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Singlet states and the estimation of eigenstates and eigenvalues of an unknown controllédyate
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We consider several problems that involve finding the eigenvalues and generating the eigenstates of un-
known unitary gates. We first examine controllddgates that act on qubits and assume that we know the
eigenvalues. It is then shown how to use singlet states to produce qubits in the eigenstates of the gate. We then
remove the assumption that we know the eigenvalues and show how to both find the eigenvalues and produce
qubits in the eigenstates. Finally, we look at the case where the unitary operation acts on qutrits and it has two
eigenvalues of 1 and one of1. We are able to use a singlet state to produce a qutrit in the eigenstate
corresponding to the-1 eigenvalue.
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[. INTRODUCTION eigenvalue estimation algorithm. In many cases, however,
there will be little if any information to guide ones choice,
A common problem, which arises in quantum mechanicswith the result that the input state may have a very small or
is finding the eigenvalues and eigenstates of an operator, usno overlap with the desired eigenstate.
ally the Hamiltonian. The eigenvalues are the values that the Here we shall show that a different input state, a singlet
observable Corresponding to the operator can assume, aﬁtﬁte, allows one to find all eigenvalues and eigenstates of an
the eigenstates are the states of the system in which théfiknown controlledd gate simultaneously. We shall start
observable will have a definite value. with the case of a single qubit gate where we know the
With the advent of quantum algorithms, a natural questiorfigenvalues and wish to generate output qubits in the eigen-
to raise is whether there are quantum algorithms that wilStates of the gate. We shall then proceed to the case where
efficiently find the eigenvalues and eigenvectors of operathe gate still operates on only a single qubit, but we do not
tors. The answer to this question is, in fact, yes. Based oknow either its eigenvalues or its eigenstates. Our object then
earlier work by Kitae\{1], Cleveet al. developed an algo- IS t0 find the glgenvalues and proquce output qubits in the
rithm that can estimate an eigenvalue if one copy of thefigenstates. Finally, we shall consider a controlledate
eigenstate is providef®]. This algorithm was analyzed fur- that acts on q.utrlts, which are three-stgte guantum systems,
ther by Abrams and Lloy@i3]. They pointed out that it is not and has two eigenvalues of 1 and one eigenvalue bf It is
necessary to have a copy of an eigenstate to use this pmd@ossible to use a singlet state to produce a quitrit in the eigen-
dure. One can start with an arbitrary input state, and at thétate corresponding to the eigenvalael with a network
end of the procedure, one will obtain an eigenvalue correthat contains only two controlled- gates. This procedure is
sponding to an eigenstate that has a nonzero overlap with ttasily generalized t@®-dimensional quantum systems, qu-
input state. This is not a deterministic procedure; we couldlits. Given a controlled gate that acts on qudits and has
obtain any eigenvalue whose eigenstate has a significagigenvalues 1, which isi{—1)-fold degenerate, and 1, it
overlap with the input vector. In addition, Abrams and Lloyd is possible to produce a qudit in the eigenstate with eigen-
showed that at the output one has not only the eigenvalu&/@lue —1 by using a network containing — 1 controlledJ
but a set of qubits that is in a state that is a good approxigates.
mation to the eigenstate corresponding to the measured ei-

genvalue. How good this approximation is was recently in- Il. GENERATION OF EIGENSTATES
vestigated by Travaglione and Milbuf#]. OF A CONTROLLED- U GATE
This procedure requires that one have some knowledge WITH KNOWN EIGENVALUES

about the eigenstate one is trying to generate and whose ei-

genvalue one is trying to find. In particular, it is necessary Consider the following problem. We are given a
that the input state have a substantial overlap with the desontrolledy gate which acts on single qubits and we would
sired eigenstate. It may be possible to accomplish this ifike to generate its eigenstates. We know that the eigenvalues
there is some information available that allows a guess foof the gate are 1 ané 1, but we have no information about
the state to be made. For example, when finding the groundts eigenstates. A measurement-based strategy for doing this
state energy of a not-too-complicated Hamiltonian, it mightwould involve sending qubits through the gate and measur-
be possible on physical grounds to obtain a rough idea ding them. For example, we could use the basis st@eand
what the ground state would look like, and this information|1) to obtain information about the matrix elementstbin
could be used to design an appropriate input state for ththat basis. If we send the staf&),|0),, wherea is the
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control bit andb is the target bit, through the gate, the prob- After qubitsa and b go through the controllet} gate the
ability that the target qubit at the output is in the stfly,  state of the system is

can be measured. This probability is just equg{@U|0)|2.

