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Quantum homogenization for continuous variables: Realization with linear optical elements
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Recently Zimaret al.[Phys. Rev. A65, 042105(2002] have introduced a concept ofuamiversalquantum
homogenizer which is a quantum machine that takes as input a ¢gystem qubit initially in an arbitrary
statep and a set oN reservoir qubits initially prepared in the stete The homogenizer realizes, in the limit
sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state
& irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept
of quantum homogenization for qudits, that is, ébdimensional quantum systems. We prove that the partial-
swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We
propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming
state of a photon field is homogenized in an array of beam splitters. Using Simon’s criterion, we study
entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of
output beams as a function of the degree of squeezing in input beams.
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I. INTRODUCTION single qudit initially prepared in an unknown stat§’, and
a reservoilR composed oN qudits all prepared in the state

One of the most complex phenomena in quantum theory¥, which is arbitrary but same for all reservoir qudits. We
is dynamics of open systems]. In general, one can assume will enumerate the qudits of the reservoir and denote the
an interaction between the open system denot&leth the  state of thekth qudit asé, [4]. From the definition of the
environmentR. This environment is a quantum system with reservoir it follows that initiallyé,= ¢ for all k, so the state
the Hilbert space of an arbitrary dimension. The wh8le of the reservoir is described by the density magiX'.
+ R system evolves unitarily and the question of irreversibil- Let U be a unitary operator representing the interaction
ity of dynamics of open systems is then a great issue. Hovbetween a system qudit and one of the reservoir qudits.
does irreversible dynamics of the syst@remerge from a In addition, let us assume that at each time step the system
unitary evolution of theS+ R system? For instance, when a qudit interacts with just a single qudit from the reservoir
system interacts with a reservoir which is in thermal equilib-(see Fig. 1 Moreover, the system qudit can interact with
rium then after some time the system is thermalized—it reeach of the reservoir qudits at most once. After the interac-
laxes towards the thermal equilibrium. This implies that thetion with the first reservoir qudit the system is changed
information about the original state of the systerfirievers-  according to the following rule(which is a completely
ibly) “lost” and its new state is determined exclusively by positive—CP—maj
the parameter&emperaturgof the reservoir. If the reservoir
is composed of a large numbkirof physical objects of the eP=Tr[UePe&U. (1.9
same physical origin as the system itself, then the thermali-
zation process can be understood as homogenization: out of | et us repeat the interactioN times, that is, via a se-
N objects(the reservoir prepared in the same thermal state quence of interactions the system qudit interacts \Witres-
and a single system in an arbitrary state, we obtdinl  ervoir qudits all prepared in the state The final state of the

objects in the same thermal state. This intuitive picture issystem is then described by the density operator
based on certain assumptions about the interaction between

the system and the reservoir, about the physical nature of th © ®
reservoir itself and the concept of the thermal equilibrium. |2s 2s
Such a model is very important for the understanding of U U U
many processes in quantum physics as well as the fundamer

tal problem of the irreversibilityf1,2]. For this reason it is

important to analyze rigorously the process of information

transfer in this simple model which has been first analyzed in & & & A & &

a recent workK 3] for qubits. In this paper we present a rig-

orous analysis of the above picture within the framework of RESERVOIR

guantum information theory ford-dimensional quantum

systems—qudits. FIG. 1. A simple collisionlike model of homogenization with

Specifically, we will consider a systeBirepresented by a just three reservoir qudits involved.
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Q(SN):TrR[UN' . -U1(9g0)®§®N)UI~ .-Ul], (.2  after just a single interaction, the state of the syst&iis
equal to the staté of the reservoir qudit; and the interacting

whereU,:=U® (®.];) describes the interaction between qudit from the reservoir is left in the initial state of system.
the kth qudit of the reservoir and the system qudit. This This means that conditiofi..4) is fulfilled, while condition
model of homogenization is very similar to trellision  (1-3) is not. , -
model since the system becomes homogenized via a se- !N order to fulfill both conditiong1.4) and(1.3 we have
quence of individual interactions with the reservoir qudits.f0 find some unitary transformation which is “close” to the
The interactions are assumed to be localized in tiire, ~ 1dentity on the reservoir qudit, while it performspartial-
they act like elastic collisiong5]. swap operation, so that the system qudit at the output is
Our aim is to investigate possible CP maps induced by th&loser to the reservoir statethan before the interaction. The
transformation(1.2) and describe the process of homogeni-SWap operator is Hermitian, and therefore we can define the
zation. Homogenization means that due to the interadipn Unitary partial-swapoperation
the states of the qudits in reservoir change only little while

after N interactions the system’s state become close to the P(n)=(cosp)1+i(siny)S 23
initial state of the reservoir qudits. Formally, that serves our purposes. In what follows we denote; sin
=sand cogj=c.
V k,  1<ks<N;D(§.§)<5, 1.3 In the process of homogenization, the system qudit inter-
acts sequentially with one of thd qudits of the reservoir
V N=N;D(e{" &)=, (1.4  through the transformatioR(»). The states of the system

qudit and of the reservoir qudit are obtained as partial traces.

