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Wigner-function description of quantum teleportation in arbitrary dimensions
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We present a unified approach to quantum teleportation in arbitrary dimensions based on the Wigner-
function formalism. This approach provides us with a clear picture of all manipulations performed in the
teleportation protocol. In addition within the framework of the Wigner-function formalism all the imperfections
of the manipulations can be easily taken into account.
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All quantum mechanical phenomena may be described imill be shown that the entire process of quantum teleporta-
terms of quasiprobability distributions as an alternative to theion can be consistently described purely in terms of Wigner
direct application of density matrices. Wigner functions arefunctions, and in this context, the finite- and infinite-
especially frequently applied, as they behave similarly todimensional cases can be treated in a conceptually uniform
classical probability distributions from several points of way.
view. For quantum states with infinite-dimensional Hilbert The paper is organized as follows. After a brief review of
spaces, the application of Wigner functions has become some elements of finite-dimensional Wigner-function for-
standard part of considerations. For finite-dimensional Hil-malism, we describe the ideal Einstein-Podolsky-Rosen
bert spaces, the Wigner-function formalism was first investi-state. Then the entire teleportation process is discussed, and
gated by Wootter$l]. The discrete Wigner functions have conclusions are drawn.
shown to be useful in investigating coherent states in a finite- Consider a physical system with states described by the
dimensional basig2], in definition of Q functions and other N-dimensional Hilbert spacgl. We define two noncommut-

propensitieg 3], and also have played a role in the develop-jing Hermitian operators andp describing two canonically
ment of number-phase Wigner functiopd]. Quantum to-  conjugate quantities. We will call them “position” and “mo-
mography for finite—dimensional Wigner funpti.ons has alsomentum,” respectively, though they may be realized by sev-
been developed, applying a generalized definiffoh eral physical quantities, as, for instance, photon number and

A great deal of attention has been paid recently to thgpegg-Barnett phase operators on a truncated Fock space. The
phenomenon of quantum teleportation, which is the basigperators are defined as

primitive of quantum communication, and it is also interest-

ing from the point of view of quantum nonlocalif$]. The N-1 N-1

experimental feasibility of the phenomengn—10Q highly q=> Kk)(k|, p= > p X pil, (1)

contributes to the importance of these investigations. The k=0 =0

idea of quantum teleportation by Bennettal.[11] was for-

mulated on finite-dimensional Hilbert spaces. In this contextwhere the set ofk) position andp,;) momentum eigenstates

the conventional description applying Hilbert-space vectordoth form an orthonormal basis ¢, and

is appropriate. On the other hand, the idea of continuous-

variable quantum teleportation, proposed originally by Vaid- 1 N1

man [12], was first put into a quantum optical context by Ip)=— >, @Mk 2)

Braunstein and Kimble using the Wigner-function formalism YN &0

[13]. However, this scheme may also be described in terms

of either wave function$14,15 or Fock state$16], and a  holds.

low-dimensional coherent state description has also been de- Wigner functions for this discrete system can be defined

veloped recenthyf17]. A covariant description in terms of in a slightly different manner depending on the properties of

canonically conjugate observables and their eigenstates ibe numbem, the dimensionality of the corresponding Hil-

also possiblé¢18], providing a description valid for both dis- bert space. In what follows we will suppose tizis greater

crete and continuous dimensions. than 3 and it is a prime number. Though it introduces some
In this paper we present the description of quantum teleloss of generality, apart from technical details, there is no

portation purely in the framework of the Wigner-function significant physical difference between the cases discussed

formalism of quantum mechanics. The main emphasis is puand the remaining two possibilities. In caseM#2, a dif-

on the case of finite-dimensional Hilbert spaces, but wderent definition of the Wigner function has to be applied,

make some comments on the infinite-dimensional limits. ltwhile for compositeN’s, the phase spaces are Cartesian
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products of lower-dimensional phase spaces. Alternatively, D.+0,)|E = (D4 = _
one may use the formalism suggested in R&f. (P1tP2)|Ep.x)12= (P1+ P2)|Zprz

According to the original paper of Woottefd], the Following Bennet{11], we shall suppose that the sender

Wigner function corresponding to a state in a Hilbert spaceyjice and the receiver Bob share the subsystems 2 and 3 in
with dimensionN=3 prime is defined with the aid of the the entangled state

discrete Wigner operator
1 N—-1
Eooz=—— 2 [K)2lK)s. 10
[r)(s], ©)] |Z0.023 \/Nk2=10| )2lK)s (10

