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Wigner-function description of quantum teleportation in arbitrary dimensions
and a continuous limit
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We present a unified approach to quantum teleportation in arbitrary dimensions based on the Wigner-
function formalism. This approach provides us with a clear picture of all manipulations performed in the
teleportation protocol. In addition within the framework of the Wigner-function formalism all the imperfections
of the manipulations can be easily taken into account.
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All quantum mechanical phenomena may be describe
terms of quasiprobability distributions as an alternative to
direct application of density matrices. Wigner functions a
especially frequently applied, as they behave similarly
classical probability distributions from several points
view. For quantum states with infinite-dimensional Hilbe
spaces, the application of Wigner functions has becom
standard part of considerations. For finite-dimensional H
bert spaces, the Wigner-function formalism was first inve
gated by Wootters@1#. The discrete Wigner functions hav
shown to be useful in investigating coherent states in a fin
dimensional basis@2#, in definition ofQ functions and other
propensities@3#, and also have played a role in the develo
ment of number-phase Wigner functions@4#. Quantum to-
mography for finite-dimensional Wigner functions has a
been developed, applying a generalized definition@5#.

A great deal of attention has been paid recently to
phenomenon of quantum teleportation, which is the ba
primitive of quantum communication, and it is also intere
ing from the point of view of quantum nonlocality@6#. The
experimental feasibility of the phenomenon@7–10# highly
contributes to the importance of these investigations. T
idea of quantum teleportation by Bennettet al. @11# was for-
mulated on finite-dimensional Hilbert spaces. In this conte
the conventional description applying Hilbert-space vect
is appropriate. On the other hand, the idea of continuo
variable quantum teleportation, proposed originally by Va
man @12#, was first put into a quantum optical context b
Braunstein and Kimble using the Wigner-function formalis
@13#. However, this scheme may also be described in te
of either wave functions@14,15# or Fock states@16#, and a
low-dimensional coherent state description has also been
veloped recently@17#. A covariant description in terms o
canonically conjugate observables and their eigenstate
also possible@18#, providing a description valid for both dis
crete and continuous dimensions.

In this paper we present the description of quantum te
portation purely in the framework of the Wigner-functio
formalism of quantum mechanics. The main emphasis is
on the case of finite-dimensional Hilbert spaces, but
make some comments on the infinite-dimensional limits
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will be shown that the entire process of quantum telepo
tion can be consistently described purely in terms of Wig
functions, and in this context, the finite- and infinit
dimensional cases can be treated in a conceptually unif
way.

The paper is organized as follows. After a brief review
some elements of finite-dimensional Wigner-function fo
malism, we describe the ideal Einstein-Podolsky-Ros
state. Then the entire teleportation process is discussed
conclusions are drawn.

Consider a physical system with states described by
N-dimensional Hilbert spaceH. We define two noncommut
ing Hermitian operatorsq̂ and p̂ describing two canonically
conjugate quantities. We will call them ‘‘position’’ and ‘‘mo
mentum,’’ respectively, though they may be realized by s
eral physical quantities, as, for instance, photon number
Pegg-Barnett phase operators on a truncated Fock space
operators are defined as

q̂5 (
k50

N21

kuk&^ku, p̂5 (
l 50

N21

l upl&^pl u, ~1!

where the set ofuk& position andupl& momentum eigenstate
both form an orthonormal basis onH, and

upl&5
1

AN
(
k50

N21

ei (2p/N)kluk& ~2!

holds.
Wigner functions for this discrete system can be defin

in a slightly different manner depending on the properties
the numberN, the dimensionality of the corresponding Hi
bert space. In what follows we will suppose thatN is greater
than 3 and it is a prime number. Though it introduces so
loss of generality, apart from technical details, there is
significant physical difference between the cases discus
and the remaining two possibilities. In case ofN52, a dif-
ferent definition of the Wigner function has to be applie
while for compositeN’s, the phase spaces are Cartes
©2001 The American Physical Society01-1
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products of lower-dimensional phase spaces. Alternativ
one may use the formalism suggested in Ref.@5#.

According to the original paper of Wootters@1#, the
Wigner function corresponding to a state in a Hilbert spa
with dimensionN>3 prime is defined with the aid of th
discrete Wigner operator

Â~q,p!5(
r ,s

d2k,r 1s expF i
2p

N
p~r 2s!G ur &^su, ~3!

whereq andp take integer values from 0 toN21. The (q,p)
pairs constitute the discrete phase space. For a state
scribed by a density matrix% the Wigner function is

W~q,p!5
1

N
Tr~%Â!. ~4!

