-
there are(infinitely) many quantum states of a single-mode Cific quantum states of a far detuned one-dimensi¢ba)
electromagnetic fielde.g., a Fock state, a coherent state, goPtical lattice. The optical lattice is induced by the interfer-
squeezed state, etvith the given mean photon number. So €nce of two laser beams. Along the vertieaixis a periodic
the question is: Which is the beghost reliablg estimation ~ Potential of “harmonic” microwells is produced with a pe-
of the measured state given the mean photon number #0d of 665 nm and with an amplitude of about 0K [5].
known? The mean photon number is in some sense the leakfie Vertical oscillation frequency in a microwell at the cen-
available information about the measured state. Consder of the trap isw,/2m=85 kHz. The corresponding ground
quently, the state is least determined. On the other hand, puféate has the rms sizkz,= #i/2mw,~21 nm andAp,/m
states are completely determined, which is reflected by the Viw,/2m~11 mm/s is its rms velocity width. The
fact that they have a zero von Neumann entropy. Therefordrapped cloud of neutral Cs atoms has a nearly Gaussian
we expect that the most reliable reconstruction in the givershape with a vertical rms siz&&,=53 um. With the help
case is a statistical mixture that is determined just by a singlef deterministic manipulations the neutral atoms can be pre-
parameter—the mean photon number. It is well known that @ared in nonclassical 1D motional states along the vertical
statistical mixture, which is parametrized just by a singleaxis such as squeezed states, number states, or specific su-
parameter, is a thermal state. This statistical mixture of Foclperpositions of number stat¢S]. The measurement of the
states is characterized by a temperature, or the correspondipgepared quantum stafeis performed as follows: The sys-
mean photon number. In addition, for a given temperaturg@em is evolved within the harmonic potential during the time
(mean photon numbgthe thermal state exhibits the largest 7. Then the lasers are turned off and the system undergoes
von Neumann entropy. Consequently, from the Jaynes printhe ballistic expansionBE). After the time of flight T
ciple of the maximum entropy it follows that if from a mea- =8.7 ms a 2D absorption image of the cloud is taken in
surement only a mean photon number is known that the mos§o s with a horizontal bearf]. Integration of 2D absorp-
reliable estimation of the measured state is the thermal stat@on images in the horizontal direction gives us the spatial
The maxent principle is not the only criterion how to distribution along the vertica axis. Therefore, we will con-
choose an appropriate density operator among thggehat  sider only 1D quantum-mechanical system along the vertical
fulfill the constraints(2.1). Based on an intuition or some axis.
additiona priori knowledge one can apply other criteria. For ~ To confirm that a desired quantum state has been obtained
example, thanaximum likelihoogbrinciple has been adopted (engineereflone can compare the spatial distributions along
successfully for estimation of quantum staf#g]. Although  the vertical axis with the predicted ones. The coincidence of
this reconstruction scheme can result in nonphysical estimahese spatial distributions is a necessary but not the sufficient

Z{é}()\l, e ,)\n):Tr

eXp< _E,, )\VGV)

is the generalized partition function aind are the Lagrange
multipliers. The Lagrange multipliens, are chosen so that
the density operato(2.3) fulfills the constraints(2.1) im-
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requirement. A complete verification of the fidelity of the The knowledge of the mean photon number is essential for
preparation of desired quantum states requires a quantuthe maxentreconstruction because it formally regularizes the
state reconstruction procedure. In order to perform this tasknaxent reconstruction scheméthe generalized partition
we adopt the maxent principlell]. To do so we utilize a function is finite in this cage

close analogy between quantum homodyne tomograp#ly

and the BE absorption imaging for the case of the pointlike  B. Motional states of atoms via the maxent principle:

