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Purification and correlated measurements of bipartite mixed states
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We prove that all purifications of a nonfactorable st@te., the state that cannot be expressed in a form
pas=pa® pg) areentangledWe also show that for any bipartite state there exists a pair of measurements that
arecorrelatedon this state if and only if the state is nonfactorable.
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[. INTRODUCTION correlations in measurements and present two examples,
which clarify the problem we address.

Quantum entanglement is one of the most important in- Let p,g be a bipartite density matrix whilepy
gredients of the paradigm of the quantum thephy?2]. It =Trg(pap) andpg=Tra(pag) are reduced density matrices
plays the central role in quantum teleportat{@), quantum of the subsystem# and B, respectively. LetE and F be
dense coding4], quantum secret sharinfp], and other ~measurements on the subsystenand B, respectively, and
quantum information processég]. Quantum entanglement E andF be the corresponding observables. Then the mea-

can be manipulated using the entanglement swapfii®]  surements andF are correlatedon p,g if and only if
and it can be concentrated via quantum distillation tech-

niques[6]. A . .

qIt is well known that pure entangled states violate the Tr(pagE@F) # Tr(paE) Tr(pgF). 1D
so-called Bell inequalitief9], which implies that these states
have nonlocal properties. This means that pure entangleg
states cannot be created locally. Moreover, for each bipartitg1
pure state, there exists a pair of correlated measurerEnts
if and only if the state is entangled.

Example 1Let us consider twaorrelatedsourcesA and
emitting spins particles(qubit9 such that with the prob-
bility 3 both sources simultaneously produce particles in the
state|0) and with the probabilitys both particles are simul-

taneously in the statfl). Hence, the sources produce states

In the case of mixed states the situation is more complex. . . L .
Werner[10] has introduced the following definition of en- )L%%?CBE |Osr |11)sg and the density matrix describing this

tanglement for mixed states: the bipartite mixed state is en-
tangled if and only if it is inseparable. In addition Werner has
shown that any separable state can be created exclusively via 1

local operatior):s aﬂd classical communicat{iamd hence ity pAB:§(|OO>AB<OO|+|11>AB<11|)' 1.2
does not have nonlocal properties

In this paper we will concentrate our attention on corre-If we subject such a pair of particles to orthogofaiojec-
lations in measurements performed on mixed bipartite stateive) measurements in the base§/0),,/1)a} and
The problem of correlations in measurements of two qubit§|0)g,|1)g}, then the results of measurements of the state of
has been studied by Englert and Metwdliyl,12. Specifi- particlesA andB are the same. This is because the pairs were
cally, we will derive the necessary and sufficient conditionproduced in such a way that they are both in the same state.
for the existence of correlated measurements on bipartittn this case we can apply the formalism of a microcanonical
mixed states. ensemble since we have a set of paokparticles denoted

In what follows, we will utilize the purification ansatz as pi,p., - - ., inpure state$p),,|#),, . . . ,where each of the
proposed by Uhlmanfl3] via which an impure state of a stateq ¢); is either|00) or |11). Results of the measurements
given quantum system can be purified with the help of anin this case are two sequences of random variables
cillas. Our main motivation to study purification of mixed a;,a,, ... andbq,b,, . ... Each pair of random variables
states is to determine the relation between the entanglemeat,b; is not correlated. But the ensemble of the péivkich
present in purified states and the existence of correlations iis described as a statistical mixtyexhibits correlations. As
measurements performed on original bipartite mixed statespointed out by Wernef10], these correlations have nothing
We will also study whether these correlations are related téo do with quantum nonlocality and they are caused by clas-
nonlocality of purified states. sical correlations of the sources.

In Sec. Il we introduce the notion of factorability and we  Example 2 Now let us consider a source that repeatedly
derive the relation between the factorability of bipartite den-produces three spik-particlesA,B,C in the Greenberger-
sity matrix p and the entanglement of any purification@f  Horne-Zeilinger stat¢6]

In Sec. Il we prove that for any bipartite density matpix
there exists a pair of measurements that are correlatgdfon 1

and only if p is not factorable. = 00 +|11 . 1.3
In order to unify the notation and terminology we define |#)asc \/§(| Onsct |11%asd 19

1050-2947/2002/683)/0343044)/$20.00 65 034304-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A 65 034304