The probability that the target qubit is in the stgtg, is just
[(1|U|0)]?. These measurements give us information about
two of the matrix elements df), and the fact that we know
that the eigenvalues are 1 andl means that these are the HDa(luplu-)etudplui)d)].  (8)
only two we have to know. In particular, we have that

1
|\I,0ut>abc:§[|0>a(|u+>b|u—>c_|u—>b|u+>c)

We now want to measure treequbit in the|£x) basis. In

(0lu|0y=—(1|U|1), (OJU|1)=(1|UjO)*. (D) order to see the result of doing so we can expl8ss,¢)apc
as
Information about the relative phase of these matrix elements L
can be gained by using the input stai@)(+€'?|1))/y2. The (s L
probability p, that the output vector is in the sta@) is W oupane \/§(| X)al Ui )plU_)c—[—=X)alu)pluy)e).
€)

This equation implies that if we measuaeand get|+x),

After sending through many qubits we would have an estithen qubitb is in the 1 eigenstate and qulgitis in the —1
mate of the matrix elements, and we could then diagonalizgijgenstate, while if we gét- x), then it is just the other way
the matrix. This information could then be used to generatground. Therefore, with one use of the gate we have, with
qubits in the eigenstates bk This procedure involves many certainty, generated its two eigenstates.
qubits and many uses of the gate. What we shall now present Now let us see what happens when the eigenvalues are
is a quantum strategy that will produce both eigenstates withot +1 but two other complex numbers of modulus unity.
certainty using only three qubits and requiring only one us&ye shall denote the eigenstates |ag) and |u,) and the
of the gate. _ corresponding eigenvalues as e ande'’:, respectively.

Leta andb be the control and target qubits of the gate, asye again use the same three-qubit scheme and choose the

by c. We now define the following states: by

Po=[0[U]0)+€'(0[U1)P. 2

1 1
%)= _2(|O>i 1), |\Pout>abc:ﬁ(|vl>a|ul>b| Uz)e—[v2)alUz)plUr)c),

) (10
1
=—(|01)—|10)), where
|bs) ﬁ(I )—110))
and note that the rotational invariance of the singlet state, )= i(|o>+ei 01)1)),
|ps), implies that it can also be expressed as V2
11
1 1 io
|¢s>:E(|U+>|u7>_|u7>|u+>)v 4 |02>:E(|0>+e 21)).

where|u, ) is the eigenstate df with eigenvalue 1 anfli_)  Note that|v,) and|v,) are not orthogonal, but because we
is the eigenstate with eigenvaluel. More explicitly, the assume we know the eigenvalues, these vectors are known.

transformation specified by At this point we can apply the optimal procedure for distin-
guishing two nonorthogonal statEs—7]. This is a general-
V[0)=|uy), V|1)=|u_) (5  ized measurement that can be applied when we are given a

. ] o ) state, which is one of two known states, and we want to
is unitary and, becaugey) is invariant under U(2pU(2),  determine which of the two states it is. The measurement has
we have one of three possible outcomes; it either tells us without error
which of the two states we have, or it tells us that it has
(VOV)|ds)=|ds). ©®  failed to distinguish the states. Applied [t®,) and|v,), the

Because the phase of the eigenstates is arbitrary, in genei%rlocedure would succeed with a probability of

Egs. (4) and (6) will be true only up to an overall phase 1
factor, but we shall assume that the phaselsieh and|u_) 1—|vqlv)|=1— —=[1+cos 6;— )12 (12)
are such that the phase factor is equal to one. J2

