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Singlet states and the estimation of eigenstates and eigenvalues of an unknown controlled-U gate
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We consider several problems that involve finding the eigenvalues and generating the eigenstates of un-
known unitary gates. We first examine controlled-U gates that act on qubits and assume that we know the
eigenvalues. It is then shown how to use singlet states to produce qubits in the eigenstates of the gate. We then
remove the assumption that we know the eigenvalues and show how to both find the eigenvalues and produce
qubits in the eigenstates. Finally, we look at the case where the unitary operation acts on qutrits and it has two
eigenvalues of 1 and one of21. We are able to use a singlet state to produce a qutrit in the eigenstate
corresponding to the21 eigenvalue.
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I. INTRODUCTION

A common problem, which arises in quantum mechan
is finding the eigenvalues and eigenstates of an operator,
ally the Hamiltonian. The eigenvalues are the values that
observable corresponding to the operator can assume,
the eigenstates are the states of the system in which
observable will have a definite value.

With the advent of quantum algorithms, a natural quest
to raise is whether there are quantum algorithms that
efficiently find the eigenvalues and eigenvectors of ope
tors. The answer to this question is, in fact, yes. Based
earlier work by Kitaev@1#, Cleveet al. developed an algo
rithm that can estimate an eigenvalue if one copy of
eigenstate is provided@2#. This algorithm was analyzed fur
ther by Abrams and Lloyd@3#. They pointed out that it is no
necessary to have a copy of an eigenstate to use this p
dure. One can start with an arbitrary input state, and at
end of the procedure, one will obtain an eigenvalue co
sponding to an eigenstate that has a nonzero overlap with
input state. This is not a deterministic procedure; we co
obtain any eigenvalue whose eigenstate has a signifi
overlap with the input vector. In addition, Abrams and Llo
showed that at the output one has not only the eigenva
but a set of qubits that is in a state that is a good appr
mation to the eigenstate corresponding to the measure
genvalue. How good this approximation is was recently
vestigated by Travaglione and Milburn@4#.

This procedure requires that one have some knowle
about the eigenstate one is trying to generate and whos
genvalue one is trying to find. In particular, it is necess
that the input state have a substantial overlap with the
sired eigenstate. It may be possible to accomplish thi
there is some information available that allows a guess
the state to be made. For example, when finding the grou
state energy of a not-too-complicated Hamiltonian, it mig
be possible on physical grounds to obtain a rough idea
what the ground state would look like, and this informati
could be used to design an appropriate input state for
1050-2947/2001/64~4!/042303~5!/$20.00 64 0423
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eigenvalue estimation algorithm. In many cases, howe
there will be little if any information to guide ones choic
with the result that the input state may have a very smal
no overlap with the desired eigenstate.

Here we shall show that a different input state, a sing
state, allows one to find all eigenvalues and eigenstates o
unknown controlled-U gate simultaneously. We shall sta
with the case of a single qubit gate where we know
eigenvalues and wish to generate output qubits in the eig
states of the gate. We shall then proceed to the case w
the gate still operates on only a single qubit, but we do
know either its eigenvalues or its eigenstates. Our object t
is to find the eigenvalues and produce output qubits in
eigenstates. Finally, we shall consider a controlled-U gate
that acts on qutrits, which are three-state quantum syste
and has two eigenvalues of 1 and one eigenvalue of21. It is
possible to use a singlet state to produce a qutrit in the eig
state corresponding to the eigenvalue21 with a network
that contains only two controlled-U gates. This procedure i
easily generalized toD-dimensional quantum systems, q
dits. Given a controlled-U gate that acts on qudits and ha
eigenvalues 1, which is (D21)-fold degenerate, and21, it
is possible to produce a qudit in the eigenstate with eig
value21 by using a network containingD21 controlled-U
gates.