tween the statesy>0 is a small parameter which is chosen the state described by the density operator

a priori to determine the degree of the homogeneity ghd (D) ~2,(0) 4 <241 : (0)
. . . =cC +s°é+icy[ €, , 2.4
=TrdUe%¥ Ve £UT] is the state of théth reservoir qudit es es ¢ticslées’] 24
after the interaction with the system qudit. while the first reservoir qudit is now in the state
We note that homogenization is closely relatedther-
malization[6]. There are, however, two main differences: in £=5200+c2+ics[oP), £]. (2.5

thermalization,(i) the state¢ of the reservoir qudits is not _ _ _

completely unknown, but is a thermal state, that is, a stat¥Ve can recursively apply the partial-swap transformation

diagonal in agiven basis (interpreted as the basis of the and after the interaction with theh reservoir qudit, we have

eigenstates of a single-qudit Hamiltonjaand (ii) the num- 2 (1)) 2s . 1

ber of qudits in the reservoir is considered to be infinite for e =c?e{ V+s*+ics[£,08 V], (2.6

any practical purpose. . . .
}(/)ﬁr paper g olraganized as follows: in Sec. Il we show that™> fche expression for_the d.en_sn_y aperator of the system qudit,

guantum homogenization can be realized with the help of é{Vh'le thenth reservoir qudit is in the state

partial-swapoperation. In Appendix A we show that the par- =200 D4 24 icsl oD )

tial swap for qudits generates a contractive CP map on the n=ses ¢ les™ 7.¢l- .9

system qudit with the fixed point being the initial state of the |, the Appendix A we show the@(s’\') monotonically con-

reservoir. This ensures the required convergence of the hQ/'erges to¢ for all parameters;#0. This means, in particu-

mogeni;atipn process. In Sec. lll we addregs a feasible Optiér, that conditior(1.4) does not impose any constraint gn
cal rea!lza’_[lon(VIa a sequence of beam splittersf the ho- To show this convergence, we utilized tBanach theorem
mogenization map for continuous variables. In Sec. IV Werg) that concerns the fixed point of a contractive transforma-

study the dynamics of the input signal light field homog- o, -~ gpecifically, lets be a metric space with a distance
enized by an array of beam splitters, while Sec. V is devote% nctionD(.,.). Thetransformatior/is calledcontractiveif
to the problem of entanglement between the modes involve fulfills the inequality D(7[0],7[£])<kD(o,&) with O

in the homogenization process. <k<1 for all o,£e S. The fixed point of the transformation
Tis an element of for which 7] £]= &. The Banach theorem

[l. PARTIAL-SWAP OPERATION states that a contractive map has a unique fixed p8inand

that the iteration of the map converges to it, i.8\[¢]

Let us start with the definition of the so-calls#apop- £ for eachp € S

erationS acting on the Hilbert space of two qudits which is

given by the relatiorf 7]
11l. HOMOGENIZATION OF LIGHT FIELDS

Slyyele)=|o)®|¥). 2.9 In the preceding section we have presented a simple
model of an open system interacting with reservoir particles.
With the transformation We have shown that a partial-swap operation induces a con-
tractive map on a system qudit, with the initial state of res-
S 0Og¢ ST=¢000), (2.20  ervoir qudits as the fixed point. This model can serve for a
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detailed analysis of an information transfer and the problenarray of beam splitters the original signal is homogenized
of reversibility from the point of view of quantum informa- and is simultaneously correlated with reservoir modes. Dur-
tion theory. As shown in Ref3], the process of homogeni- ing the process of homogenization, the information that has
zation can be reversed and the original state of the systetmeen originally encoded in the state of the signal mode is
Q(SO) and the reservoig can be recovered only when tie  gradually transferred into the correlations between interact-
+1 qubits of the output state interact, via the inverse of thdng modes. Depending on the character of quantum-
original partial-swap operation, in the “correct” order. This Statistical properties of the incoming modes, these correla-
classical information about the sequence of interaction istions might have purely quantum nature. That is, at the
vital for reversibility of the quantum process under consid-output the light modes are entangled. In what follows we will
eration. use it Simon’s criterio12] to determine whether the modes
Our results are valid not only for qudits but also for con-at the output are indeed entangled.
tinuous variables. That is, the model can be used for a de-
scription of an interaction of optical fields in appropriate V. DYNAMICS OF HOMOGENIZED LIGHT FIELD
settings. In particular, the partial-swap operation can be real- ) . _ _ )
ized with the help of a beam splitter, so that the whole pro- In th|_s section we turn our atter)t|0|j to a.part|cular optical
cess of the homogenization can be represented as a transféf@lization of quantum homogenization with the help of a
mation of a signal mode via a sequence of interactions witP€@m-splitter array. We note that the beam-splitter transfor-
reservoir modes on highly transitive beam splitters. In afnation, in general, does not realize a partial-swap operation.
idler port of each of the beam splitter we launch a mode,'t is easy to sh_(_)w that in general_the_ beam splitter does not
playing the role of the reservoir “particle.” All reservoir obey the_- conditions for homqgemzaﬂqn: Let us assume that
modes are initially in the same stage It can be shown that the two inputs of a beam splitter are in a Fock stage In
at the output of the sequence of the beam splitters, the signéﬁ's case the two output modes of the 50:50 beam splitter are
mode is in the state whictin the limit senseN—x) is the N the state [2,0+|0,2))/2. On the other hand we expect
state of the reservoir modes, provided that the reservoifhe output of the partial swap in this case to|bel). _
modes are initially prepared in a Gaussian state with zero However, we will show the beam-splitter array realizes