cloud (with the rms size equal to zexo Formalism

_ o In the quantum homodyne tomography the probability
A. Quantum tomography via the maxent principle distributions are measured for the rotated quadrature opera-
Quantum tomography is based on the inverse Radotors X,. The annihilation and creation operators of motional
transformation of the measured probability density distribuquanta,a anda’, are related to the position and momentum
tions wi(x) for rotated quadraturesc,= (1/y/2)(ae"'?  operatorsZz and p, via expressiongz=(1/\2)(a+a") and
+a'é? [13,14. These distributions can be represented as ®=(1/\2)i(a—a"), respectively. The anglé of the quadra-
result of the measurement of the continuous set of projectorgire operator corresponds t®,7 and vertical “cuts” of the
IXg)(xo|. Based on the measurement of the distributionsabsorption imagestaken after the BE can be associated
W;,(xp) for all values of 6[0,7] we can formally recon-  with quadrature probability distributions. However, for a real
struct the density operator according to the forn{ulal physical situation with a nonzero rms size of the cloud the
1 . vertical “cuts” of absorption images correspond to a coarse-
p=—exp — j”daj' dx,|xp) (XpIN(xp) |, (3.D) grai_ned guadrature probability distr_ibuti_ons. In part_icular, the
Zo 0 — vertical cuts of measured absorption imadgesken in 2D
give us(after integration along the horizontal directjaine
where the Lagrange multipliers(x,) are given by an infi- spatial distribution along the vertical axis. The spatial distri-

nite set of equations, bution along the verticat axis can be expressed as
W5 (Xg) =27 (Xgl prXg), VX (—20,0). (3.2 E,(z)zT*lf Fo(&)P,[(z—&)/T1dé,, (3.5

If the distributionswi(x,) are measured for all values B \hereF (&) is the initial spatial distribution of the cloud in

and all angle9 then the density operat@y, is reconstructed thezdirection(i.e., a Gaussian distribution with the rms size

precisely and is equal to density operator obtained with the\ ;). The functionP _(v) denotes the velocity probability

help of the inverse Radon transformation or with the help ofdistribution of the measured quantum state that has been

the pattern functiongfor more details segl5]). evolved for timer in the harmonic potential before the BE,
In practical experimental situatior(g.g., see the experi- j.e.,

ments by Smithet al.[16] and by Schilleret al.[17]) it is R

impossible to measure the distributions(x,) for all values P.(v)=|(v|g(1)I?, |@(7))=U(7)|4(0)). (3.6

of x, and all anglesd. What is measured are distributions . .

(histogram for finite numberN, quadrature angles and ~ Here U(7)=exp(-iH7%) represents the time-evolution op-

the finite numbeN, of “bins” for quadrature operators. This erator for the harmonic oscillator with the Hamiltoni&h

means that practical experiments are associated with an 0&—,32/2m+ mw§22/2. Now we can treat the measured “cuts”

servation level specified by finite number of observables as the mean values of specific observablds:(z)

=Tr[pF (2)]. In practice just a few discrete times (]
=1,... N, are considered and the coordinate is dis-
cretized into the bing,(k=—N,, ... ,N,) of a given reso-
with the number of quadrature angles equaNip and the  |ution Az. The set of operators that enters the Ey4) for

number of bins for each quadrature equalNg. We can, the maxent reconstruction then takes the form
therefore, assume that from the measurement of the observ-