II. GENERATION OF EIGENSTATES
OF A CONTROLLED- U GATE

WITH KNOWN EIGENVALUES

Consider the following problem. We are given
controlled-U gate which acts on single qubits and we wou
like to generate its eigenstates. We know that the eigenva
of the gate are 1 and21, but we have no information abou
its eigenstates. A measurement-based strategy for doing
would involve sending qubits through the gate and meas
ing them. For example, we could use the basis statesu0& and
u1& to obtain information about the matrix elements ofU in
that basis. If we send the stateu1&au0&b , where a is the
©2001 The American Physical Society03-1
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control bit andb is the target bit, through the gate, the pro
ability that the target qubit at the output is in the stateu0&b
can be measured. This probability is just equal toz^0uUu0& z2.
The probability that the target qubit is in the stateu1&b is just
z^1uUu0& z2. These measurements give us information ab
two of the matrix elements ofU, and the fact that we know
that the eigenvalues are 1 and21 means that these are th
only two we have to know. In particular, we have that

^0uUu0&52^1uUu1&, ^0uUu1&5^1uUu0&* . ~1!

Information about the relative phase of these matrix eleme
can be gained by using the input state (u0&1eiuu1&)/A2. The
probability p0 that the output vector is in the stateu0& is

p05 z^0uUu0&1eiu^0uUu1& z2. ~2!

After sending through many qubits we would have an e
mate of the matrix elements, and we could then diagona
the matrix. This information could then be used to gener
qubits in the eigenstates ofU. This procedure involves man
qubits and many uses of the gate. What we shall now pre
is a quantum strategy that will produce both eigenstates w
certainty using only three qubits and requiring only one u
of the gate.

Let a andb be the control and target qubits of the gate,
before. To this we add a third qubit, which we shall den
by c. We now define the following states:

u6x&5
1

A2
~ u0&6u1&),

~3!

ufs&5
1

A2
~ u01&2u10&),

and note that the rotational invariance of the singlet st
ufs&, implies that it can also be expressed as

ufs&5
1

A2
~ uu1&uu2&2uu2&uu1&), ~4!

whereuu1& is the eigenstate ofU with eigenvalue 1 anduu2&
is the eigenstate with eigenvalue21. More explicitly, the
transformation specified by

Vu0&5uu1&, Vu1&5uu2& ~5!

is unitary and, becauseufs& is invariant under U(2)̂ U(2),
we have

~V^ V!ufs&5ufs&. ~6!

Because the phase of the eigenstates is arbitrary, in ge
Eqs. ~4! and ~6! will be true only up to an overall phas
factor, but we shall assume that the phases ofuu1& anduu2&
are such that the phase factor is equal to one.

We now start our three-qubit system in the state

uC in&abc5u1x&aufs&bc . ~7!
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After qubits a and b go through the controlled-U gate the
state of the system is

uCout&abc5
1

2
@ u0&a~ uu1&buu2&c2uu2&buu1&c)

1u1&a~ uu1&buu2&c1uu2&buu1&c)]. ~8!

We now want to measure thea qubit in the u6x& basis. In
order to see the result of doing so we can expressuCout&abc
as

uCout&abc5
1

A2
~ u1x&auu1&buu2&c2u2x&auu2&buu1&c).

~9!

This equation implies that if we measurea and getu1x&,
then qubitb is in the 1 eigenstate and qubitc is in the 21
eigenstate, while if we getu2x&, then it is just the other way
around. Therefore, with one use of the gate we have, w
certainty, generated its two eigenstates.

Now let us see what happens when the eigenvalues
not 61 but two other complex numbers of modulus uni
We shall denote the eigenstates asuu1& and uu2& and the
corresponding eigenvalues as aseiu1 and eiu1, respectively.
We again use the same three-qubit scheme and choos
input state to beu1x&aufs&bc . The output state is now given
by

uCout&abc5
1

A2
~ uv1&auu1&buu2&c2uv2&auu2&buu1&c),

~10!

where

uv1&5
1

A2
~ u0&1eiu1u1&),

~11!

uv2&5
1

A2
~ u0&1eiu2u1&).