mean amplitudee.g., a thermal state, a squeezed vacuunfiu@ntum homogenization with reservoir modes prepared in
state, and a squeezed thermal tate Gaussian states with zero displacement. Quantum homogeni-

zation is a process, in which an initial quantum stétes
changed into the reservoir stateby many small sequential
interactions with reservoir states initially prepared in the
Two input fields are mixed at a beam splitter to give twosame state;. Modeling of reservoirs by beam splitters has
output fields. We can model a simple interaction of two pho-heen previously studied in Refl3].
tons by the use of a beam splitter—a linear optical device. we can describe a single-mode photon field prepared in a
The input states described by bosonic operatoasidb are  state| V) by its Wigner functionW,y (&), which is a qua-
mixed at the beam splitter. The output field annihilation op-siprobability function in phase space. This function is a Fou-
erators are given by=BaB' and d=BbB', where the rier transform of the Weyl characteristic functi@‘i‘ﬁ))(n),

beam-splitter operatds is (see Ref[10])

Beam splitters for partial swap

1

ot Wiw)()= ;f Cli}(mexp(&n* = &* ) d?y.

B=ex;{§(a‘”be"”—ab*e'¢) , (3.2
The characteristic functioﬁfl’l,vg(n) of a system described by

with the transmitivity and reflexivity of the beam splitter the density operatags is defined as

given by expressionis=cos /2 andr =sin 6/2, respectively. .

Our task is to examine how a state of a photon changes Ci(m=TrpD(n)],

after many weak interactions with photons from reservoir.

We assume the interactions are weak, thus the transmitivitwhere D(7)=exd 7a'— 7*a] is the displacement operator.

of the beam splitters will be approaching unity. In this caseWe will choose the characteristic function notation, mainly

the signal photon is left almost undisturbed by each interachecause the computations will be relatively simple in this

tion. Nevertheless, with the increasing number of interacform. When the two input states are represented by the Weyl

tions, the input signal is slowly transformed under the influ-characteristic functiorﬁ:gw)(g)cgw)(n), the Weyl character-

ence of the reservoir modes. On the other hand thestic function of the two-mode output field after a beam-
interacting reservoir states are only slightly changed. We wilkplitter operation readgl1]

show that this process guiantum homogenizatidB] can be

realized in an array of beam splitters. A beam splitter is not cgﬁ{(g, 77)=Cg‘”)(t§+ re‘¢n)CE)W)(tn—rei¢§). (4.0

the general partial-swap operation, but it realizes the homog-

enization for the reservoir modes prepared in Gaussian states Let us consider only the output of the signal mode (

with the zero mean amplitudsee below. mode as labeled in Fig) and its evolution. That is, this time
The beam splitter is also one of few experimentally ac-we are not interested in what happens to the disturbed reser-

cessible devices, which may act as an entaridléf. In the  voir modes. It is convenient to consider only the one-mode
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C FIG. 3. Schematic description of an array of beam splitters.
Ay and B, are approaching zero in this process and coeffi-
t b cientsC, andD, are gaining the properties of the reservoir
state(they are approaching andF, respectively.
FIG. 2. Schematic description of a beam splitter. From above we can derive two important conclusions:

o ) ) (2) If the reservoir modes are initially prepared in Gauss-
characteristic function of the main output after each beampay, states with zero displacement, then the state of the reser-
sphtter interaction. The. characteristic fun(_:tlon of the output,, ;- is invariant under the action of a sequence of beam-
signal from a beam splitter takes a very simple fdwe are  gjitter transformations. This means that this state is the fixed
choosing =0 in Eq. (3.1), so that the transmitivity and  oint of the corresponding CP map and the reservoir is
reflexivity are red) “stable.” This can be easily verified when we consider in Eq.

_ _ (4.3 for the characteristic function of the signal mode, the
CelO)=[CaltetTmColtn=rd)])=0 expression equal to the characteristic funct%n of the reser-

= C,(t))Cy(—r ). (4. ~ Vvoir mode, i.e., A=B=0, C=E, andD=F. In this case

expression(4.4) for the characteristic function of the output
Let us now assume that the incoming photon is in a Gaussia@f the signal is the same as the characteristic function of the
state with the Weyl characteristic function input state of the reservoir. The beam-splitter operation is
indeed the partial-swap operation restricted on the class of

Ca()=exrliAgl, —2iBoli—3Col7—3Dolf], (4.9 Gaussian states with zero displacement.

