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Purification and correlated measurements of bipartite mixed states
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We prove that all purifications of a nonfactorable state~i.e., the state that cannot be expressed in a form
rAB5rA^ rB) areentangled. We also show that for any bipartite state there exists a pair of measurements that
arecorrelatedon this state if and only if the state is nonfactorable.
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I. INTRODUCTION

Quantum entanglement is one of the most important
gredients of the paradigm of the quantum theory@1,2#. It
plays the central role in quantum teleportation@3#, quantum
dense coding@4#, quantum secret sharing@5#, and other
quantum information processes@6#. Quantum entanglemen
can be manipulated using the entanglement swapping@7,8#
and it can be concentrated via quantum distillation te
niques@6#.

It is well known that pure entangled states violate t
so-called Bell inequalities@9#, which implies that these state
have nonlocal properties. This means that pure entan
states cannot be created locally. Moreover, for each bipa
pure state, there exists a pair of correlated measurement@1#
if and only if the state is entangled.

In the case of mixed states the situation is more comp
Werner @10# has introduced the following definition of en
tanglement for mixed states: the bipartite mixed state is
tangled if and only if it is inseparable. In addition Werner h
shown that any separable state can be created exclusivel
local operations and classical communication~and hence it
does not have nonlocal properties!.

In this paper we will concentrate our attention on cor
lations in measurements performed on mixed bipartite sta
The problem of correlations in measurements of two qu
has been studied by Englert and Metwally@11,12#. Specifi-
cally, we will derive the necessary and sufficient conditi
for the existence of correlated measurements on bipa
mixed states.

In what follows, we will utilize the purification ansatz a
proposed by Uhlmann@13# via which an impure state of a
given quantum system can be purified with the help of
cillas. Our main motivation to study purification of mixe
states is to determine the relation between the entanglem
present in purified states and the existence of correlation
measurements performed on original bipartite mixed sta
We will also study whether these correlations are related
nonlocality of purified states.

In Sec. II we introduce the notion of factorability and w
derive the relation between the factorability of bipartite de
sity matrix r and the entanglement of any purification ofr.
In Sec. III we prove that for any bipartite density matrixr
there exists a pair of measurements that are correlated onr if
and only if r is not factorable.

In order to unify the notation and terminology we defi
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correlations in measurements and present two examp
which clarify the problem we address.

Let rAB be a bipartite density matrix whilerA
5TrB(rAB) andrB5TrA(rAB) are reduced density matrice
of the subsystemsA and B, respectively. LetE and F be
measurements on the subsystemsA andB, respectively, and
Ê and F̂ be the corresponding observables. Then the m
surementsE andF arecorrelatedon rAB if and only if

Tr~rABÊ^ F̂ !ÞTr~rAÊ!Tr~rBF̂ !. ~1.1!

Example 1. Let us consider twocorrelatedsourcesA and
B emitting spin-12 particles~qubits! such that with the prob-
ability 1

2 both sources simultaneously produce particles in
stateu0& and with the probability1

2 both particles are simul-
taneously in the stateu1&. Hence, the sources produce sta
u00&AB or u11&AB and the density matrix describing th
source is

rAB5
1

2
~ u00&AB^00u1u11&AB^11u!. ~1.2!

If we subject such a pair of particles to orthogonal~projec-
tive! measurements in the bases$u0&A ,u1&A% and
$u0&B ,u1&B%, then the results of measurements of the state
particlesA andB are the same. This is because the pairs w
produced in such a way that they are both in the same s
In this case we can apply the formalism of a microcanoni
ensemble since we have a set of pairs~of particles! denoted
p1 ,p2 , . . . , inpure statesuf&1 ,uf&2 , . . . ,where each of the
statesuf& i is eitheru00& or u11&. Results of the measuremen
in this case are two sequences of random variab
a1 ,a2 , . . . andb1 ,b2 , . . . . Each pair of random variable
ai ,bi is not correlated. But the ensemble of the pairs~which
is described as a statistical mixture! exhibits correlations. As
pointed out by Werner@10#, these correlations have nothin
to do with quantum nonlocality and they are caused by c
sical correlations of the sources.

Example 2. Now let us consider a source that repeate
produces three spin-1

2 particlesA,B,C in the Greenberger-
Horne-Zeilinger state@6#

uf&ABC5
1

A2
~ u000&ABC1u111&ABC). ~1.3!
©2002 The American Physical Society04-1
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Obviously, the reduced density matrixrAB of particlesA and
B is the same as in the previous example described by
~1.2!. This means that measurements in the ba
$u0&A ,u1&A% and$u0&B ,u1&B% yield the same results as in th
previous example. Nevertheless, in order to describe
present situation we have to employ the macrocanonical
malism. Results of the measurements are two random v
ables, which are correlated, and this correlation is cause
a quantum nonlocality, which follows from the fact that me
surements $u0&A ,u1&A% and $u0&B ,u1&B% performed on
uf&ABC are correlated due to the present quantum entan
ment.