Fie= X (xPl, 3.3

. = . . B ~ z,—&o
ablesFj, the mean vzilu_eEJk are ”determlnedthe_se_ mean Fo(z)=T 1f Fo(§o)UT(Tj)
values correspond to “discretized” quadrature distributjons ! T
In addition it is usually the case that the mean excitation -
number of the state is knowimeasureflas well. ><< K &o U(Tj)dgo
The operators jk together withn form a specific obser-
vation level corresponding to thimcomplete tomographic (j=1,...N,:k=—N,, N). (3.7
measurementln this case we can express the generalized
canonical density operator in the form We have already commented that the operator of mean pho-
. non numbem is added to the set of observabIB%Tj(zk)}.
1 . x 0 . o —. o
Przzexl{ _)\nn_z E NjaFir - (3.4) Knowledge of 'the mean excitation numhelis essential in
=1 k=1 the case of an incomplete set of observaplds$. Knowledge
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of the mean excitation number leads to a natural “truncatecent experimentg5]. We assume the following setup pa-
tion” of the Hilbert space. The inclusion of the mean phononrameters:w,/2m=80 kHz, the rms size of the ground state
number into the maxent reconstruction scheme does not reprz,=22 nm, the rms velocity width p,/m=11 mm/s and
resent its limitation as the mean energy represents one @he rms width of the cloud of the atoms about G0n. Be-
basic characteristics of any system that should be inferreghre BE (with BE time T=8.7 ms) the atoms evolve within
from the measurement. o the harmonic trapping potential far=0,1.6,3.2,4.8us. As
_The experimental “cuts” of the BE absorption images he jnput for the reconstruction via the maxent principle four
[F~(2)] can be taken at few selected times, for exampleyertical “ideal” cuts of the BE absorption images are taken
w,7;=0,7/4,7/2,37/4 (N.=4). To perform the reconstruc- as shown in Fig. (b). In addition, for the phonon number
tion we have to determine the Lagrange multipli¢ks }  operatom that is included in the set of measured observables

and\, associated witF, (z)} andn, respectively, in the (see discussion aboveve assume the mean valme=0.5.
expression for the generalized canonical density operatofhe result of the ideal reconstruction is shown in Fig. 1. The
(3.4). The Lagrange multipliers can be determined via thefidelity of the measured and the reconstructed quantum states
minimization of a deviation functiodF with respect to the is close to unity that means a perfect reconstruction with

measured data, i.e., AF=10"1 entropy S=10"', Ap=10%8 has been
achieved. HereAp=3, .|(p—p;)mn? denotes a deviation
AF = IF —Tio.E 2 of the (_)r|g|nal_ and reconstructed density operators.
% Wi id Ti(zk) Lo (201} Obviously, in a real measurement the measured values are

_ . always fluctuating around the exact ones due to an experi-
+wr{n—Tr(p,n)}2. (3.8 mental noise. Therefore, we simulate a nonideal measure-
N _ ment introducing random fluctuations to the measured values
Here{w; \} andwy represent positive weight factors for par- of observables. It means that instead of the ideal values
ticular observables. Wlthout. any prior knowled.ge about thq:T_(zk) we use for the maxent reconstruction procedure the
state we can take for simplicitw; j=1. The weight factor i .
. . ' fluctuating(“noisy” ) values
w,, associated with the mean phonon number can be chosen
according to our preference either to fit better the “cuts” of = _= = 12
. F.(z)=F,.(z,)+né& [F,(z . A
the BE images or the mean phonon number. In the case of Ti( o TJ( 0 7E Tj( ] (310
the perfect measurement and the complete reconstruction the
result has to be independent of the choice of the weight fac- . ] ]
tors (in this case we can take,=1). The weight factors Here 7 is a relative-error parameter that characterizes the
could be also associated with theor information about the ~quality of the measurement afd; } represents a Gaussian
dispersion of the measured observables. In particular, thBOise for observables. The result of the reconstruction is
weight factors can be taken as~ o, 2 to reflect the knowl- ~ Shown in Fig. 2 fory=0.1. Noisy mean values of the ob-

edge of variancesr, for the measured observablé, . servables are shown in Fig(l2. Despite a significant rela-

t'&ve error the reconstruction is almost perfect with the fidelity
When the mean values of the observables for the maxen .
of the measured and the reconstructed states still close to one

estimatep, fit within desired intervalG, + o, then contribu- (AF=0.16, entropy S=0.01, Ap=0.05). The minimum
tions of the observables to the deviation functidf are of 3146 of the deviation functio F = 0.16 can serve also as a

the same order~1). However, in our case we do not as- pmeasyre of the imperfection of the given measurentene

sume the knowledge of variances for the measured disy 3 technical noisel 20].

