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We present a probabilistic quantum processor for qudits on a single qudit of dimevsidmre processor
itself is represented by a fixed array of gates. The input of the processor consists of two registers. In the
program register the set of instructiofgsogran) is encoded. This program is applied to the data register. The
processor can perform any operation on a single qudit of dimeMsiwith a certain probability. For a general
unitary operation, the probability isN7, but for more restricted sets of operators the probability can be higher.
In fact, this probability can be independent of the dimension of the qudit Hilbert space of the qudit under some

conditions.
DOI: 10.1103/PhysRevA.65.022301 PACS nuntber03.67—a, 03.67.Lx
[. INTRODUCTION the program register must be at least as great as the number

of unitary operators that we want to perform. Since the set of

Schematically we can represent a classical computer asumnitary operations is infinite, the result of Nielsen and
device with a processor, which is a fixed piece of hardwareChuang implies that no universal gate array can be con-
that performs operations on @ata register according to a structed using finite resources, that is, with a finite-
program encoded initially in therogramregister. The action  dimensional program register. They did show, however, that
of the processor is fully determined by the program. Theif the gate array is probabilistic, a universal gate array is
processor is universal if we can realize any operation on thgossible. A probabilistic array is one that requires a measure-
data by entering the appropriate program into the progranient to be made at the output of the program register, and
register. the output of the data register is only accepted if a particular

In this paper we shall examine a quantum version of thisesult, or set of results, is obtained. This will happen with a
picture. Specifically, in close analogy with recent papers byyrobability, which is less than 1.
Nielsen and Chuangl] and Vidal and Cirad2], we will Because a finite gate array can only implement a finite set
study how a quantum program initially put into a programof unitary operations with certainty, we are forced to con-
register can cause a particular operation to be applied to gder probabilistic gate arrays if we want to be able to exactly
data register initially prepared in an unknown state. We shalperform any one of an infinite number of unitary operations.
first consider the case in which the data consists of a Sing|ﬁor examp|e' we m|ght want to have a gate array, let us call
qubit, and the program of two qubits. We shall then examingt G, that will perform any S(®) operation on an input qubit,
higher-dimensional systems. but exactly which one we do want to perform will depend on

Nielsen and Chuanid] originally formulated the problem  the results of previous computations, which we do not know
in terms of a programmable array of quantum gates, whiclyhen the array is constructed. Because our processor is a
can be described as a fixed unitary operaRy,, that acts quantum one, when faced with deciding which operation we
on both the program and the data. The initial steg;),, of  wantG to perform, we will have two choices. We can mea-
the program register stores information about the one-qub¥ure the quantum state produced by the previous stage of the
unitary transformationd that is going to be performed on a calculation, and then use the result of the measurement to set

single-qubit data register initially prepared in a stpfeq,.  some external parameters @, with the parameter setting
The total dynamics of the programmable quantum gate arragletermining that operatio6 will perform. The other possi-
is then given by bility is for G to be a programmable probabilistic gate array,
and to have the previous computation produce a program
Pdp[| ¢>d®|5u>p] :(U|¢>d)®|éu>pi (1) state that determines, which operati@mwill perform. How-

ever, the measurement strategy suffers from a serious prob-
m; if our overall system is finite, the measurement can only
. o ~ . ave a finite number of outcomes, which means that it can
register at the output of the gate is in the sidgy),, which  implement only a finite number of operations. Therefore, if
was shown to be independent of the input data dtate. we want to be able to condition computations on the results
Nielsen and Chuang proved that any two inequivalent opof previous ones, probabilistic gate arrays need to be consid-
erationsU and V require orthogonal program states, i.e., ered. Because we know when these arrays succeed and when
(Eu|Ev)=0. Thus, in order to perfectly implement a set of they fail, we only continue the calculation when they suc-
inequivalent operations{,Uj|j e J}, the state space for the ceed. If they fail, we repeat the previous part of the calcula-
program register must contain the orthonormal set of protion to produce another program state and input qubit, and
gram states{|EUj>|j e J}. This means that the dimension of try again. This type of the probabilistic approach is widely