In order to appreciate the relevance of these two
amples, we note that in spite of the fact that the meas
ments performed on the two systems generate the same
perimental results their interpretation might be tota
different. We conclude that although the properties of se
rable states can be explained locally~i.e., without employing
entanglement!, the actual physical reason behind these ‘‘cla
sical’’ correlations can be related to the quantum nonloca
in preparation of the system.

II. PURIFICATIONS AND FACTORABILITY

We start this section with the definitions of factorabilit
separability, and purification of density matrices.

The density matrixrAB is factorable, if it can be written
in the form

rAB5rA^ rB . ~2.1!

The density matrixrAB is separable, if it can be written in
the form

rAB5(
i

pirA
( i )

^ rB
( i ) . ~2.2!

Let us consider a bipartite systemAB in the state de-
scribed by a density matrixrAB . Let AB be a subsystem o
some larger systemABC1C2, which is in a pure stateuc&.
Obviously, there is a whole class of statesuc&, which repre-
sentpurificationsof the density matrixrAB , i.e., which ful-
fill the condition

TrC1C2
~ uc&^cu!5rAB . ~2.3!

It is important to note that the purification of a given sta
rAB is not unique. First, from the Schmidt decomposition@1#
it follows that we can choose auxiliary systemsC1 andC2 of
an arbitrary dimension such that dim(C1C2)>dim(AB).
Second, the purification is not unique even when we fix
mensions of Hilbert spacesC1 andC2 because ifuc&ABC1C2

is a purification of rAB , thenUC1C2
uc&ABC1C2

is also a pu-

rification of rAB for any unitary operatorUC1C2
acting on

C1C2.
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Theorem 1. Let rAB be a nonfactorable density matrix
Then any purificationuc&ABC1C2

of rAB is entangled in a
sense that it cannot be written in the factorized form

uc&ABC1C2
5uc1&AC1

^ uc2&BC2
. ~2.4!

Conversely, if all purifications ofrAB are entangled, then
rAB is nonfactorable.

In order to prove this theorem let us suppose that ther
a purification uc&ABC1C2

5uc1&AC1
^ uc2&BC2

of rAB . From
the definition of purification it holds that

TrC1C2
~ uc&ABC1C2

^cu!5rAB . ~2.5!

However, from the definition of the partial trace we have

TrC1C2
~ uc1&AC1

uc2&BC2AC1
^c1uBC2

^c2u!

5TrC1
~ uc1&AC1

^c1u! ^ TrC2
~ uc2&BC2

^c2u!

5rA8 ^ rB8 , ~2.6!

which is in a contradiction with the fact, thatrAB is a non-
factorable density matrix.

In order to prove the second implication we will prove th
following: If rAB is factorable, then there exists a purificatio
of rAB , which is not entangled. In fact, we will prove
stronger statement by restricting the dimension of the pu
cation. Let dim(HAB)5n. Then there exists a purification o
rAB of dimensionn2, which is not entangled. It is wel
known, that there exist purificationsuf1&AC1

of rA and

uf2&BC2
of rB such that dim(HA)5dim(HC1

) and

dim(HB)5dim(HC2
). Then uc&ABC1C2

5uf1&AC1
^ uf2&BC2

is a purification ofrAB of the desired dimension, which is no
entangled.

Theorem 1 can be easily generalized forn-partite systems
in the following way: Let rA1 , . . . ,An

is a density matrix,
which is not factorable in the sense that it cannot be writ
as rA1 , . . . ,An

5rA1
^ •••^ rAn

. Then any purification

uc&A1 , . . . ,AnC1 , . . . ,Cn
of rA1 , . . . ,An

is entangled in the sens
that it cannot be written in the form

uc&A1 , . . . ,AnC1 , . . . ,Cn
5uc1&A1C1

^ •••^ ucn&AnCn
.

~2.7!

Conversely, if each purification ofrA1 , . . . ,An
is entangled,

thenrA1 , . . . ,An
is not factorable.