A 2T
A(Q,p)=2) Sz +sexRi (T —9)

In what follows, we shall use the term “EPR state” for this
tate. The Wigner function of this state can be calculated
according to Eqgs(3), (4), and(6) and is found to be

whereq andp take integer values from 0 td—1. The (@,p)
pairs constitute the discrete phase space. For a state
scribed by a density matrig the Wigner function is

1 - 1
W(a,p)=Tr(eA). (4 WEPR(Q2*D2,Q3aps):m b4, .059p,. - py- 1y

Wigner functions defined in this way obey analogous prop- Calculating the Wigner functions for subsystems 2 and 3
erties to those defined on infinite-dimensional Hilbert spacesaccording to Eq(7), both of them are found to be the con-
The marginal distributions of the functions stant 1N°. From this it follows that any of the marginals
describe a uniform distribution. This reflects the EPR nature
_ _ of the state: making observations on either of the subsystems
Po(@) % Wea.p), - Po(p) % wea.p) © separately, both position and momentum have random val-
ues. On the other hand, according to Ef), some joint
describe the statistics of measurements of observébtesj observables have a definite value as it is also clearly reflected
E)’ respectively. by Eg.(11): g,—q3=0 andp,+p;=0. From this we may
For multipartite systems, Wigner functions are defined conclude that the form of the EPR Wigner function in Eg.
similarly to the infinite-dimensional case, with the expecta-(11) could have been even a plausible ansatz. _
tion values of the direct product of the Wigner operators. In _1he Wigner function in Eq(11) shows the connection
what follows we consider multipartite systems with Hilbert With the EPR state used by Braunstein and Kimble for

spaces of equal dimension. For a bipartite system with sypEontinuous-variable teleportation. In the continuous-variable
systems 1 and 2, described by the joint density mafb®’ case for an ideal EPR state, Dirac deltas appear correspond-
' ’ ing to a state with infinite energy. Therefore instead of the

ideal EPR state, usually two-mode squeezed vacuum is con-

W(ql,pl,qz,pz)zéTr[Q(H)Al(ql,p1)®A2(q2,p2)] tsideTed instead, which results in the imperfection of the pro-
ocol.
et us consider the teleportation process. Alice, the
(6) L ider the tel i Alice, th

) ) - ) sender, and Bob, the receiver, have shared the EPR pair de-
Wigner functions describing a subsystem are obtained by ined by the Wigner function in EL1). In addition Alice
summing the joint Wigner function in the corresponding setj, oo system 1 in the arbitrary state described by a Wigner
of the respective variables, e.g., from Ef) we have functionW,,(q4,p4)- The joint Wigner function of the whole

N—1 system is thus
W(Qlapl):q ;—o W(d1,p1,02,P2), 1
2:P27
- ) W(ql,pl,q2,pz,q3,p3)=me(q1,p1)5q2,q35p2,7p3.
W(dz,p,) = E W(dy,P1,02,P2)- (12)
q1.p1=0

Alice has to carry out a projective measurement on sub-

For bipartite systems, the completely entangled Bell statesystems 1 and 2. This measurement is performed in the Bell
basis, which obviously projects the systems 1 and 2 on the

N-1 . Bell states(8). As we have already mentioned, these states
= — i(2m _ . . .. ~
|~p,x>12—\/ﬁ go € Plk)1lk—=x), ®) are simultaneous eigenstates of the joint observalles

=q,— 0, andP;=p; +p,. In order to describe the measure-

form an orthonormal basis on tfié® 7 Hilbert space of the ment, we have to express the Wigner function in ) in
joint system. These are common eigenstates of the followingerms of these variables anth=q;+q, and P,=p;—p,,

joint observables: instead ofqq,,p; and g,,p,. Note, that because of the
o moduloN arithmetics, the ranges of the new variables are
(Q1_Q2)|Ep,x>12:(CI1_Q2)|Ep,x>12a ) the same.
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This canonical transformation is more straightforward in
the infinite-dimensional case, where we can introdug@ £ w
factor in the definition of the new variables, and thus it is 0.04
easy to express the inverse transformation in the same fash-
ion. In our case, a division by 2 appears in the inverse for-
mula, which seems to be inappropriate at first sight. This 0
problem can be overcome in the following way: Nss odd,
we may introduce a “generalized division by 2” in the
moduloN sense as -0.04

