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Dynamics of open quantum systems initially entangled with environment:
Beyond the Kraus representation
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We present a general analysis of the role of initial correlations between the open system and an environment
on quantum dynamics of the open system.
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[. INTRODUCTION ronment is taken into account has not been analyzed in detail
yet. Taking into account recent interest in quantum entangle-
Proper understanding of quantum dynamics of open sysment within the context of quantum-information processing
tems is a very important task in many areas of physics rangt is appropriate to study in detail the role @fuantum cor-
ing from quantum optics to quantum information processingelations on dynamics of open quantum systems. Some par-
and to quantum cosmolod\]. In general, one can assume ticular aspects of this problem have been discussed in Ref.
an interaction between the open system denoted asth [4].
the environmenB. This environment is a quantum system In the present paper, we present a general analysis of the
with the Hilbert space of an arbitrary dimension. The wholerole of initial correlations between the open system and an
A plus B system evolves unitarily. In most of the studies onenvironment on quantum dynamics of the open system.
dynamics of open systems it is assumed that the open system
and its environment are at the initial moment of their joint

- . . . Il. THE ROLE OF INITIAL CORRELATIONS
evolution factorized1,2], that is they are described by the

density operator of the form In this section we will investigate the evolution of an open
systemA that is initially correlated with the environmeBt
PAB=PA®PB (1D et us denote byr; the generators of the group SN [5]

whereN is the dimension of the Hilbert space of the system
nA' In addition we denote by; the generators of the group
SU(M) whereM is the dimension of the Hilbert space of the
gnvironmemB. Using this notation the most general density
matrix of the systenA and the environmerB reads as

wherep, is the initial state of systerA and pg is the initial
state of the environment. While the initial state of the ope
systemA may vary the initial state of the environmeRtis
considered to be determined by external conditions. In thi
context it is natural to ask what is the time evolution of the
open systenA? Or in other words, what is the explicit form
of the map $,:pa— pa - In order to answer this question one
might follow the arguments presented in Rgf] and to find
the explicit expression for the density operapgr 2.1

1
PAszw(lAﬁ‘ a;ioi®lg+ Bjla® 7+ ¥ijoi® 7))

pa=Tra(UagpasUhp) while the density operator of the open systéns obtained
via “tracing” over the environment

:g (u|Upppa® EV: pu|V><V|>U,TAB|M> 1
PA:TVB(PAB):N(]A+ai0'i)- (2.2

= ;’ (ul \/EUAB| v)pa(v| \/EUI\B|/-L>

So let us assume that the sté®el) is the initial state of the

_2 M i (1.2 whole A plus B system that evolves according to the given
= prPAN s ' unitary matrixU,g. Can we describe in this case the evolu-
tion of the subsystem in the form analogous to Eq1.2)?
where In order to answer the question we have to insert into the
equation
M= (P, Uael v). (1.3
r_ T
This is the well-known Kraus representatif8i of a super- pa=Tra(UappasUap) 2.3

operator $, that has been studied and used in the literature
broadly. On the other hand, dynamics of open system irthe expressioli2.1) for the density operatgs,g that results
which initial correlations between the system and the enviin
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1 1 W —1a[2/00)(00 +|B|2|11)(11],

P'AZE <IU“|UABN(1A+aiO'i)®M(JIB+,8]Tj)ULB|//«> pas=|al"100(00 +[A11)(1Y
p$3=(al00)+ B11))(a* (00 +B*(11]). (2.9

(7ij— @iB))

+ 2 <M|UABWUi® TJUI\B|:“> Obviously, the qubit®\ andB in these two-qubit states are in
K the same state, i.e.,
:E,L: (1|U ag(pa® pg)U gl 1) P&1)=Trs[p§\13]=TrB[p53§ :p(Az),
(1) _ (17— (21— ,(2)
(yii— i3} ps = Tral pRl=Tralpasl=ps" . (2.9
+> </~L|UAB#®®TJUI\B|M>' 2.9
o

On the other hand, the parametefsin the two-qubit states
(2.8) are different. Therefore, this simple model with identi-
cal states of subsystems but different correlations will illu-
minate the role of the correlations on dynamics of open
guantum systems.