Wigner functions defined in this way obey analogous pr
erties to those defined on infinite-dimensional Hilbert spac
The marginal distributions of the functions

Pq~q!5(
p

W~q,p!, Pp~p!5(
q

W~q,p! ~5!

describe the statistics of measurements of observablesq̂ and
p̂, respectively.

For multipartite systems, Wigner functions are defin
similarly to the infinite-dimensional case, with the expec
tion values of the direct product of the Wigner operators.
what follows we consider multipartite systems with Hilbe
spaces of equal dimension. For a bipartite system with s
systems 1 and 2, described by the joint density matrix% (12),

W~q1 ,p1 ,q2 ,p2!5
1

N2
Tr@% (12)Â1~q1 ,p1! ^ Â2~q2 ,p2!#

~6!

Wigner functions describing a subsystem are obtained
summing the joint Wigner function in the corresponding
of the respective variables, e.g., from Eq.~6! we have

W~q1 ,p1!5 (
q2 ,p250

N21

W~q1 ,p1 ,q2 ,p2!,

~7!

W~q2 ,p2!5 (
q1 ,p150

N21

W~q1 ,p1 ,q2 ,p2!.

For bipartite systems, the completely entangled Bell sta

uJp,x&125
1

AN
(
k50

N21

ei (2p/N)kpuk&1uk2x&2 ~8!

form an orthonormal basis on theH^ H Hilbert space of the
joint system. These are common eigenstates of the follow
joint observables:

~ q̂12q̂2!uJp,x&125~q12q2!uJp,x&12, ~9!
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~ p̂11 p̂2!uJp,x&125~p11p2!uJp,x&12.

Following Bennett@11#, we shall suppose that the send
Alice and the receiver Bob share the subsystems 2 and
the entangled state

uJ0,0&235
1

AN
(
k50

N21

uk&2uk&3 . ~10!

In what follows, we shall use the term ‘‘EPR state’’ for th
state. The Wigner function of this state can be calcula
according to Eqs.~3!, ~4!, and~6! and is found to be

WEPR~q2 ,p2 ,q3 ,p3!5
1

N2
dq2 ,q3

dp2 ,2p3
. ~11!

Calculating the Wigner functions for subsystems 2 an
according to Eq.~7!, both of them are found to be the con
stant 1/N2. From this it follows that any of the marginal
describe a uniform distribution. This reflects the EPR nat
of the state: making observations on either of the subsyst
separately, both position and momentum have random
ues. On the other hand, according to Eq.~9!, some joint
observables have a definite value as it is also clearly refle
by Eq. ~11!: q22q350 andp21p350. From this we may
conclude that the form of the EPR Wigner function in E
~11! could have been even a plausible ansatz.

The Wigner function in Eq.~11! shows the connection
with the EPR state used by Braunstein and Kimble
continuous-variable teleportation. In the continuous-varia
case for an ideal EPR state, Dirac deltas appear corresp
ing to a state with infinite energy. Therefore instead of t
ideal EPR state, usually two-mode squeezed vacuum is
sidered instead, which results in the imperfection of the p
tocol.

Let us consider the teleportation process. Alice,
sender, and Bob, the receiver, have shared the EPR pai
scribed by the Wigner function in Eq.~11!. In addition Alice
has system 1 in the arbitrary state described by a Wig
functionWin(q1 ,p1). The joint Wigner function of the whole
system is thus

W~q1 ,p1 ,q2 ,p2 ,q3 ,p3!5
1

N2
Win~q1 ,p1!dq2 ,q3

dp2 ,2p3
.

~12!