cretized probability distributiongtakingw,=1). _ A typical nonclassical state that we can utilize for a fur-
Once the Lagrange multlpllers are nur_nerlcally flt_ted, theiher test is the even coherent StAR(|a)+| — @)) that is a

result of theAreconstructlon—the generalized canonical dens'uperposition of two coherent states with opposite phases

sity operatorp,—can be visualized, for example, via the cor- [19]. For the amplituder= 2 we obtainedA\F=10"8, the

responding Wigner functiofi18] that can be defined as a entropyS=0.026 andAp=10"* [under assumption that the

particular Fourier transform of the density operaﬁoof a  exact mean phonon numbee 1.928 is known(Fig. 3]. In
harmonic oscillator expressed in the basis of the eigenvectokfe case of the imperfect measurement with 0.1 the re-
|q) of the position operatod, construction leads t&d F=0.14, entropyS=0.13, andAp
) =0.06 forn=2.09. The fidelity of the reconstructed and the
W-(q,p)= deta—e12l5la+ ¢12)dPe. 3.9 measured states is in this case al_so (_:Iose to(Bite 4).

p(a:P) f_w {a-&pla+ei2) @9 In order to model a technical noise in the measurement we
have been considered Gaussian fluctuations proportional to
the square root of the mean values. It means that tails of the
“cuts” of BE images do not introduce a significant error

To test our reconstruction procedure let us consider thgcompare Fig. (b) and Fig. 2Zb)]. However, in the current
reconstruction of the Wigner function of the motional quan-measurements the situation seems to be different and the
tum state /(0))=(|0)+|1))/\/2 of Cs atoms trapped in the fluctuations do not decrease with the amplitude of the ex-
optical lattice. This kind of state has been demonstrated ipected values.

C. Numerical simulation
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FIG. 1. (a) Numerical simulation of the reconstruction of the

Wigner function of the motional quantum stat@)+|1))/2 of Cs
atoms trapped in the optical lattic@ssumingw,/27=80 kHz, the

(b)

FIG. 2. (a) Numerical simulation of the reconstruction of the
Wigner function of the atomic motional quantum statf)(
+ |1>)/\/§ for the same settings as in Fig. (b) Four vertical cuts

rms size of the ground stat®z,=22 nm, and the rms velocity Of the absorption images taken for reconstruction are fluctuating
width Apy/m=11 mm/s). For the reconstruction via the maxent randomly around their ideal values shown in Figb)lwith the
principle four vertical cuts of the absorption imagesth BE time ~ relative errorp=0.1. The histograms correspond to the measured
T=8.7 ms) have been takéh). The histograms correspond to the data while the solid lines are obtained from the reconstructed
measured data while the solid lines are obtained from the reconwigner function. In addition, the mean phonon numbét0.6 has
structed Wigner function(i.e., they correspond to reconstructed been considered.

marginal distributions Before BE the atoms evolve within the trap-
ping potential for the times=0,1.6,3.2,4.8us. In addition, the
mean number of motional quante= 0.5 and the rms width of the
cloud of the atoms about 6@m have been assumed.

quadrature distribution are sufficient for a complete recon-
struction using the maxent princip(en the case of the per-
fect measuremehptThis corresponds to the ideal case with-
out the spatial dispersion of the cloud of atoms, i.e., the
The fundamental question in the context of tmaxent ~CN0IC€ Withw,7;=0,m/4,m/2 (N,=3) is sufficient ford &,

reconstruction of states from incomplete tomographic data i;;Ios.iSebz)lml‘o'[ﬁ?gt:)nm?é(E):Ieghrgeigtrfovr\:lztgrgeﬂt(;s\le?/tgrmii E[?]Z iggé
\lljvsr:ﬁthzzé?t?ogzlagZaO;rghg gigggstl:giﬁ&za;:nie?égve of the ideal measurement three BE absorption images asso-

9 . q . ciated with three “rotations’w,7; are still sufficient for a
how many such time momentsare required for the com-

) A complete reconstruction of tested examples of quantum
plete reconstruction of the unknown stateWe have shown