We now start our three-qubit system in the state
The closer the phase difference between the eigenvalues is to

| WinYane=|+X)al Ps)be- (7)  , the greater the probability of success of this procedure. If
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lvy) is detected at outpw, then|u, ) is at outputb and|u,) ~ eigenvalue will emerge from output, and the eigenstate
atc. On the other hand, ifv,) is detected af, then|u,) is corresponding to the other, unknown, eigenvalue will emerge
atb and|u,) is atc. from outputd. _ _ _

If one allows more than one use of the gate there are other This procedure will allow us to find one of the eigenval-
possibilities. Suppose that we know the eigenvalued afe ~ Ues, if we know that they belong to a limited set, and gener-
1 andi. Then the eigenvalues &f2 are 1 and—1. We can at€ both eigenstates. A better procedure would allow us to

then apply the above procedure to generate the eigenstat@%d both eigenvalues, remove the restriction that they belong
with one modification. The three-qubit initial state is the (0 @ particular set, and generate both eigenstates. Such an
same, but qubita andb pass through two controlled-gates ~ &lgorithm is presented in Sec. IIl.

instead of one. Again qub# is measured at the output in the

| £x) basis. If| +x) is found, then the eigenstate correspond- Ill. APPLICATION OF PHASE ESTIMATION TO FIND

ing to 1 is at outpub and that corresponding tds at output UNKNOWN EIGENVALUES AND EIGENVECTORS

c. If |=x) is fo_und, theb andc outputs are reversed. Suppose that we have an unkown controllédyate, and
As preparation for Sec. lll, let us consider one last, harder

roblem. Suppose that we know that the eigenvalues are nai€ want to find its eigenvalues and generate qubits in its
tphe sam.e apn% that thev are members ofgthe{ﬂ;efli %lgenstates. This can be done by modifying the phase esti-
’ y i mation algorithm of Clevest al. and using a singlet state as

r;;}'uolr? ;rtl)lzuﬁﬁi \(/avie :ﬁ\)’;u%irt'::];aw:;tg?s &:Ttpgsteégg?;he input[2]. One takes two phase-estimation circuits for the
g ' 9 9 Ame gate and sends into each circuit one of two particles,

qubits in the eigenstates. This can b% done usi.ng four qubit%\’/hich together form a singlet state. This avoids the main
a controlledt) gate, and a controlled” gate. T_h|5 last gate disadvantage of the original algorithm. There, besides the
can .be gonstructed from two controlleﬂgattzas N SEqUENCE.  -ontrolledy gates, one also needed a qubit prepared in one
.QUb'ta is the cpntrol bit for the controlled) gate,. qubﬂb of the eigenstates. Sending this qubit through the network
s the cqntrol bit for the controllet gate, an'd qubic is the would then generate an estimate of the eigenvalue for this
tqrget bit for bOt.h' Le¢u1> and|u,) be the eigenstates &f eigenstate. An alternative is to send in a random qubit, in
with corresponding eigenvalues andz,, wherez, andz, \pich case one gets an estimate for a random eigenvalue. In
are members of the s¢t,—1,,—i}. The input state is particular, the estimate corresponds to one of the eigenvalues
whose eigenstates have a nonzero overlap with the input

state. The original qubit is left in a state that is in close
[Win)abea= |+ X)al +X)b| ds)ca=|+X)al +X)b E) approximation to the eigenstate corresponding to the mea-
sured eigenvalug3,4].
X (|up)eluzdg—[uz)elur)g). (13 Each of the two networks, which we shall lak®ebnd B,

is constructed as follows. We hawvecontrol qubits, which
for network A we shall callA1,A2,...An, and one target
bit, which we shall calA. Each of the control bits is initially
in the state [0)+|1))/\2. Control bitA] is connected to a

The output state of the network is given by

_ 2
¥ oudabed= Gac(U) Goc(U)[Windaved gate that does nothing if the control bit is 0, and performs the
1 operamtionUzJ_l if the control bit is 1. The networlB is
ZE[GOO)M# 2,|01) 4+ 22|10 o, identical. The effect of the entire network is given by
n—-1
+23]10) ap) [Ug) c|Uz)g— (|00 apt 22 0L p [Woud=Cens(U* ) .- Gans(V)
n—-1
+25|10)apt 231 10) ) [Uz)lup)dl, (14 XGana(U? ) ... Gana(V)[Win).  (16)