Obviously, the reduced density matpx g of particlesA and Theorem 1 Let pag be a nonfactorable density matrix.
B is the same as in the previous example described by Eqhen any purification| ¢>ABclc2 of pag is entangled in a
(1.2. This means that measurements in the basegense that it cannot be written in the factorized form
{]0)a,|1)a} @and{|0)g,|1)g} yield the same results as in the

previous example. Nevertheless, in order to describe the

present situation we have to employ the macrocanonical for- |‘/’>ABC1C22 | ‘/’1>AC1®|‘/’2>BC2'
malism. Results of the measurements are two random vari-
ables, which are correlated, and this correlation is caused b9 .
a quantum nonlocality, which follows from the fact that mea- A8 is nonfactorable. _ .
surements {{0),,|1)} and {|0)g,|1)s} performed on In order to prove this theorem let us suppose that there is

| ) ac are correlated due to the present quantum entanglé? purification|¢)agc,c,=|¥1)ac,®¥2)8c, Of pap. From

(2.9

onversely, if all purifications op,g are entangled, then

ment. the definition of purification it holds that
In order to appreciate the relevance of these two ex-
amples, we note that in spite of the fact that the measure- Trclc2(|¢>ABclc2( W) =pag. (2.5

ments performed on the two systems generate the same ex-

perimental results their interpretation might be totally However, from the definition of the partial trace we have

different. We conclude that although the properties of sepa-

rable states can be explained locdilg., without employing Tre o) ac.| t) (tlse(va)

entanglemenf the actual physical reason behind these “clas- c;c,{¥1)ac | ¥2)Be,nc,(Yilse, Yo

sical” correlations can be related to the quantum nonlocality _

. . =Tr ®Tr

in preparation of the system. e, ac, (D @ Tre, (|¢2)se (¥l)
=pa®pg, (2.6

Il. PURIFICATIONS AND FACTORABILITY o o _ _
which is in a contradiction with the fact, thalg is a non-
We start this section with the definitions of factorability, factorable density matrix.

separability, and purification of density matrices. In order to prove the second implication we will prove the
~ The density matrixpag is factorable if it can be written  following: If pag is factorable, then there exists a purification
in the form of pag, Which is not entangled. In fact, we will prove a

stronger statement by restricting the dimension of the purifi-

cation. Let dim¢{,g) =n. Then there exists a purification of
PAB= PA® Pe - 2.0 pag Of dimensionn?, which is not entangled. It is well
known, that there exist purificationhﬁl)Acl of pp and

|¢2)c, Of pg such that dimta)=dim(Hc,) and

dim(Hg) =dim(Hc,). Then |¢)asc,c,=|d1)ac,®|d2)sc,
is a purification ofp g Of the desired dimension, which is not
entangled.
Theorem 1 can be easily generalized igpartite systems
in the following way: Letpa,, ... A, is a density matrix,
Let us consider a bipartite SysteAB in the state de- which is not factorable in the sense that it cannot be written
scribed by a density matrigag. Let AB be a subsystem of as pa,, ... A =pa,® - @pa . Then any purification
some larger systelABC,C,, which is in a pure statgy). | AC. ... c. Of pa A is entangled in the sense
Obviously, there is a whole class of stafg$, which repre-  that it cannot be written in the form
sentpurificationsof the density matrixpag, i.e., which ful-
fill the condition

The density matrixp,g is separable if it can be written in
the form

pAB=Ei pipl ®@pf. 2.2

WAy acy. .. e = ¥Dac,®  ®Yaac,.

n

(2.7

Tre,c,([¥)(¥) = pas- 2.3 .
A, 1S entangled,

Conversely, if each purification qul
It is important to note that the purification of a given stateNeNPa,, .. A, 'S_ not factorablg. _
pag is not unique. First, from the Schmidt decompositjah From above it foIIow; that |foAB_ is a nonfactorable state
it follows that we can choose auxiliary syste@gandC, of ~ and pagc,c, an arbitrary mixed state such that
an arbitrary dimension such that di@{C,)=dim(AB). Tre,c,(Pasc,c,) = Pas. thenpapc c, is not factorable in the
Second, the;-c |}:_)|l_JIEf|ctat|on LSSnot l:jncl:qus even when we fix di-sense that it cannot be written agsc c, = pac, ® pec,. This
mensions of Hilbert spaceS, andC, because it)ascic,  follows from Theorem 1, because each purification of
is a purification of pag, thenUc ¢, |#)asc,c, is also a pu- pasc,c, IS also a purification opg and thus it is entangled.