From above it follows that ifrAB is a nonfactorable state
and rABC1C2

an arbitrary mixed state such tha

TrC1C2
(rABC1C2

)5rAB , thenrABC1C2
is not factorable in the

sense that it cannot be written asrABC1C2
5rAC1

^ rBC2
. This

follows from Theorem 1, because each purification
rABC1C2

is also a purification ofrAB and thus it is entangled
It is also straightforward to show that a factorable dens

matrix rAB has both entangled and unentangled purificatio
4-2
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Specifically, from the factorability we haverAB5rA^ rB .
Let uc&AC1

is a purification ofrA anduf&BC2
is a purification

of rB . Then uc&AC1
^ uf&BC2

is a purification ofrAB . Let

uv&5UC1C2
(uc&AC1

^ uf&BC2
), whereUC1C2

is a unitary op-

erator acting onC1C2. Clearly uv& is a purification ofrAB
for any UC1C2

and there is aUC1C2
such that uv& is

entangled.
We conclude the present section with the following obs

vation: If a systemAB, which is a part of a larger system
ABC1C2, is in a nonfactorable staterAB , then it must be a
part of a larger system which isentangled. In other words,
when we have a nonfactorable system, then any larger
tem ~in a pure state! containing this system is entangle
Moreover, for each purificationuc& of rAB , no unitary
UC1C2

operation can be found such thatUC1C2
uc& is unen-

tangled. Hence, the nonfactorability ofuc& is not caused by
the correlation betweenC1 andC2. The most interesting fac
is that all previous statements hold regardless ifrAB is sepa-
rable or not.

III. CORRELATIONS IN MEASUREMENTS

Theorem 2. Let rAB be a nonfactorable density matrix
Then there exists a pair of orthogonal measurements re
sented by observablesE and F ~measured onHA and HB ,
respectively!, which are correlated onrAB .

Proof. In order to prove the theorem we will use the n
gated implication. That is, letrAB be a density matrix such
that any two orthogonal measurementsE andF performed on
rAB are uncorrelated. ThenrAB5rA^ rB is factorable.

A result of a measurement can be represented as a ran
variable. Therefore, the results of the measurement are
correlated iff the corresponding random variables are un
related, i.e., the covarianceC(E,F) fulfills the condition
C(E,F)50. Let rA5TrB(rAB) andrB5TrA(rAB), then the
covariance of uncorrelated measurements fulfills the co
tion

C~E,F !5^E^ F&rAB
2^E&rA

^F&rB
50, ~3.1!

from which it follows that

Tr~E^ FrAB!5Tr~ErA!Tr~FrB!5Tr~E^ FrA^ rB!.
~3.2!

We want to show that this identity impliesrAB5rA^ rB and
hence thatrAB is factorable.

The condition~3.2! holds for any two Hermitian operator
E and F. Let us choose some fixed basis$uf i&AB% i on HA
^ HB . We will show that

~rAB! i j 5~rA^ rB! i j ; i , j . ~3.3!

Because Eq.~3.2! holds for any two Hermitian operatorsEi
andFi it also holds that
03430
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i

a iTr~Ei ^ FirAB!5(
i

a iTr~Ei ^ FirA^ rB! ~3.4!

for any a iPC and hence

TrS (
i

a iEi ^ FirABD 5TrS (
i

a iEi ^ FirA^ rBD .

~3.5!

To prove Eq.~3.3! it is enough to show that

Tr~ArAB!5Tr~ArA^ rB! ~3.6!

for any matrixA such that

Ai j 51 for fixed i , j and Axy50 otherwise. ~3.7!

However, an arbitrary matrix onHA^ HB can be expressed
as

(
i

a iEi ^ Fi , ~3.8!

whereEi and Fi are Hermitian matrices anda i is an arbi-
trary complex number. This completes the proof.

The remaining part of this problem is trivial. WhenrAB
5rA^ rB (rAB is factorable!, then the systemsA andB are
not correlated which follows from Theorem 2.

IV. CONCLUSION

We proved that any purification of a nonfactorable state
alwaysentangled. This means that any system that contain
nonfactorable subsystem is also nonfactorable. Moreover
described purifications of factorable states and we pro
that for any bipartite density matrixr there exists a pair of
measurements, which are correlated onr if and only if r is
nonfactorable. Taking into account the fact that any purifi
tion of a nonfactorable state is entangled, we conclude
these correlations have their origin in quantum nonlocalit

This can be interpreted as an alternative approach
Werner’s explanation of the origin of correlations in me
surements on separable~but nonfactorable! states. Our ap-
proach supplements the original work of Werner@10#. Spe-
cifically, we showed that correlations on bipartite mixed st
exist if and only if the state is nonfactorable. These corre
tions can be explained locally~see Werner@10#! when the
state is separable, or they can be explained via quantum
tanglement of purified states~see Sec. II!.
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