- T oo Ul With the unitary evolution(2.6) the two-qubit systems
Pa ;» M”VPAM“VJF% (ulUnevijoi® iU nalus). with the two initial conditions(2.8) evolve at timet = /2

(2.5  into states such that the systefis described by the two

density operators

After rewriting y;; as yij:NMyi’j+aiﬂj we obtain from
Eq. (2.4) the expression

where the operato§l ,, are given by Eq(1.3). We see that

the resulting density operator describing the open sygtem " 1

during the time evolution consists of two terms. The first pa (t=ml2)=5(1+03),

term corresponds to the standard Kraus representation with

no initial correlations as discussed in Sec. I. The second term 1

in the right-hand side of Eq2.5) dependsonly on the cor- p(t= 77/2)=§[]l+(|a|2— 1815 a3], (210

relation parametersf{j that do notexplicitly depend on the

Ea[t'\?\;lﬁr chtohlce of ﬂ:je 'nt'ﬂal state of thf open systegseg ¢ respectively. We stress here that the open system has been in
eow. In other words, tese parameters cannot be Celeyq i, cases in the same initial state, i.ef=p@

mined by performing a local measurement on the initial state:|a|2|0><0| +|BI2/1)(1], the environment itself was in both

of the systemA cases, initially, in the same state as well. But due to different

This second term makes the E(.5 inhomogeneous . .- g :
; - . .~ initial correlations between the system and the environment
though linear—we will discuss this consequence of initial . .
the open system has evolved into two different states

correlations between the system and the environment in the 2
following section. pB(w/2) andpP(=/2).

Sxample 1We may regarcy, as addonal parameters | TS SXapl lusttes hat e i) coroatons ber
that together with the initial state of the environmegtand y y piay Imp

the unitary operatod g determine the time evolution of the role n the_dyn_am|cs of open systems. Moreover, in most of
o2 CAB . physical situations such correlations are present and there-
open system initially prepared in the staig. fore they have to be taken into account
To illustrate the possible significance gf we will study '
a simple model describing dynamics of two quligpin-1/2
particles. In this model one of the qubitd)) plays the role lll. MASTER EQUATION
of the open system while the second quBi} plays the role As follows from our previous discussion, both the state of
of the environment. Let the unitary evolution operatdfg  the environment and the initial correlations between the en-
acting on the joint system of these two qubits is given by theironment and the open system play significant roles in the
expression dynamics of the open system. Therefore, in order to charac-
_ o terize completely the evolution, it is necessary to determine
U=e " M'=]cost—iH sint, (2.6 (fix) the set of the paramete{@;}, i.e., the stateg of the
environment, and the parametgrg)} describing the corre-
lations. The parameters , 8, and yi’j arearbitrary condi-
1 1 tioned that the matrip,g describe a real physical state of
H=0,® =(1-0,)+1® = (1+0,), (2.77  the systemAB, that is, it is a density matrix. Specifically, if
2 2 we represent one particular choice of paramefters; ,'yi'j}
as a point in a N2M2—1)-dimensional spac&NM*-1),

whereH is the Hamiltonian

with o; being Pauli matrices. The interaction described by, .
i o
the Hamiltonian (2.7) corresponds to the well-known then the set of physically relevant parametess, 3;, v ;

controllednoT gate[2]. form a convex subse§ in the spaceRNM*~1). For ex-

Let us consider two initial conditionsiig andp(3 for the  ample, in the case af; (the same holds fof; and vi) there
two-qubit state, which in the computer ba$i),|1)} read is only a subseD, in the spaceRN"~1) from which we
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can choose the parametgeg} for which the matrixoag is a J R J

physical density matrix. Moreover this sub§gt depends on 1 PA =2 T(Dpa(0) + — £(1). (3.2
the choice of the remaining parametdys;} and{y;;}. In

other words, the subs@&@, might be different for different When we substitutep,(0), which formally can be deter-
choices of{g;} and{yi’j}. For example, if the systerA is  mined with the help of Eq(3.1) [7] into Eq. (3.2 we find
initially maximally entangled with the environment then its L 5

density operator has to be of the fortfiN. On the other J A

hand, )|lf thl?a systenA is in a pure state then the only possible ﬁpA(t):(ﬁT(t))%[PA(t)— EU)]+ &0,

initial density matrix of the system and the environment (3.3
must have the fornpag=pa® pg, SO that allyi’j have to be _ _ S

zero. Or, equivalently, if some of the paramet@(jsare not If we introduce a notation for the Liouvillian superoperator
zero then the statg, cannot be a pure state.