rification of pag for any unitary operatotc, ¢, acting on It is also straightforward to show that a factorable density
C,C,. matrix pag has both entangled and unentangled purifications.
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Specifically, from the factorability we haveag=pa® pg-
Let |¢/) ac, is a purification ofp, and|¢)gc, is a purification ZI aTr(Ei®Fipap) = EI aTr(Ei@Fipa®pg) (3.4
of pg. Then|¢//>Acl®|d>)Bc2 is a purification ofp,g. Let
lw)=Uc,c,(|#)ac,®|d)sc,), whereUc c, is a unitary op-  for any «; e (- and hence
erator acting orC,C,. Clearly|w) is a purification ofpag
for any Uc,c, and there is aUc c, such that|w) is
entangled. Tr EI aiEi®FipAB =Tr 2 aiEi®FipA®pB .

We conclude the present section with the following obser- (3.5
vation: If a systemAB, which is a part of a larger system
ABC,C,, is in a nonfactorable stajg,g, then it must be a To prove Eq.(3.3) it is enough to show that
part of a larger system which intangled In other words,
when we have a nonfactorable system, then any larger sys-
tem (in a pure state containing this system is entangled.
Moreover, for each purificatiof) of pag, no unitary
Ucc, operation can be found such tHatleZW) is unen-
tangled. Hence, the nonfactorability [af) is not caused by
the correlation betwee@; andC,. The most interesting fact
is that all previous statements hold regardlegs i is sepa-

Tr(Apag) =Tr(Apa® ps) (3.9

for any matrixA such that

Aj;j=1 forfixed i,j and A,,=0 otherwise. (3.7)

However, an arbitrary matrix of{,® Hg can be expressed

rable or not.
as
Ill. CORRELATIONS IN MEASUREMENTS
Theorem 2 Let p,g be a nonfactorable density matrix. Z aEi®F;, 3.8
Then there exists a pair of orthogonal measurements repre-
sented by observablés andF (measured oty andHg,  whereE; andF,; are Hermitian matrices and, is an arbi-
respectively, which are correlated opag. trary complex number. This completes the proof.

Proof. In order to prove the theorem we will use the ne-  The remaining part of this problem is trivial. Wheng

gated implication. That is, lgiag be a density matrix such — , g oo (pag is factorablg, then the systema andB are
that any two orthogonal measuremeftandF performed on ot correlated which follows from Theorem 2.

pag are uncorrelated. Thepyg=pa® pg is factorable.

Aresult of a measurement can be represented as a random
variable. Therefore, the results of the measurement are un-
correlated iff the corresponding random variables are uncor- We proved that any purification of a nonfactorable state is
related, i.e., the covarianc€(E,F) fulfills the condition alwaysentangledThis means that any system that contains a
C(E,F)=0. Let pa=Trg(pag) andpg=Tra(pag), then the  nonfactorable subsystem is also nonfactorable. Moreover, we
covariance of uncorrelated measurements fulfills the condielescribed purifications of factorable states and we proved
tion that for any bipartite density matrix there exists a pair of

measurements, which are correlatedgoif and only if p is
nonfactorable. Taking into account the fact that any purifica-

IV. CONCLUSION

C(E’F):<E®F>PAB_<E>PA<F>PB:O’ (3D tion of a nonfactorable state is entangled, we conclude that
these correlations have their origin in quantum nonlocality.
from which it follows that This can be interpreted as an alternative approach to

Werner’s explanation of the origin of correlations in mea-
surements on separablbut nonfactorablestates. Our ap-
Tr(E®Fpap) =TrH(Epa) Tr(Fpg) =TH(E®Fpa® pg). proach supplements the original work of Werii26]. Spe-
3.2 cifically, we showed that correlations on bipartite mixed state
exist if and only if the state is nonfactorable. These correla-
We want to show that this identity impligg,g=pa®pg and  tions can be explained locallfsee Wernef10]) when the
hence thap,g is factorable. state is separable, or they can be explained via quantum en-
The condition(3.2) holds for any two Hermitian operators tanglement of purified statdsee Sec. )
E andF. Let us choose some fixed bagish;)ag}i on Ha

®Hg. We will show that ACKNOWLEDGMENTS
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