] ) ) (2) Due to the fact that coherent states form an over-
and that the reservoir modes are prepared in Gaussian Sta@&nplete basis, an arbitrary input state of the signal mode
with zero displgc_ements_queezed thermal stajesith the -5, pe decomposed into coherent stéties so-called rep-
Weyl characteristic function resentation Taking into account the linear superposition

_ 1= 2 1. .2 principle and the above result, we find that an arbitrary state

Coln)=exi = 2B —2F il (4.4 of the signal mode is properly homogenized on the array of

The output from a single beam-splitter operation is also $eam splitters providing reservoir modes initially prepared in

Gaussian state. Therefore it keeps the fornCof while the ~ Gaussian states with zero displacement. o
coefficientsA, B, C, andD change. In Fig. 4 we show an example of homogenization of a

CH () =exd 2i (A1), —2i(Bt) X exd — 3(Ct2+Er?) 2
—3(DP+Fr?) 7. (4.5

After a given numbek of beam-splitter operationsee Fig.

3), C(Ck) has still the Gaussian forif#.5. When we perform

a geometrical sum, we obtain the following results for the
coefficients in the characteristic function of the output after
the kth beam-splitter interaction:

A=t*A,
oK oK FIG. 4. Wigner functionsW(¢§) of the signal mode aftem
Cy=tTCo+ (1-tE, beam-splitter interactions with the reservoir modes. We derote
‘ (4.6) =Re(¢); y=Im(¢) and we use physical units such that the phase-
Bx=t"Bo, space coordinatesandy are dimensionless. We consider the input
state of the signal mode to be a squeezed vacuum. This mode is
Dy=t*Do+(1-t2)F. homogenized in the array of beam splitters with transmititity

o L o =0.95. The reservoir modes are prepared in the same squeezed
Now we can taI§e a “.m'k—mj considering the-transmltIVIty vacuum state except that the orientation of squeezing is rotated by
0<t<1 (there is no interaction between the input states forgg deg.(The complementary quadrature is squeeZét see that in
the extreme values of transmitivity, i.@51 and 0). It is  the process of homogenization the signal mode is gradually trans-
now obvious that the beam-splitter array homogenizes theyrmed into the original state of the reservoir. The degree of squeez-
incoming state and changes it towards the reservoir state, $8y of the input signal and the reservoir modes is determined by the
that lim._ .. C¥'=exd —E7*—iF#?]. Both displacements parameteq=In 2 (for explanation see Sec.)V
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sgueezed Gaussian state. The reservoir states are squeezedan [16] into infinite-dimensional systems, where it has a

a direction perpendicular to the direction of squeezing of thegeometrical interpretation as a mirror reflection in the

signal state. We see that at the output the signal mode M/igner space.

transformed into the state of the reservoir mode which nicely When testing the separability of a bipartitevo-mode

illustrates the homogenization process as discussed aboveGaussian state, it is convenient to express the characteristic
function C(«,B) as follows:

V. ENTANGLEMENT IN THE BEAM-SPLITTER ARRAY Cla,B)=exp(—3EMET),  é=(a,,a;,B.Bi),

In this section we will show how quantum correlation— where M is a symmetric 44 matrix. As linear displace-
entanglement between pairs of output beams arises via thients do not affect separability of two modes, we have ne-
beam-splitter interactions of squeezed Gaussian states. Ajlected them in the analysis of entanglement. After some
interactions under consideration are unitary, so the wholgocal unitary operations, any two-mode Gaussian state can be
process is reversible. If we knew the exact sequence of regxpressed with only six nonzero coefficients,
ervoir photons with which our signal photon had interacted,

we could reverse the process by running it “backwards” so a 0 f o

that the initial state of the signal mode is completely recov- 0boO0g

ered[3]. M= (5.2
The beam splitter can serve as an entandl&}. It mixes f0cO

the input states and can produce inseparable output. When 0 g 0d

two coherent states are incident on a beam splitter, the output

is given by The Simon separability criterion then reads

S=(ac—f?)(bd—g? —ab—cd—2|fg|+1=0. (5.3

PeWy=BD ,(a)D(5)[0,0
| ) o(a) B('B)| ) If the function S is non-negative then the bipartite state is

= f)a(ta+rﬁ)f)5(t/3—ra)|0,0>. (5.1)  separable. Otherwise it is entangled.

A. Two-mode output characteristic function

Yet this output is clearly not entangled. Kiet al. [11] . _ o .
found that simply displacing the input fields does not in- Let us consider that the signal mode is initially described

crease entanglement of the output fields, because the impa@( a Gaussian characteristic functi¢h.3) Vﬂth the initial

of the displacement of the input fields can always be canParameters:Aq,=a.e9, Bo=a;e™9, Co=(2n+1)e*), D,
celed by local unitary operations on the output fields. In or-=(2n+1)e 29, The parameteq is related to the degree of
der to generate entanglement via a beam splitter which is guadrature squeezing in the signal mode, whiltescribes a
linear optical device we need to have inputs exhibitingnumber of thermal photons in the mode. The reservoir is in
purely quantum-statistical features such as sub-Poissoniadfe squeezed thermal state with the mean number of thermal

photon statistics or quadrature squeezig]. Let us con- photonsﬁ and squeezing paramet@r The reservoir is then

sider that the_ two |nput£|.e.,_the signal and the reservoir represented by its characteristic function in the form of Eq.
mode$ are initially prepared in squeezed states. Both state ith E=(2m 20 and E=(2m “2p .