—:

$ 2
5=
IR
) —.
— =

k

E, n even
D= s N 13
— N odd,

which has the property 2,(k)=k. Here we emphasize
again thatall additions, subtractions, and multiplications are
understood in the moduld- sense. With the aid of this op-
eration, the old variables can be expressed as

01=D(X1+X3), 0=Dy(X;—X3)
(14)

P1=Dy(P1+P3), p2=Dy(P1—P3).
The Wigner function in Eq(12) after the transformation is

W(X1,P1,X3,P2,03,P3)

FIG. 1. Shifting of Wigner function in a discrete phase space of
a quantum system with a 19-dimensional Hilbert sp&aeshows
the state, which is a discrete counterpart of the harmonic-oscillator
X Wi (Do( X1+ X5), Dy (P + Py)). (15 ground stategsee Ref[3]). (b) is the shifted version according to
the arrows in(a). Points of the phase space are indexed so that the
At this stage, all subsystems are entangled. Note, that th@ain peak is centered in the origin of a phase space; recall the
canonical transformation, which is described here by intromoduloN summation. We use units such that bathand p are
ducing new variables, is physically a unitary transformationdimensionless.
that entangles two subsystems and it even cannot be carried
out completely by using linear optical elemeni$)]. continuous case. Bob, possessing the vaKieand P4, can
Now we are ready to describe the Bell-state measurementestore the teleported state. The shift in a finite-dimensional
which results in valueX, and P, the classical information Hilbert space is illustrated in Fig. 1. Obviously, these shifts
that is sent to Bob. Summing the Wigner function in Etp)  correspond to translation&anonical transformationsn a
in variablesX,,P,,p3,q3, we obtain the probability distri- discrete phase space.
bution of the measurement results, which is equal to constant The required inverse transformation as described by Ben-
1/N?. Thus we can obtain each possible measurement resutett is
with equal probability, in accordance with Bennett's descrip-
tion. _ i(2m/IN)P 1k _
To describe the conditional projection by the measure- UXZ’Pl_Ek: € Hllk=Xe]. an
ment, we have to keep variablés and P, constants, as
these numbers constitute the result of the measurement, alids easy to verify that this transformation acts on a Wigner
we have to sum the Wigner function of Ed.5) in variables  function as

N2 O, ~X5,2030P, ~ P, ~2ng

Xy andP,, as we lose all information about these because of +
the projective measurement. This procedure is the exact ana-W' (4:P)=(Ux, p A(d,p)Ux, p ) =W(q—Xz,p—Py),
log of the continuous case. The resulting Wigner function has (18

to be renormalized and it has the form L . . ,
thus our description is perfectly consistent with Bennett's

Would3,P3) = Win(dz+ Xz, p3+ P1). (16) ~ results. _ _ . -
The similarity of our discussion to the original description
It is seen, that the resulting Wigner function is a shiftedof continuous-variable quantum teleportation by Braunstein
version of the original, and the shift is determined by theand Kimble is apparent. Care should be taken, however, if
result of the measurement. This is the exact analog of théhe actual infinite-dimensional limit is to be constructed from
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the description above, which is far from straightforward in- states with the appropriate Wigner function. While projective
deed. For instance, several nontrivial problems have to beeasurement is described by filtering with .delta funptions
overcome ifq andp is associated with photon numbers andere, a fuzzy measurement may be described by filtering
the Pegg-Barnett pha§20,21]. Wlth unsharp filters. This example suggests t_hat_ngner func-
In conclusion, we have shown that quantum teleportatior#'ons.may prove to be a useful FOOI _folr Investigating phr—.jnom-
can be described purely in terms of Wigner functions angna in multipartite systems with finite-dimensional Hilbert

this could have been possible even without mentioning thgPaces:

underlying Hilbert space. This approach has several advan- This work was supported by the IST Projects No. EQUIP
tages in the description of imperfections. Noisy entangle{IST-1999-11053 and QUBITS (IST-1999-1302}, and by
ment can be treated, similarly to the continuous case, bthe Research Fund of Hungaf@TKA) under Contract No.
replacing the Kronecker deltas describing ideal entangled034484.
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