Sometimes it is very useful to describe the evolution of 2|95 1

. . X=| Tt | =——, (3.9
the open system in a form of a master equation. In order to at T(t)
do so we, firstly, rewrite the evolutiof2.5) in terms of the
left-right superoperator acting on the density operator then the master equation can be rewritten in the following

form
pa()=T(t)pa(0) +&(1), (3.9 g
——X t)—&(t)]=0. (3.5

where(t) is the inhomogeneous term that has its origin in (at )[pA( )= 4]

the presence of initial correlations between the open system

and the environment, i.e., from E(@.5 we have If the initial correlations were zero, then the master equa-

tion (3.5) reduces to the well-known forrtsee for instance,
Ref.[6])

f(t)=2ij <:U*|UAB'Yi,j0'i®O'jULB|M>' P
M ~

(E_X) pa(t)=0 (3.9
We stress once again that the operat() does not depend

explicitly on the initial state of the open systefponly the  \yhere the operatot is the same as in E¢3.5). Taking into

range of possible values of correlations is determined by thgccount the fact, that(t) does not depend on the initial state
choice ofp, and pg (see the discussion abgvés follows  ; (0) we can introduce the operator

from Eq. (2.5 the left-right action of the superoperatt)

is equal to the following normal action _ i_ 2
Flt)=| = x| & (3.7
T()pa(0)=2, M,LVPA(O)MLV- and rewrite the master equatié8.5 in an inhomogeneous
oy form
From our previous comments it follows that the choice of J .
the initial correlations restricts a set of density operapys (E_X) palt)=F(t). (3.8

for which Eq.(3.1) can be used. For instance, for pure states
the termé(t) is always zero. Therefore, if we would use Eq.

(3'13 W'th Qprlllzerog(t) f%r Qescr|b|ng ?ytnamms O.f ﬁ? opg:n environmentpg and the parameters of the unitary evolution
system infually prepared in a pure state, we mignt en URJAB,WhiIe the whole information about the initial correla-
with a completely unphysical situation. As discussed abov‘?ions between the open system and the environment is in the

this subset is determined by the condition, that dynam'c%perator]-'(t). Finally, we stress once again, that the initial

(1.2) has a physical meaning. This restriction reflects uantorrelations between the open system and the environment

tum nature of correlations betwgen the systgm and the €MVYetermine a class of possible density operators of the open
ronment and have to be taken into account in the derivatio

of dynamics of open quantum systems that are initially Cor_gystem that can be considered in E88).

related with the environment.
We have to keep in mind that there is always only a subset
O, of all the density matrices of the systeitor which the Till now we have studied how initial correlations between
Eqg. (3.1 with a given &(t) is valid. If, for example,&(t) the open system and the environment can influence the time
=0 then the Eq(3.1) is valid for all p, andO,=S, Where  evolution of the open system. We have found that these cor-
Sa is a set of all density matrices of the systémUnless  relations play an important role that cannot be neglected. In
&(t) equals to zer®, is a subset o8, . this section we will investigate properties of superoperators
After this preliminary comment we derive the master (evolutiong $ 5 acting on an open system that is a part of the
equation following the formalism presented in R]. Dif- composite systenfopen system and environmenitt is as-
ferentiating Eq(3.1) according to time we obtain sumed that two parts of the composite system can be initially

The superoperatat’ depends only on the initial state of the

IV. DISCUSSION
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correlated. The composite system is considered to be closed PAB=PA® P
so that it evolves unitarily according to a given unitary op-
eratorU ,gz. In what follows we will assume this evolution of such thatpg=p,. The unitary transformation that realizes

the “Universe” to be given. the desired map is then taken to be
First, we define the most general superoperdéwolu-
tion) that originates from a givebl 55 . UABziZj iY@ )il