are squeezed by the same amount, but the squeezing dir -4 wit . '_E_( m_+ 1)e _an F=(2m+1)e™" Usmg
tion is not the same. These single-mode states are generatgl: (4-1; itis possible to find therg+1)-mode characteris-

. A ny tic function of the whole output of the beam-splitter array.
_ 2_ ot
by the squeezing Qperat&(g)—exp{(g*a {a'/2]. It has However, we do not need all this information. For our pur-
been shown earliesee, e.g., Ref[11l] and references

. . - oses it suffices to analyze only two modes—the chosen res-
therein that in the case the output modes of a beam splitte y y

can be entangled. The degree of entanglement depends Pér])slglr:/g;? ﬁqeg’de;(?;j ;23 E(rl]?.l output Modg; or two chosen
;ﬂﬁgfiﬁ dliectlontgf squtleezmg of ZNOt;gplﬂBiE' Moreovgr, Using Eq.(4.1) we find the two-mode output characteris-
puls are thermal squeezed stales, he squeezing tif: function from thekth beam splitter

operator does not act on the vacuum state but on a therma
statg then the creation _of e_ntang!ement depends on the Coul( &, m)=Li(n)exd 2iA(7) & — 2iB(7) 4]
amount of the thermal noise in the inputs.

In the case of continuous variables it is not a trivial task to X exd —3C L2 — 3Dwdfl, (5.4
determine whether two modes that are in a mixed state are
entangled. That is, the general inseparability condition is nowith Ay, By, andL, being functions of thep mode. The
known. On the other hand, for Gaussian states the insepar@arametersA, and By are related to possible entanglement
bility condition has been derived recenfly2,15. In particu-  between the two modes under consideration. The exact val-
lar, Simon[12] has derived the inseparability condition that ues of the coefficients in E¢5.4) are found using Eq4.6),
is simple to use since it is directly related to properties of a o1
two-mode characteristic function. Simon’s criterion is a gen- A=A+ rt [E—Cy] (5.5
eralization of the Peres-Horodecki partial-transposition crite- k 0 2k 0% - '
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Cy=t%Co+E(1—1t%), Thus for examination of the entanglement of #hé pair we
only need to consideE(7,£) =C(7®, 79) at thefth beam
rt2k-1 splitter,

By=t“Bo+ ok LF Dol

C(n,&)=exd —3(alf+biP+ce+del)]
Xexp[— %(fnr§r+g77i§i)]

X exd — (linear term$].

Dy =t%Dy+ F(1—t29),

with L, given by the expression (5.9
Ly=exd 2iAy_1f 7, — 2iBy_1r 7]
The terms in the matris are found analogically as in the

X exf — 3(Cy_1r2+1t2E) 7} previous case;

—L(Dy_1r?+t%F) 97, (5.6)

a=r2?(-Cy+[1-r2? k- VIE,
The terms containing\, and B, are linear in and do not
depend ony. Thus they will not affect entanglement so it is
not needed to use them in further computation. We have two
ways to continue, depending on which two-mode character-
istic function we want to obtain.

b=r226- DD+ [1-r?2k DI,
c=r22-NC,+[1- 32 VIE,

1. Characteristic function of the signal and kth reservoir mode d=r22=Up +[1-r2t2C¢-DF,

In what follows we present the characteristic function of
the final output signal mode and tkh reservoir mode;™.
After the kth beam splitter the output interacts with reservoir
states on the remaining—k beam splitters. We obtain the
characteristic function in the form

f=r2t""* " E-C,],
g=r2t"*2[F-Dy]. (5.10

C(¢,7™)=exd — 3(al+bZ+cpi+dn?)] B. Simon’s criterion

xexd — %(fﬂrgr"'g’?igi)]
Xexd — (terms linear in{ and 7)],
(5.7

with the coefficients in thé/ matrix found from Eqs(5.5
and(4.6),

a=t""Co+(1-t*ME,
b=t>"Do+(1—t*MF,
c=r22k D+ [1—-r22k Vg,
d=r22C DD+ [1-r22k-DE,
f=—tM* Y [E-Cy,
g=t™*"Ir[F—Dy]. (5.9

2. Characteristic function of two reservoir modes

We are now ready to test the separability of the outputs
using Simon'’s criterion5.3). Let us assume that our input
states are squeezed in directions perpendicular to each other
(see Fig. 4, which maximizes the possible entanglement
[11]. We thus expect that the two output beams from a beam
splitter can be inseparable, even if the interaction is weak
(t—1), assuming the inputs are sufficiently squeezed.

It is interesting to examine the entanglement between the
signal and reservoir modes. In particular, it is of importance
to understand how the entangleménicreated deteriorates
in the presence of thermal noise in reservoir modes. It is also
of great interest to understand whether the signal mode can
act as a mediator in entangling reservoir modes which have
never interacted directly. In what follows we will illuminate
these issues.