where only pure data states were considered. The progra
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applied in the field of quantum information processing. Tomake this a little less abstract, we first consider an example.
mention just a few examples: probabilistic quantum teleporiet |¢) and|¢,) be two orthogonal qubit states, and sup-
tation[3], probabilistic state discriminatidf#], probabilistic  pose that we want to perform the operation
guantum cloning[5], and probabilistic quantum memories
[6], etc. Obviously, one of the main tasks in the probabilistic A=1p (D= d) (Pl =1-2|p) (], ©)
guantum information processing is to achieve the maximum , ) )
possible probability of the success. on |'<,/;)d. The gcnon of this operator |s'analogpus to that. of
Vidal and Cirad2] have recently presented a probabilistic 7z N the basis{|0),|1)}, except that it acts in the basis
programmable quantum gate array with a finite-program reg{|¢i>'|¢>}- That is, o, does nothing td0) and multiplies
ister, which can realize a one-parameter family of operations L) bY —1, while A, does nothing to¢, ) and multiplies ¢)
where the parameter is continuous, with arbitrarily highby —1. Can we find a network and a program vector to
probability. The higher the probability of success, the greatefTPlement this operation ofy)q?
the dimensionality of the program register, but the number of We can, in fact, do this by using the network for a quan-
transformations that can be realized is infinite. They havdum information distributo(QID) as introduced in Ref.8]
also consideredpproximateprogrammable quantum gate ar- (thisis a mo<_j|f|cat|on of the quantum cIo_nlng t_ransformatlon
rays, which perform an operatio, very similar to the [9,10)). In thls_ netw<3lk the program register is represented
desiredU, that isF(E,U)=1— e for some transformation DY & two-qubit stat¢= »),. Before we present the network
fidelity F. for Fhe programmable gate array, we shall mtrqduce notation
Another aspect of the encoding of quantum operations i itS components. A controllesloT gateD, acting on qu-
the states of program registers has been discussed by Huelgs ] andk performs the transformation,
and co-workerg7]. In this paper the implementation of an
arbitrary unitary operatiotd upon a distant quantum system
has be_en considered. This so-called teleportation of U”ita%herej is the control bitk is the target bit, andh andn are
operations has been formally represented as a completelfiner o or 1. The addition is modulo 2. The QID network
positive, linear, trace preserving map on the set of density,ngisis of four controlledtoT gates, and acts on three qu-

Dj[m);In)=[m);imen),, (4)

operators of the program and data registers bits (a single data qubit denoted by a subscript 1 and two
_ - program qubits denoted by subscripts 2 and 3, respectively

our first task, we shall determine how this network acts on

Here|¢), represents a specific entangled state that is shargfput states where qubit 1 is in the stat), and qubits 2
by two parties, Alice and Bob, who want to teleport the and 3 are in Bell basis states. The Bell basis states are de-
unitary operatiorJ from Alice to Bob. Huelgaet al.[7] have  fined by
investigated protocols that achieve the teleportatiot afs-
ing local operations, classical communication, and shared en- 1
tanglement. |® . y=—(]01)+|10))=|E,p,

In the present paper we will address the problem of imple- ‘/5
menting an operatiot, encoded in the state of a program
register| Zy),, on the data stathy). The gate arrays we )= i(|01>_|10>)=|: )
present are probabilistic; the program register must be mea- 2 Clmns
sured at the end of the procedure. In Sec. Il we present a

simple example of how to apply an arbitrary operation to a 1

single qubit initially prepared in a state/). The gate array [V, )=—(]00)+|11))=|E o0,

consists of four controlledioT (C-NOT) gates, and can \/E

implement four programs perfectly. These programs cause

the one of the operations oy, —ioy, or o, to be per- 1 _

formed on the data qubit. Hereis the identity ando;, |‘P—>:E(|OO>_|11>)E|:10>- ()

wherej=x,y,z is a Pauli matrix. By choosing programs that

are linear combinations of the four basic ones, it is possibl§ye find that

to probabilistically perform any linear operation on the data

qubit. In Sec. Ill we generalize the idea to an arbitrary di- P1od )1 P )oz= (o ) 1) | P ),
mensional quantum system, a qudit.

Piod ) 1| P _)oz=(—iay|4h))|P_),

IIl. OPERATIONS ON QUBITS
Piod ) 1|W 1 )oa= 1) 1|V ),

We wish to construct a device that will do the following.