_ states. On the other hand, it seems that for higher mean pho-
recently [15] that for the quantum tomography jutiree  non numbers the spatial distributions along the vertical axis
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FIG. 3. Numerical simulation of the reconstruction of the  FIG. 4. Numerical simulation of the reconstruction of the
Wigner function of the motional quantum staté,(|a)+|—a)) Wigner function of the motional quantum staté,(Ja)+|— «a))
with = /2 for the case of the ideal measurement. The mean numwith = J2 for the case of noisy measurement wigh=0.1. The
ber of motional quanta= 1.928. Other settings are the same as in“measured” mean number of the motional quanta= 2.09. Other
Fig. 1. settings are the same as in Fig. 2.

that are directly determined from absorption images shouldimitations such as, for example, a feasible depth of microw-
be known with improving precisiofand on a wider interval €lls of the optical lattice and the validity of the harmonic
of values as well In the above examples we have consid-Potential approximation. For recent experimeNtsias been

ered for convenience BE images for four “rotationsi(  typically of the order of 10. This value is large enough to

=4) that results in a very good reconstruction. demonstrate the preparation of many nonclassical states but
on the other hand excludes highly squeezed states from a
IV. RECONSTRUCTION FROM EXPERIMENTAL DATA coherent processing.

Let us consider the experimental arrangement used by

In what follows we will apply the maxent reconstruction Salomon and Bouchoulg21] with the parametersw,/2m
scheme to the data obtained by Salomon and Bouchoule 80 kHz, the rms size of the ground stéte,=22 nm, the
[21]. First we note that the unknown quantum state shouldms velocity widthApy,/m=11 mm/s, the rms width of the
belong to a Hilbert subspace that can be determined easilgloud of the atoms about 6@m and BE timeT=8.7 ms.
Thus we can limit ourselves to the subspace spanned biyitially the atoms are prepared in a well-defined motional
Fock (numbey stateg0),|1), ... ,|N—1). The upper bound state|y,) (e.g., in the vacuum stat®)). Then the optical
on the accessible phonon numbeéis given by experimental lattice is switched off for the time periad during which the
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atoms evolve freely towards the statgy;)=exp 0.3

(—it1E12/2m)|z,/xo>. Next, the optical lattice is again switched
on for the timer during which the atoms evolve within the
harmonic trapping potential. The measurement is performec_ 0.2
after the BE time. The first two stages can be considered a: <,
the preparation of the staté, ). After its “rotation” by w,7 R
(within the phase space of the harmonic oscillatomd the =
subsequent BE the absorption images are taken.

The considered data are for the initial vacuum state,
which means that under ideal conditions a squeezed stat

|41)=exp(—it;p%2m)|0) should be prepared. The vertical 0
spatial distributions obtained from the measured 2D-
absorption images are discretized into pix@ms) with the <2
pixel width 5.45 um. The optical density of each pixel is

averaged in the horizontal direction in which the absorption

images are divided into 50 rows, each 3.8n wide (these

rows cover the size of the cloud in the horizontal direction (a)

For the reconstruction via the maxent principle four vertical

spatial distributions for “rotation” timeg=0, 1.6, 3.2, and =0 ps 7=1.6 ps
4.8 us are taken. The selected times roughly correspond tc 94
rotations within the phase space by,7=0,7/4,7/2 and 3 g3

3/4, respectively. Unfortunately, the mean excitation num—i

bern for measured staties,) was not measured explicitly in E 0.2
the experiment, therefore, we have to estimate it as follows:Z 0.1
During the free expansion period the rms size of the cloud™ g '
increases byAx=pgr./m. The corresponding increase of T 400 200 0 200 400
the potential energ;%mwﬁ(Ax)2 in units w, gives us the 75=3.2 s 75,=4.8 s
increase of the number of excitation quanta with respect to 04
the initial state| ). For 7,=4 u and the initial vacuum it

=
meansn~ 1. Experiments can be realized also for higher E
-
w

For example,;;=8 u leads ton~4. However, as men-
tioned above, such “squeezed” states with a significant con-2 0.1
tribution of higher phonon number states violate the under-~
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lying harmonic approximation for the potential. To keep a 400 200 0 200 400 00 400 200 0 200 400
coherent control an anharmonic part of the potential has tc z[ pm] z[pm]
be taken into account. (b)