Definition IV.1 Let Ais the system of interedB is the rest
of the Universe(the environment andU 55 is a given uni-
tary evolution on the whole system. Let us consider a map Obviously, there is nothing surprising here since if we know
the initial state of the systemy, exactly then we can perform
P:pa—paB; 4.7 an arbitrary map on the system. In some sense this situation
_ corresponds to a classical physics when a complete knowl-
which means that for eaqi, we choose ong,g from a set  gqge apout the state of the system is implicitly always as-
of all-possible density matrices of the Universe such that ¢;med. Knowing the initial state precisely we can perform
_ any map we wanf8].
Te(Pag) = Pa- (4.2 (b) Until now we had not considered the linearity condi-
The superoperatotthat describes the most general evolutiontion in association with the evolution & As we have al-

of the systemA is given by the expression ready commented the unitary evolutithg is by the defi-
nition linear, but the preparation mgp might be nonlinear.
$:pa—pa, (4.3 At this moment we can ask what conditions Brhave to be
imposed so that $ is linear. In order to proceed we remind
pa=Trg(UagpasUig). (4.4  us the definition of the linearity of the evolution ,$

_ ) _ Namely, $, is linear if
The mapP in Eq. (4.1 is related to the preparation of the

statep, of the systemA. We note that while preparing the , ‘
statep, of the systenmA the state of the Universe is changed $A( ; k,-pﬁ{)) - 2 7‘1$AP§AI) (4.5
as well. That is, in any act of the preparation of the system
we prepare a staje,g rather than an isolated staig of only  Now it is clear that ifP is linear, in a sense that
the systemA without affecting the systerB. For this reason
pag describes dcorrelated state of the open system and the i i
environment(Univers. Moreover, since the preparation is 7’(2' )“pg)) _Ei NP(pR)
an act in which a classical information is encoded into a
guantum system the map is not necessarily linear. There- then the evolution § is linear. The linearity ofP is a suffi-
fore the stateg=Tra[ pag] Might dependeven in a nonlin-  cient condition for the linearity of §. On the other hand, it
ear way on the statep,. For instance we can imagine the is not the necessary condition. We might imagine a nonlinear
map P of the formP(p) = pa® pa, Which describe the ac- mapP such that $, is linear. To understand this we formally
tion similar to quantum cloning that obviously is not possiblerepresent the evolution as $,=TrgUag, Where we use
within the framework of linear quantum mechanics, but camotation such thalt) sg(pag) = UaspasU ks . Then the linear-
easily be performed at the level of preparation of quantunity of $ , (4.5 can be expressed as
states. Analogously we can imagine a n({p,)=pa®pn,
wherep' is a transposed state. Taking into account thgg
is fixed then the only “freedom” in controlling the dynamics
is the choice of the map.

It is clear from the construction that the superoperator $ is
a trace-preserving map and that the final operafois Her-
mitian and positive, i.e., it is a valid density matrix. In what @7
follows we will study some aspects of the evolutions of the ‘

form IV.1. o _ _ From this last equation it follows that if the mapis linear,

(@ From the definition IV.1 it follows that for a given then $, is linear as well. On the other hand, from the linear-
Uag and an arbitrary mag> not all evolutions § can be iy of $, does not follow thatP is linear. This is a conse-
realized. On the contrary there exitlgg and’P such thata  guence of the property of the partial trace operatiog.Tr

given $, can be realized. To see this let us consider a fol-gpecifically, from the identity4.7) the equality
lowing example.

Example 2 Using the scenari®4.4) we can perform any . .
map $pa—px On a given(known) initial state p, of the UABP(Z Aipg)) :Ei NiUagP(pi), (4.8
systemA. Specifically, let $pp—p, is a given map. We
assume that the map acting during the preparation of the does not follow.
systemA is such that the composite system has been pre- (c) Next, we will consider consequences of another pos-
pared in the statpag sible restriction orfP. Namely, let us consider a rather fre-

(4.9

TrBUABP< §|: )\Ip,(ﬁl\)) :Ei )\i TrA UABP(pg))

=TrgUag Z \iP(pl
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quent condition, that the state of the environmantioes not  be chosen such tha®(p,)=pa®pg for all ps. But this

depend on the state of open systpm That is means that the evolution,$can be represented in the Kraus
representation3]. Consequently, this map is completely
TrA P(PA) =pg= const (49) positive [2]

for all pa. If pa is pure, then under the conditiqd.9) the

map P is uniquely defined such th&(pa)=pa®pg. ON

the other hand, ip 4 is impure, then under the conditi¢#.9) ACKNOWLEDGMENTS
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