The input consists of a qubity)y, and a second state, Piod )1 W ) oa= (0| ) 1) | ¥ _). (6)
|2u)p, Which may be a multiqubit state, that acts as a pro-
gram. The output of the device will be a stai¢y)y, where Any operation on qubits can be expanded in terms of

U is an operation that is specified B ),. In order to  Pauli matrixes and the identity. The above equations mean
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that the Bell basis vectors are “programs” for a complete set We now need to determine whether there is a program for
of operations. In order to see how to make use of this, let uany operator that could act ¢g). The operator need not be
expand our proposed operation in terms of this complete setnitary; it could be a result of coupling) to an ancilla,

Expressing ¢) as|¢)=u|0)+v|1), we have that evolving the coupled systera unitary process and then
) ) measuring the ancilla. Therefore,Afis now any linear op-
_ _ [v]* =l —2pv* erator acting on a two-dimensional quantum system, the
A=1-2|4)(¢l= —2u*v |2 |v?) transformations in which we are interested are given by
=—(uv* +p*v)ot (uv* —p*v)(—ioy) 1
s " g |¢>—>MA| ). (12)
+(|V| _|M| )T (7)

Let us denote the operators, which can be implemented by
Bell state programs, b$y=1, Sp1=0y, Sig=0;,, andS;;
=—ioy,. Any 2X2 matrix can be expanded in terms of
these operators, so that we have

We can now apply the operatiohto |) by sending in the
“program” vector

|EA)2s= — (uv* + u* v)[ D )ogt (uv* — u* v)[ D)3
+ (]2 = 1D W ) 2, (8)

and measuring the program outputs in ord\/_er to determine if
they are in the stateg® , )+ |® _)+|W¥ _))/y3. If they are, e T
our operation has bﬂen e>1cc|omp>lisr|1ed.>Note that the measureW—e now defma'k_a’k/\/—’ where
ment is independent of the vectas) so that no knowledge 1
of this vector is necessary to make the measurement and to = > [aju|?, (14)
determine whether the procedure has been successful. As we Jk=
see, the probability of success is 1/3 for the implementation
of the operationA, that is parameterized in general by two so that
continuous parametefge., the statée)). 1

Let us examine the program vector more carefully. If we 1=, |ajk|2_ (15)
define the unitary operatioty;,;;, by j.k=0

1
A=jé0~ajk8jk. (13)

Uinit00)=—|10), Ujnie/10)=—|12), Now let us go back to our network and consider the pro-
gram vector given by
Uinie|1)=[01),  Uin;t/01)=]00), ©) 1
we have that |:A>:j,k2:0 A=), (16
_ 1 and at the output of the program register we shall measure
Eai= Uinitﬁ(|¢>|¢i>+|¢i>|¢>)' (100 the projection operator corresponding to the vector

(1/2)Ej1,k:0|Ejk>. If the measurement is successful, the state
Finally, we can summarize our procedure. The steps ar@f the data register is, up to normalization, given by

(1) Sta? )with ghehstate 1|//§ (B)bo)+] mh>| $)); (2? agply 1
Uinit: (3) send the resulting state into the control pdits o

putst 2 and 3) andy) into port 1; (4) measure | ) |¢>_)<j,kzo aJkS‘k)|¢>' 17
+|®_)+|W_))//3 at the output of the control ports;

(5) if the result is yes, then the output of port 1 is After this state is normalized, it is just (Byi)A|y). This
(1-2|p) ]| 0. means that for any transformation of the type given in Eq.
Before proceeding to a more general consideration of thié12), we can find a program for our network that will carry it

network, let us make an observation. Suppose that we car§Qut.

out the same procedure, but instead of starting with the pro-

gram vector ()| ¢, )+| b, )| )2, we start instead with lll. GENERALIZATION TO QUDITS

the program vector|()|¢)—| ¢, )| &, ))/V2. At the end of

I h k in th [
the procedure the output of the data registeh ), where n order to extend the network presented in the preceding

section to higher dimensions, we must first introduce a gen-
eralization of the two-qubit GtoT gate[8] (see also Ref.