Let the eigenstates af be |u;) and|u,) with eigenvalues
e'%1 ande'?2, respectively. As before, the singlet state can be
expressed in terms of these eigenstates

whereG;,(U") is the operator corresponding to a controlled-
U" gate with control bif and target bik. Now consider the
vector

1
|72 ar= 3 (100t 20D+ 2210 05+ 211 0). [#daa= 7 ndaluzda=luzlalttye). (17

(15 The initial state of the system is then

The vectors |77(1)>aba |77(_1)>aba |77(i)>aba and

. 4 1
| 7(—1))ab form an orthonormal basis of the space of the two | W)= W(|u1)A|u2>B— [us)alus)e)
qubitsa andb. If we now measure the two-qubit systeah
in this basis, we can determine one of the eigenvaludd, of n—1 n—1
e.g., if the result of the measurement ig1)),,, then one % H (|0>Aj+|1>A]_)H (|0) gt | 1)) (18)
of the eigenvalues is 1. The eigenstate corresponding to this i=o k=0
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After passing through the networks this state becomes

1 n—1 B
|‘I’in>—>W |U1>AJHO (|0>Ai+elzj¢l|l>Aj)|u2>B

n—1 n—1

XI];[O (|0>Bk+ei2k¢2|l>8k)_|u2>Aj].:.[0 (10) aj

n—1
+e|21¢2|1>Aj)|ul>Bk1:[0 (10)gt+ €% %1 1)gy) |.

19

The products in the above equation can be expressed as a

sum ovemn-digit binary numbers. For example,

n-1 2n—1
j[[o (|O>Ai+eizj¢l|1>Aj)= ygo ei¢1y|y>An ..... Al -

The first digit of then-digit binary numbely corresponds to
the state of systerAn, the second to that &(n—1), and so

on. In the above equation we have indicated this explicitly
with subscripts on the state, but in the future these will be 1
omitted and this correspondence will be understood. It is still

necessary to indiciate whethpy) is a state ofAn, ... Al
orBn, ... ,B1, and this will be indicated by the subscripts
andB, respectively. We then have that

2N—1

| Winitial) — %[ | Ul)A( y§=:0 ei¢ly|Y>A) luz)e

2N-1
X( 20 ei¢2W|W>E> —[uz)a

w=

><( > e‘¢2y|y>x>|u1>s( > e‘<"1W|W>§)
y=0 0

w=

(21
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2n-1 B
z e27riy[(xj/2”)+§j]|y>
y=0

2"—1 2"-1
1

_)27/2 E E ezmy(?j—z)/znezwiy(sjlz>. (24)
y=0 z=0

It is possible to perform thg summation in the above equa-
tion

2n—1
g(Z,;] !5J) —— 2 e2wiy(xj72)/2"eZwiy5,-
2" y=o0
1 1_e277i 5j2n

- E 1— e2m{l(xj—2)/2" + 5} (25

This function is peaked about=;j and the maximum value
of its magnitude is greater than2[2]. After applying the

inverse Fourier transform to both systemsandg, our state
is
2n-1

|U1>A< ZZO 9(2;;1-51)|Z>A) luz)g

|\Pout>zﬁ
2n-1 B
><( 520 g(S:x2,52)|3>§)
-1 B
_|U2>A< ZZO 9(2§X2752)|Z>A)|U1>B

21 .
X( g(s;x1,51)|8>s)l- (26)

s=0
We now measure both systerAsand B in the computa-
tional basis. The most likely results are eitigfor A andx,
for B, in which case qubif is in |u;) andB is in |u,), or X,
for A andx, for B, in which case qubif is in |u,) andB is

The next step is to appiy the quantum inverse Fourier transp luy). In either case we have both the eigenval(tesn

form operation to state& andB. This takes the state) to

ly)— (22)

places in base)2and qubits in the eigenvectors.