1. Inseparability between signal and ith reservoir mode

Let us return to our assumptions. We will consider that the
signal mode is initially in the squeezed thermal state de-
scribed by a characteristic functio@.3) with Co=Ne?9,

Do=Ne 29, whereN= (2F+ 1). The reservoir modes are in

Let us consider a characteristic function of two reservoirGaussian stateg.4) with E=Me?®, F=Me™??, whereM
modes after they interact with the signal. Assume that the=(2m+1). For simplicity we will assume a situation when

modes are labeled dsand ¢. That is, there ar¢ —k—1
beam splitters in between. Let us dendgte »(“) and 7

=M. The remainingn—¢ beam splitters to the end of the
beam-splitter array cannot change the separability oktlie
pair, because they affect only the terms containjni the

characteristic function and those are not quadratioyj8.

the signal and the reservoir are equally squeezed with the
direction of squeezing perpendicular to each other.

Let us use the coefficients and express the Simon’s crite-
rion with x=t2", y=r2t>*"2 andz=rt™" "1, It is useful
to expressz? in terms ofx andy as zZ=xy, which later
simplifies the expression
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S=—2xy(1+&)[2MN cosh 4—N2—M?]+(M2-1) t;;
X[M2(1—x—y)2— 1+ N%(x+y)2+ 2MN(x+Y) 098} :
X (1—x—y)cosh 4]. (5.11)
If we collect the corresponding terms, the coefficient in front 0.94

of cosh 4 is equal to

(X+y)(1=x—y)(M?—1)

Q=2MN , i
—2xy(1+8) %% 100 200 m
where¢ is the sign of (MN cosh 4—N°—~M?) [it resolves FIG. 5. Inseparability of the signal aftarbeam splitters and the
the absolute valugfg| in Eq. (5.3)]. first reservoir statek=1) in dependence on the transmitivityof

If the squeezing parametgris small, so that=—1, Sis  the beam splitters for various values of thermal noise in the reser-

non-negative. If there are nonsqueezed states on the input @hir m. The pair is inseparable in the region to the left of the
a beam splitter, the output modeannotbe entangled. On  corresponding line.

the other hands is growing withq until the signé¢ changes,

because coshddis increasing an@ is positive. Afterwards, that for large overall values of thermal noise, the two output
the possible negative sign & depends on the sign of the modes under consideration are separable. It is a natural ob-
coefficientQ in front of cosh 4. If it changes into a negative servation that thermal noise leads to deterioration of quan-
number,S will be negative for high enough. Testing the tum entanglement.

coeﬁcient on negativity yields a boundary f&f and thus It is also interesting to consider no thermal noise in the
for m, reservoir. If m=0 (or M=1), expression(5.11) is very
simple and certainly negative for amyandy, if the squeez-
M2< 1+ 4xy —K ing is higher than the threshold given by the change of the
(x+y)(1-x—-y) v signé=+1,
mo ki1 (5.12 .- 1 2 (5.13
m< , . —arccos — . .
2 972 2n+1
otherwise the sign in front of costg4vould remain positive If this condition is satisfied, then any pak,n) of states

and thusS would increase again and remain positive, so thegpecomes entangled! This is possible only because there is no
state would be always separable. This holds for nonzero (&dditional noise introduced with every beam-splitter interac-
—Xx—Y). However, this is true if &t<1 andm=2, be- tion. The amount of entanglement is, however, decreasing

cause with increasingm or k.

(1=Xx—y)=(1—t%2) + (12K~ t2m). 2. Inseparability of two reservoir modes
The first term is nonzerdand positive for k=2 and the The calculation is analogous to the previous case. We put
second term is positive fan>k. Together it results in the X=Ft" % y=rt="% and z=rt""*“. We use the
conditionm=2. equalityz?=xy here too, and we obtain the same expression

The thresholK; decreases with growingn and also with  for S (5.11) and the constraint om (5.12 in terms ofx
largerk, thus, as expected, tightening the constraint on thendy.

valuem. Because of the inequalitg,>1, we can never find

entanglement between the considered output beams. n
In Fig. 5 we show the violation of the Simon’s separabil- 8
ity criterion in dependence on the number of total reservoir
modesm interacting with the signal and the transmitivity 6
for fixed values of squeezing and the mean numbers of
thermal photonsn and m. We see that the first reservoir 4
mode is still entangled to the signal state even after 200
interactions for high values of transmitivity. We also see that 2
thermal noisénonzero values afn) leads to deterioration of
entanglement between the involved modes. 00 02 04  06m

It is also interesting to analyze how inseparability of a
particular pair of modes nj=2, k=1) depends on the FIG. 6. Inseparability of ther(=2, k=1) pair in dependence
amount of thermal noise in the reservoir and the sigRa.  on the amount of thermal noise in the reservaoirand the signal
6). The squeezing and the transmitivity are fixed now. We segtaten. The pair is inseparable to the left of the line.
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O lations between interacting qudits can be recovered. The re-
’ covery can be done via a sequence of inverse partial-swap
operations. The necessary condition for the recovery is that
the classicalinformation about the sequence of the interac-
tions between the system and reservoir qudits is available.
In this paper we have also shown that in the case of con-
tinuous variablege.g., modes of the electromagnetic field
quantum homogenization can be realized with the help of
linear optical elements. Specifically, we have shown that
when the input signal mode is in a Gaussian state while the
0 10 20 k reservoir modes are in the Gaussian state with the zero am-
FIG. 7. Inseparability of pairsk(¢) of reservoir states for dif- Plitude, then an array of quantum beam splitters with very