A=lo) il +16.)(4l. (11) [11]). As we noted previously, it is possible to express the
The operationA, interchanges ) and |, ). Its action is action of a CNOT gate as a two-qubit operator of the form
analogous to that of,, which interchanges the vecto®) 1
??3d|1). The probability of success for this procedure is also Dab:k%‘;o |K)a(k|® | Mm@ K)p(m]. (18)
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P> ! £ a1 A graphical representation of the logical netwdgd) with

! the conditional shift gateB,, is shown in Fig. 1.
® 2 7 2 Q3 The sequence of four operators acting on the basis vectors
|D> ’ [n)a|m)2lk)s gives

23 3 T 3

T
D310 21D 15D 12 Nn)1|m) [ k)3
FIG. 1. Alogic network for the universal quantum processor as

given by the unitary transformatiof24). The action of the con- =|(n—m+k)modN),|(m-+n)modN),

trolled shift operatorD;, is represented as follows. The control

qudit is represented by ¢ while the target qudit is represented by X |(k+n)modN);. (25

with the right arrow. The action of the operali)qfrk is represented

by left arrow. We now turn to the fundamental program states. A basis

consisting of maximally entangled two-particle statése
In principle one can also introduce an operaﬁli,rb defined analogue of the Bell basis for spinparticles is given by

as [13]
1 N—1
DI = 2 |K)a(k|@|mOK)p(m| (19 |2 >=i > exp(iz—wmk)|k>|(k—n)modN>
ab Ko a b . = mn, \/N Py N l
(26)
In the case of qubits these two operators are equal, but this
will not be the case when we generalize the operator to Hilwherem,n=0, ... N—1.If IEmn>p is the initial state of the

bert spaces whose dimension is larger thdi®,21]. In par-  program register, and|\lf)=2jaj|j)d (here, as usual,
ticular, we can generalize the operaf@rfor dimensionN EjlaJ-IZ:l) is the initial state of the data register, it then

>2 by defining follows that
" P1od V) 1| Emnas
Dap= 2 [K)a(kl@|(m+Kk)modN)y(m],  (20)
' N @ 2aikm ] B
which s hat -3 x| 2 el
N " @; 2aikm) ) )
Dis=, 2 [Khafkl®|(m=kymodN)y(m|. (2 =2 NN ikl i-m
From this definition it follows that the operat@r,, acts on B . —2mijm) o
the basis vectors as _% “i exp< N mIEm
D o] K)[m) = K| (k+m)modN), (22) =(UMW)|E . (27)

which means that this operator has the same action as tighere we have introduced the notation
conditional adder and can be performed with the help of the
simple quantum network discussed[t?]. Now we see that
for N>2 the two operator® andD " do differ; they describe
conditional shifts in opposite directions. Therefore, the gen-
eralizations of the GoT operator to higher dimensions are This result is similar to the one we found in the case of a
just conditional shifts single qubit. We shall now examine, which transformations
In analogy with the quantum computational network dis-we can perform on the state in the data register by using a
cussed in the preceding section, we assume the network f@rogram consisting of a linear combination of the vectors

N—-1

Ui — 2 ox —2im7Tsm
s=0

N [s—n)(s|. (29

the probabilistic universal quantum processor to be |Emn followed by the action of the processé¥,; and a
. subsequent measurement of the program register.
P125=D31D2:D 13D 5. (23) The operatord) (™" satisfy the orthogonality relation
The data register consists of system 1 and the program reg- TLUMMNTYMI]=NG, S (29)

ister of systems 2 and 3. The stdf),; acts as the “soft-
ware” for which the operation to be implemented on theThe space of linear operatof§) defined on some Hilbert

qudit data stat¢W),. The output state of the three-qudit spacer( with the scalar product given by E€R9) we know
system, after the four controlled shifts are applied, reads a5 Hilbert-Schmidt spaceThus the unitary operatotd(™?