IV. HIGHER-DIMENSIONAL SYSTEMS

2n—1
1 2 efzrriyz/2”|z>_
2" =0 The reasoning in the preceding sections can be extended
. ) from qubits to quditsD-dimensional quantum systems. The
Before applying this, however, we want to express the phaseg)y antisymmetric state oD D-dimensional quantum sys-

¢1 and ¢, in different way. First, letx;=¢;/(2m) for | ems is aU(D) singlet[8]. If we denote the computational
=1,2, which implies that &x;<1. In addition, letx; be the  basis states bjn), wheren=0,1, ... D—1, this state can
closest integer to "X; (we assume; is expressed in binary be expressed as

form) so that D_1

X
Xj=— 0

i=on (23

1 D—-1
[6:(00)= 57 2 1 2 i aoli) o),

(27)

where |5]|§1/2n+1 If we now app'y the inverse Fourier WhereSJ’l ’’’’’ jD is the tOtally antisymmetl’ic tensor of rank

transform we find that

D. Now consider a unitary operattf whose eigenstates are
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|uj), wherej=1, ... D. The fact thaf ¢5(D)) is a singlet ~We now measure qubitsandb in the|+x) basis. If we find
means that it can be expressed as a in the |—x) state, then qutrit is in the eigenstate with
eigenvalue— 1, while if qubitb is in the| —x) state, then it
is qutrit d that is in the—1 eigenstate. Finally, if both of
these qubits is found to be in the x) state, then qutrie is
(28)  inthe —1 eigenstate.

o In the corresponding problem for quditd,has eigenval-
wheree'# is a phase factor that depends on how the phasg§as — 1 which is nondegenerate, and 1, which is

of the eigenstates are chosen. We shall subsequently ass”'(‘ﬁ—l)-fold degenerate. The object is to produce a qudit in

thaﬁ they have been_ chosen so th‘jﬁo' the eigenstate corresponding t01. To do so one uses a
eF us now co_nsm_ier the following prot_)lem fqr the Case etwork consisting oD —1 qubits, D qudits in a singlet

D =3; its generalization to the case of arbitrary dimension is :
straightforward. We are given a controllédgate, where the sFate, andD—; cpntrolledU gatgs. T'he procedure IS a
control is a qubit and the target is a qutrit. If the control qubitSlmple generalization of the one just discussed for qutrits.
is in the statd0) nothing happens to the target qutrit, and if
it is in the state|1), the operationU is performed on the
qutrit. This gate corresponds to the operaar(U), wherej V. CONCLUSION
is the control qubit andt is the target qutrit. We shall assume
that the operatotJ has eigenvalues 1 and1, where the
eigenvalue 1 is degenerate, and we would like to produce
qutrit in the eigenstate corresponding-tdL.

This can be done with two controlldd-gates, two qubits,
and three qutrits. The initial state of the system is

i1=1

1 . D D
|ps(D))= ﬁe'“ > '121 gy, iplli e up),
. D—

We have shown that singlet states in combination with
controlledy gates can be used to produce qubits or qudits,
0 eigenstates of the operator If U is the evolution opera-
tor corresponding to some Hamiltonian, its eigenstates are
just those of the Hamiltonian. This procedure will not tell us
what those eigenstates are, but we can perform measure-

[Win)a...e=[+X)al T X)b| bs(3))cde- (29 ments on the qudits in those states in order to gain informa-

tion about them. We may also simply be interested in per-

Particlesa andb are qubits and, d, ande are qutrits. Qubit  forming further operations on these states without measuring
a is the control bit for qutritc and qubitb is the control bit them first, and we now have a way of producing them.

for qutrit d. The output state is given by If singlet states are combined with the phase-estimation
algorithm for finding eigenvalues df, we can, in a certain
[V oupa...e=Gac(U)Gpa(U)|[Win)a. . e (30 sense, diagonalize the operator. We saw that for qubits we

both knew the eigenvalues, at least to a level of approxima-
tion that we can determine, and we produced qubits in states
that are very close to the eigenstateslWbfThis procedure
should generalize to qudits.

Let |u;) and|u,) be orthonormal eigenstates of with ei-
genvalue 1 anfv) be the eigenstate with eigenvaluel. In
terms of these states we have that

1
|\I’out>a- . -e:_[| _X>a| +X>b(|vu1u2>cde_ |vu2u1>cde)
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