ferent values of thermal noise in the reservoir. The pair is insepalligh transmitivity realizes the quantum homogenization. It is
rable in the region to the left of the corresponding line. an open question whether the quantum homogenization of

electromagnetic fields can be realized with linear optical el-
Let us check the sign of the expression-(t—y) in Eq.  €ments also for non-Gaussian states.
(5.12 in this case,
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reservoir pairs is much more sensitive to the thermal noise in
the reservoir. It is though obvious, because the reservoir pairs APPENDIX A: HOMOGENIZATION IS
have become entangled through a mediator that gains more A CONTRACTIVE MAP

and more noise with each interaction. The signal state soon

- - (N) i )
loses the ability to entangle more distant pairs of reservoir In this appendix we show thats™ monotonically con
yerges to¢ for all parametersy#0. In order to prove this

modes, but still becomes entangled with a single-reservoi
g 9 convergence, we use thiganach theoreni8] that concerns

state(compare Fig. b he f i ‘ . f .
However, if there is no thermal noise in the reservoir, theth® fixed point of a contractive transformation. L&tbe a

situation is very much the same as in the case of a signaMetric space with a distance functi@.,.). Thetransfor-
reservoir pair. If the squeezing is high enoughl3, every mation 7 is called contractive if it fulfills the inequality
pair of reservoir photons becomes entangled. D(7e],7¢])<kD(e,¢) with O<k<1 for all ¢,6eS. A

fixed point of the transformatiod is an element ofS for

which 7] £]= ¢. The Banach theorem states that a contractive
map has a unique fixed poiff], and that the iteration of the

In this paper we have presented a model ofuhiversal ~Map converges to it, i.eZ"[ o]— ¢ for eache € S. We note
quantum homogenizer for qud|ts that is realized via a Sethat contractive transformations within the context of quan-
quence of partial-swap operations between the syggign  tum information processing have been recently discussed
nal) qudit and the set of reservoir qudits. The universality ofalso in Ref.[17].
the device means that the process can be realized for arbi-
trary initial states of the system as well as the reservoir qu- 1. Definition of the distance
dits. We have shown that our results are valid not only for
qudits but also for continuous variablés.g., qudits are re-
placed by modes of an electromagnetic fielte have

VI. CONCLUSIONS

A natural way of how to define a distance in a Hilbert
space is to use the norm induced by the scalar product of the
shown that a sequence of partial-swap operations induces;#:i?:r(;i;F)eics%nLaeltHlijlzecr?rs]?:;;Ha szl):;agiagf;ﬁsssgg
contractive map with the fixed point being the initial state of A : : A . 3

P b 9 for A: Ha—H, is a Hilbert-Schmidt operator if the operator

the reservoir qudits. In this scenario the original qudit at the . v
end of the homogenization process is in the same state as t bounded, and there exists orthonormal basis)} in the
ilbert spacef, such that

reservoir qudits. Since the whole process of homogenizatio
is governed by unitary transformations then it is a legitimate o
question to ask: Where is the original information encoded in > [A|@i)]|2<e. (A1)
the initial state of the system qudit? It turns out that this i=1

guantum information is transferred into correlations between

interacting qudits. It is interesting to note that the quantumrhe set of all Hilbert-Schmidt operatofs Ha— H, form a
information that is transferre@tedistributedl into the corre-  Hilbert space, denoted &% with scalar product defined as
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(A,B)s=Tr(A'B), (A2) D(&;,€)=|s?p—s?c+ics[p,&]||5. (A8)

whereA andB are two elements of the Hilbert spaBe The  The last result can be further simplified. Recall that for any
norm of an elemené of the Hilbert spaces induced by the two elementsA andB from B the equation
scalar product.,.)z is given by

|A+iB|5=(A+iB,A+iB)j (A9)
Al 5= V(A,A) . (A3) .
:(AlA)B+(B!B)B+I[(A!B)B_(BIA)B]
Let us note that the norm in EGA3) may be infinite even ) 5
though the operatof is a bounded operatok: Ha— Ha . =[|Alz+Blz+i[(A,B)s—(B,A)g]

For example, if the elemer is a unitary operator acting in
an infinite-dimensional Hilbert spack, the norm ofA in
Eqg. (Al) is infinite (and consequently no unitary operators
belong to the Hilbert spacB). One should not forget that ”AHB”%:”A”%JFHB”%_ (A10)
the norm ofA considered as an element of the Hilbert space

B may not equal to the norm of the same elem@rtonsid-  The scalar productstp—s?o,c9 p,£]) s is apparently real
ered as a bounded operatdr Hy—Ha . It can be shown and from Eqs(A9) and (A10), it follows that

(see Ref[18]) that the convex set of all density operatdts

holds. If the scalar productA(B) is real, then the expres-
sion in the brackets equals to zero and one obtains

is a subset of3. Now the distance between two elements D2(¢1.6)=|Is?p—S%o 3+ llics[p.£lll5.  (A1D)
p,o of a given Hilbert spacé can be defined with the help . . T
of the norm presented in EGA3) as follows: Using the “law of parallelogram’{which holds for the norm

induced by a scalar prodyct

Dlp.a)=llo=0lls. (A%) |A+BIP+|A-BI=2|A2+2[B2,  (A12)