N _ form an orthogonal basis in it and any operaiar 7(’H) can
|€2)125= D 31D 1D 13D 15 V') 1| E ) 23 (24 pe expressed in terms of them:
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N-1 and the vectof¢*) by
A= 2 dp ™. (30
m,n=0 El
*y= T k). (40
The orthogonality relation allows us to find the expansion %) k=0 Ailko
coefficients in terms of the operators
We then have that
1
qmn:NTr[(U(mn))TA]- (31) 2

| D) 03= (W, 13)(D39)?| |E ) 2s— \/ﬁ|¢*>2|¢>3 :
Equations(29) and (30) imply that

(41
N—-1 1
E G| 2==Tr(ATA) (32) A network that performs the operatioig® Jlg,)(Dga)2 could
mnzo " N ' be added to the input of the program register so that the

_ simpler state that appears on the right-hand side of(£).
Therefore, the program vector that implements the operatafould be used as the program. At the output of the processor

Alis given by we have to perform the projective measurement discussed in
12 N-1 the preceding paragraph, and the probabil_ity of achieving the
| o E R (39 desired result is the same as the probability of successfully
vA)23= Tr(ATA) | mito Gmnl = m/23- im_p_lerr_renting the transformatiom. In this case the prob-
ability is 1/N-.
Application of the processor to the input stat¥)q|va).s
yields the output state IV. SUCCESS PROBABILITY

_ The probability,p, of successfully applying the operatar
|Q>123=;1 AU ™V 1@ | E ) 23- (34 to the state|W), in our example is rather small. This is
because the operator we chose was a linear combination of
To obtain the final result we perform a projective measureall of the operator&) (™. This means that if the data register

ment of the program register onto VectM>23 consists ofl QUbitS, i.e.,N=2', then the probability of a
successful implementation of a general transforma#iate-

1 N1 creases exponentially with the size of the data register. How-
IM)= N E |E mn)- (39 ever, if we were to choose an operator, or set of operators,
mn=0 that was a linear combination of only a few of th&™",
If the outcome of the measurement is positive, then we gei€n the success probability can be significantly improved.
the required transformatioA acting on an unknown, arbi- | nis would entail making a different measurement at the
trary input statg¥),. output of the program register. Instead of maklng_ a projec-
Let us consider an example. Suppose we choosA the tive measurement onto the vectdvl), one would instead
unitary operatoil— 2| ¢){ ¢|, where the normalized statg) ~ Make a measurement onto the vector
can be expressed as

N-1 IM")=
|¢>>=k§0 BilK). (36)

N2 mn g |Emn (42)

where N is the total number of nonzero coefficients,,, in
The expansion coefficients for this operation are given by the decomposition in Eq30). If the operation being imple-

N1 mented is unitary, then, the probability of implementing it is

2 )
Amn= SmoSno— N Z ekam/Nﬁ; Bk—n» (37) 1
k=0 p= ./T/ (43)

and the program vector for this operation is
There are, in fact, large classes of operations that can be
expressed in terms of a small number of operatdf&"
[D)25=|Eo02s— —= 2 BB (snmlK2lk—n)s. [14]. For these operators, the probability of success can be
N K=o relatively large and, in principle, independent of the size of
(38) the Hilbert space of the data register.

The program vector can be obtained from a state more Example 1.Lat us consider the one-parameter set of uni-
closely related td¢) if we introduce a new unitary operator t@ry fransformationtJ,
and a “complex conjugate” vector. Define the operaiéby

N-1

1+i 1-i
= +i(si R (05 Iup— T ()
WIK)=| k), (39) U,=(cose)l+i(sing) 5 U+ 5 U , (44
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where the unitariet) (™" are given by Eq(28). These uni- 1
taries forN=4 can be explicitly written as |M>23:E(|EOO>23+|EO,N/2>23- (52

3 3
U@D=> (—i)P,, U®I= (i)5P;, (45 The probability for successfully achieving the desired result,
$=0 $=0 i.e., the vectol) 4| W), in the data register, is 1/2 irrespective
of the valueN, i.e., the number of qubits.
wherePs=|s)(s|. From here we find the expression for the

operator(44) in the form V. CONCLUSION

U,=(cosg)l+i(sing)[Po+P;—P,—P3].  (46) We have presented here a programmable quantum proces-
sor that exactly implements a set of operators that form a

We note that if we rewrite the parameterss binary num-  basis for the space of operators on qudits. This processor has
bers,s=j,2+j,, wherej, is either 0 or 1, and express the & particularly simpl_e representation in terms of el_ementar_y
States|s> as tensor products of C]UbitS, i-¢51>:|j1>®|j0>, quantum gates. It is, however, by Nno means unique. It is
we find that the operator in brackets on the right-hand side opossible, in principle, to build a processor that exactly imple-