The result of the reconstruction via the maxent principle
is shown in Fig. 5. The deviation of the fitted and measured FIG. 5. The Wigner function reconstructed from the experimen-
values isAF=0.09 and the entropy of the reconstructed statdal data obtained by Salomon and co-workers. The experimental
S=1.0. It means that the reconstructed state is a statisticgetting is the same as for Fig. 1. From the experimental data we
mixture. We see a two peak structure, which suggests thdtave inferred the mean number of motional quamal.0, while
there is a mixture of two squeezed states coherently dishe reconstructed value is ~1.1. Deviation of the measured and
placed from each other. It is caused by the fact that the verpredicted values of observables A&==0.09 and entropy of the
tical center of the cloud was not fixed in the experiment andeconstructed mixture state &=1.0. Subtraction of a background
it has to be determined by our fit for each measured BHrom the measured marginals gives almost the same Wigner func-
absorption image separately. Assumiagpriori knowledge tion and reduces significantly a difference between measured and
that the Wigner function has a symmetric shape with respedgeconstructed marginals.
to the origin of the phase spagee., there is no coherent
amplitude a Gaussian fit can be used to determine the centeng preparation or measurement. As we discussed above, it is
of the cloud for each vertical distribution. For states with aessential to include the information about the mean number
nonzero coherent amplitude the center of the cloud should bef vibrational quanta into the maxent reconstruction scheme.
fixed already in the experiment. In optical tomography the analogous information about mean

It turns out that the reconstruction results do not describghoton number can be obtained from distributions of two
the squeezed vacuum state as was originally expg@#d  “orthogonal” quadratures. In our case it could correspond to
The main reason is that the mean phonon number was néwo absorption images such thaf(r;— 7,) = m/2. However,
measured directly in the experiment. It can be inferred onlyit would require a precise timing of the evolution within the
indirectly from the ideal case without any incoherence dur-harmonic trapping potential. Therefore the mean number of
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vibrational quanta should be determined in an independeriton that can result in nonphysical estimatipn§ioreover,
measurement. the scheme is very efficient in a sense that it requires just a

Another problem arises from a slow convergence of antismall number of tomographic phase-space cuts.
squeezed spatial distributions that are derived directly from We have applied the scheme for a reconstruction of mo-
the measured absorption images. In particular, the convetional quantum states of neutral atoms. As an example we
gence of tails is too slow for those “rotations” that corre- have analyzed the experimental data obtained by Salomon
spond to antisqueezed phases, ire:,1.6, 4.8 us[see Fig. and co-workers and we reconstruct the Wigner function of
5(b)]. The slow convergence is reflected by the presence afhotional quantum states of Cs atoms trapped in the optical
non-negligible backgrounds for Gaussian fits to these spatidhttice. In our analysis we have neglected the change of the
distributions. If we eliminate(subtract these backgrounds oscillation frequency alongaxis in recent experiments. The
from the measured distributions the maxent reconstructiodispersion of the oscillation frequency is of the order of a
gives almost the same Wigner function as in Figg)3ut  few percent. This source of errors can significantly affect the
with a highly reduced deviation functiohF=0.02(compar-  quality of a quantum state preparation and its reconstruction.
ing to AF=0.09 in Fig. 5. Such background in these ab- In addition, only up to the first ten bound states of microw-
sorption images can be caused by an incoherence associatts of the optical lattice can be approximated by a harmonic
with a violation of the harmonic approximation. In fact, in potential. It implies limits on coherent manipulations of
our analysis we have neglected the change of the oscillatioquantum states. It means that states with a significant contri-
frequency along the axis. In recent experiments, the oscil- bution of higher numbefFock states cannot be prepared
lation frequency decreases 10% fram for microwells at and manipulated in a controlled way.
the edge of the initial cloud.
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