Using expressu_)l(lAZ) for the scala_r product one may derlve.,[he first term in Eq(A11) can be rewritten as
a more convenient form for the distance now expressed via

the trace operation, Is?p— %o 5=s*2llpllz+ 2] oz lo+ oll®). (A13)
D%(p,0)=(p—0a,p—0)s=Tr(p'p—p'o—c'p+o'o). The elements and o are density matrices, i.e., positive
operators with unit trace that gives certain bounds on the
2. Stability of the reservoir terms on the left side of EqA13),
The first condition of homogenizatiofi.3) requires that lpl5=Tr(pp)=<1,
all reservoir qudits after the interaction remain in the
neighborhood of their initial staté. That is, states of the HU”%g 1,
individual qudits of the reservoir are “stable” during the
system-reservoir interactions. As we apply sequentially the lp+allz=llpl5+]ol3. (A14)
same unitary transformatiot) for all reservoir qudits it
holds that if Inserting these results into EGA13) we can estimate the
, first term on the right side of EqA1l) as [s?p—s?a]5
D(£1,6)<9, (AS) <2 In the same way it can be shown tHaes[ p, £1)|%

_— <2c¢?s?, and we finally obtain
for all initial statesp of the system then

20 &1 < 4+ 22 2_
D(E =5 ¥ iz1..-N. (A6) D(&1,6)<2s"+2c°s°=2s (A15)
Apparently more natural reasoning would be to exploit the 3. Contractivity
convergence ™ — ¢ which follows from the contractivity of Consider two elements,o € S, i.e., two density matrices
the map7 demonstrated below. If the statd™ converges and denote their difference as-o=A. The element is
monotonously to the statg then Hermitian(this follows from the fact thgp ando are density
operators, that are bounded and self-adjpiand the dis-
D(&1,6)<D(&,6)<D(&3,8) - (A7) tance between the two elemeptand o reads

However, one does not need the convergence to prove it. It 2 A2 NNINT:

simply follows from the fact that relatiofA5) must hold for D (p,o)—IIAIIB—iEj: (AL (A16)
all initial states of the systerp and that we sequentially '

apply the same unitary transformatidh[see Eqs(2.6) and  Let us consider now two element$?) and ¢®), i.e., p®»
(2.7]. The important point is that it is sufficient to estimate =7[p] and o'")=7[ ¢]. Using expressiottA4) for the dis-
only the distanceD(&;,£). Using expression2.5) for the  tanceD(.,.) andexpressior(2.4) for p*) and oV, the dis-
state&; , one finds tance between the two elements is given by
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D( (1),0.(1))2: c? (O)—C20(0)+ics[§, (0)_0(0)] 2 _ _ _ _
g v g I& Ite.AlE=23 (i[e2A%li) -2 (il¢AcAli)
The last result can be again simplified by using E@)

and(A10). It is easy to check that . o
=2i2j M2|<I|A|J>|2—2i2j NN IGHAT 2.

2 (0) _ ~2..(0) ; 0)_ 07y ,—jc3 . . . . . .
(¢ —ca T, ics[€,p™— o)) g=ic sX const Since the operatoA is Hermitian it follows that|(i|A|j)|?
=[(jlAli)[? and
so that the scalar product c3p®—c?c(® cq¢,p®
—o(®]) 4 is real and consequently

||[§,A]||é=i2j x?l<ilAlj>|2+iEj NI |A]})[?

D2(pM,cM)=cY|p@— ¢ O3+ c?s?|[ £,p O~ o V]| 5.
(A17) —ZiEj ONTOTNING

Recall thatp(® is in factp (in same wayo=o(%) so that
p—c@=A and =2 (N=AAGIALI2. (A20)
]

(A18) Recall that\; are nonzero eigenvalues of the density matrix

D2(p™M, o) =c¥| A5+ c??[ £,A]]3. . I .
(pM, e =cH|A[z+c*s%|[ € ATl 5 &, i.e., they are positive and,<1 for all i. It follows that:

The second term in the last expression can be rewritten with IN— N <1 Vil (A21)
. . I ] ’ 1)
the help of the scalar produlatee Eq(A3)] or directly using
a more convenient form in EGA5), and
ILeATlE=IAIZ. (A22)

AN2=2 Tr(E2A%) —2 Tr(EAEA). A19
I&.All (&A% (EALA) (A19) Inserting the last result into EgA18) together with the ex-

. . . L o pressionA=p— ¢ for the elemen®A, we obtain the follow-
The operatok is a density matrix, which implies that it is a ing relation:

compact operator. Every nonzero element of the spectrum of

a compact operator is an eigenvalue. It means that every D2(p®), ¢ W) <c¥|p@— 5|2+ 252 p(@ — ()| 2
density operato& can be written ag=3;\;|i)(i|, where\; ' B o

are nonzero eigenvalues of the operafoand |i) are the — 212 +(0) (0)

corresponding eigenvectors. Let us perform the trace using a

basis consisting of the eigenvectdrs of the density matrix ~ which implies that the mafi: p(®— p®) is contractive iff

¢ [19], lc|<1.
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