Eq. (44) can be expressed as ments any set of unitary operators that form a basis for the
set of operators on qudits of dimensidh) and uses any
1+i o 1-i orthonormal set oN? vectors as programs. Explicitly, if the
TU(O )+ TU(Os) =03®l. (47 set of operators i$V,/n=1, ... N?} and the program vec-
tors are{]y,)|n=1, ... N2}, the processor transformation is
From Eq.(46) it is clear thatU,, has eigenvalues of magni- given by
tude 1, which implies that , is unitary. It can be realized by N2
the universal quantum process@3) with a probability of P - V(@
) ! : . = ® , 53
successful implementation equal to 1/3. This example illus- de nZl v 1Yo (Yl 53

trates that it is possible to realize large classes of unitary
operations with a probability that is greater than the reciprowhere the superscrift) on the operatoV, indicates that it
cal of the dimension of the program register. acts on the data register.
This example can be easily generalized. Consider a one- As an example, consider a data register consisting of
parameter set of unitary operators acting on a Hilbert spac@ubits. We could use the processor discussed in Sec. Il to

consisting ofl qubits, which is given by perform operations on states in this register, but we can also
do something else; we can uksingle-qubit processors, one
U,=(cose)1®' +i(sing)os@12( 1. (48)  for each qubit of the data register. Specifically, our unitary

basis for the set operations on the data register would be
The operatorr;®1°( 1 is diagonal and, therefore, only the

_ _ ol
diagonal unitaries from our s&t(M" i.e., UM appear in Usk=Uj i, .. ik = @m=15 (54)
its expansion, Eq30). Moreover the coefficientg,,q in the ) )
expansion are nonvanishing only for odd It follows that ~ WhereJ=(jy, ... j;) andK=(kq, ... k) are sequences of

zeros and ones, and the operaiﬁjrn%m are defined immedi-

ol (m0) ately after Eq(12). The program register would consist lof
U,=(cose)1¥ +i(sin (P)o%m dmoU™, (49 pairs of qubits, 2 qubits in all, with each pair controlling the
operation on one of the qubits in the data register. Each of

and the probability of a successful implementation of thisthe operators i”,OW basis can be implemented perfectly by a
program consisting of the tensor product state,

unitary transformation ip=2/(2'+2). - — ) s
Example 2For some sets of operators it is possible to doHIrn:0|:J(:l)<m>’ where |:i($l)<m> is a two-qubit state that
even better than we were able to do in the preceding eximplements the operatio§;  on themth qubit of the data
ample. Consider the one-parameter set of unitary operatofggister.
given by We are then faced with the problem of which processor to
use. This very much depends on the set of operations we
Uy=(cosd)1+i(sin®)UON2), (500  want to apply to the data. How to choose the processor so
that a given set of operations can be implemented with the
whereN is assumed to be even. That this operator is unitaryreatest probability, for a fixed size of the program register is
follows from the fact that)(®N'?) js self-adjoint. A program an open problem. An additional issue is simplicity. One

vector that would implement this operator is would like the processor itself and the program states it uses
to be as simple as possible. The simplicity of the processor is
| ) 93=COST| E o) 23t SINY| Egni2) 23, (51 related to the number of quantum gates it takes to construct

it. We would maintain that the processors we have presented
and at the output of the program register we make a projedaere are simple, though whether there are simpler ones we do
tive measurement corresponding to the vector not know. Judging the simplicity of the program states is
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somewhat more difficult, but they should be related in a relaality of the space of program vectors. Vidal and Cirac
tively straightforward way to the operation that they encodeshowed how to do this in a particular case, but more general
In many cases these states will have been produced by @nstructions would be desirabl&]. Doing so would give
previous part of a quantum algorithm, and complicated proone a method of designing programs for a quantum com-
gram states will mean more complexity for the algorithm thatputer.
produces them. The program states proposed by Vidal and
Cirac and the ones proposed by us in Sec. Il are, in our ACKNOWLEDGMENTS
opinion, simple.

A final open problem that we shall mention, is finding a  This work was supported in part by the European Union
systematic way of increasing the probability of successfullyprojects EQUIP and QUEST, and by the National Science
carrying out a set of operations by increasing the dimensionFoundation under Grant No. PHY-9970507.
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