Alice has to carry out a projective measurement on s
systems 1 and 2. This measurement is performed in the
basis, which obviously projects the systems 1 and 2 on
Bell states~8!. As we have already mentioned, these sta
are simultaneous eigenstates of the joint observablesX̂2

5q̂12q̂2 andP̂15 p̂11 p̂2. In order to describe the measur
ment, we have to express the Wigner function in Eq.~12! in
terms of these variables andX̂15q̂11q̂2 and P̂25 p̂12 p̂2,
instead of q1 ,p1 and q2 ,p2. Note, that because of th
modulo-N arithmetics, the ranges of the new variables a
the same.
1-2
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This canonical transformation is more straightforward
the infinite-dimensional case, where we can introduce aA2/2
factor in the definition of the new variables, and thus it
easy to express the inverse transformation in the same f
ion. In our case, a division by 2 appears in the inverse
mula, which seems to be inappropriate at first sight. T
problem can be overcome in the following way: AsN is odd,
we may introduce a ‘‘generalized division by 2’’ in th
modulo-N sense as

D2~k!5H k

2
, n even

k1N

2
, n odd,

~13!

which has the property 2D2(k)5k. Here we emphasize
again thatall additions, subtractions, and multiplications a
understood in the modulo-N sense. With the aid of this op
eration, the old variables can be expressed as

q15D2~X11X2!, q25D2~X12X2!

~14!
p15D2~P11P2!, p25D2~P12P2!.

The Wigner function in Eq.~12! after the transformation is

W~X1 ,P1 ,X2 ,P2 ,q3 ,p3!

5
1

N2
dX12X2,2q3

dP12P2,22p3

3Win„D2~X11X2!,D2~P11P2!…. ~15!

At this stage, all subsystems are entangled. Note, that
canonical transformation, which is described here by int
ducing new variables, is physically a unitary transformat
that entangles two subsystems and it even cannot be ca
out completely by using linear optical elements@19#.

Now we are ready to describe the Bell-state measurem
which results in valuesX2 andP1, the classical information
that is sent to Bob. Summing the Wigner function in Eq.~15!
in variablesX1 ,P2 ,p3 ,q3, we obtain the probability distri-
bution of the measurement results, which is equal to cons
1/N2. Thus we can obtain each possible measurement re
with equal probability, in accordance with Bennett’s descr
tion.

To describe the conditional projection by the measu
ment, we have to keep variablesX2 and P1 constants, as
these numbers constitute the result of the measurement
we have to sum the Wigner function of Eq.~15! in variables
X1 andP2, as we lose all information about these because
the projective measurement. This procedure is the exact
log of the continuous case. The resulting Wigner function
to be renormalized and it has the form

Wout~q3 ,p3!5Win~q31X2 ,p31P1!. ~16!

It is seen, that the resulting Wigner function is a shift
version of the original, and the shift is determined by t
result of the measurement. This is the exact analog of
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continuous case. Bob, possessing the valuesX2 andP1, can
restore the teleported state. The shift in a finite-dimensio
Hilbert space is illustrated in Fig. 1. Obviously, these shi
correspond to translations~canonical transformations! in a
discrete phase space.

The required inverse transformation as described by B
nett is

UX2 ,P1
5(

k
ei (2p/N)P1kuk&^k2X2u. ~17!

It is easy to verify that this transformation acts on a Wign
function as

W8~q,p!5^UX2 ,P1

† A~q,p!UX2 ,P1
&5W~q2X2 ,p2P1!,

~18!

thus our description is perfectly consistent with Benne
results.

The similarity of our discussion to the original descriptio
of continuous-variable quantum teleportation by Braunst
and Kimble is apparent. Care should be taken, howeve
the actual infinite-dimensional limit is to be constructed fro

FIG. 1. Shifting of Wigner function in a discrete phase space
a quantum system with a 19-dimensional Hilbert space.~a! shows
the state, which is a discrete counterpart of the harmonic-oscill
ground state~see Ref.@3#!. ~b! is the shifted version according t
the arrows in~a!. Points of the phase space are indexed so that
main peak is centered in the origin of a phase space; recall
modulo-N summation. We use units such that bothq and p are
dimensionless.
1-3
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the description above, which is far from straightforward
deed. For instance, several nontrivial problems have to
overcome ifq̂ and p̂ is associated with photon numbers a
the Pegg-Barnett phase@20,21#.

In conclusion, we have shown that quantum teleportat
can be described purely in terms of Wigner functions, a
this could have been possible even without mentioning
underlying Hilbert space. This approach has several adv
tages in the description of imperfections. Noisy entang
ment can be treated, similarly to the continuous case,
replacing the Kronecker deltas describing ideal entang
,

r,

cu

, H
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states with the appropriate Wigner function. While projecti
measurement is described by filtering with delta functio
here, a fuzzy measurement may be described by filte
with unsharp filters. This example suggests that Wigner fu
tions may prove to be a useful tool for investigating pheno
ena in multipartite systems with finite-dimensional Hilbe
spaces.
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