Note thatuv1& and uv2& are not orthogonal, but because w
assume we know the eigenvalues, these vectors are kn
At this point we can apply the optimal procedure for disti
guishing two nonorthogonal states@5–7#. This is a general-
ized measurement that can be applied when we are giv
state, which is one of two known states, and we want
determine which of the two states it is. The measurement
one of three possible outcomes; it either tells us without e
which of the two states we have, or it tells us that it h
failed to distinguish the states. Applied touv1& and uv2&, the
procedure would succeed with a probability of

12 z^v1uv2& z512
1

A2
@11cos~u12u2!#1/2. ~12!

The closer the phase difference between the eigenvalues
p, the greater the probability of success of this procedure
3-2



th

ta
e

e
d

de
n

fo
r

bi

.

d

wo

f

th

rge

l-
er-

to
ong
h an

its
esti-
s
he
les,
ain
the
one
ork
this
, in
e. In
lues
put

se
ea-

the

be

SINGLET STATES AND THE ESTIMATION OF . . . PHYSICAL REVIEW A 64 042303
uv1& is detected at outputa, thenuu1& is at outputb anduu2&
at c. On the other hand, ifuv2& is detected ata, thenuu2& is
at b and uu1& is at c.

If one allows more than one use of the gate there are o
possibilities. Suppose that we know the eigenvalues ofU are
1 and i. Then the eigenvalues ofU2 are 1 and21. We can
then apply the above procedure to generate the eigens
with one modification. The three-qubit initial state is th
same, but qubitsa andb pass through two controlled-U gates
instead of one. Again qubita is measured at the output in th
u6x& basis. Ifu1x& is found, then the eigenstate correspon
ing to 1 is at outputb and that corresponding toi is at output
c. If u2x& is found, theb andc outputs are reversed.

As preparation for Sec. III, let us consider one last, har
problem. Suppose that we know that the eigenvalues are
the same, and that they are members of the set$1,21,i ,
2 i %. In this case we have partial rather than complete in
mation about the eigenvalues, and we again want to gene
qubits in the eigenstates. This can be done using four qu
a controlled-U gate, and a controlled-U2 gate. This last gate
can be constructed from two controlled-U gates in sequence
Qubit a is the control bit for the controlled-U2 gate, qubitb
is the control bit for the controlled-U gate, and qubitc is the
target bit for both. Letuu1& and uu2& be the eigenstates ofU
with corresponding eigenvaluesz1 and z2, wherez1 and z2
are members of the set$1,21,i ,2 i %. The input state is

uC in&abcd5u1x&au1x&bufs&cd5u1x&au1x&bS 1

A2
D

3~ uu1&cuu2&d2uu2&cuu1&d). ~13!

The output state of the network is given by

uCout&abcd5Gac~U2!Gbc~U !uC in&abcd

5
1

2A2
@~ u00&ab1z1u01&ab1z1

2u10&ab

1z1
3u11&ab)uu1&cuu2&d2~ u00&ab1z2u01&ab

1z2
2u10&ab1z2

3u11&ab)uu2&cuu1&d], ~14!

whereGjk(Un) is the operator corresponding to a controlle
Un gate with control bitj and target bitk. Now consider the
vector

uh~z!&ab5
1

2
~ u00&ab1zu01&ab1z2u10&ab1z3u11&ab).

~15!

The vectors uh(1)&ab , uh(21)&ab , uh( i )&ab , and
uh(2 i )&ab form an orthonormal basis of the space of the t
qubitsa andb. If we now measure the two-qubit systemab
in this basis, we can determine one of the eigenvalues oU,
e.g., if the result of the measurement isuh(1)&ab , then one
of the eigenvalues is 1. The eigenstate corresponding to
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eigenvalue will emerge from outputc, and the eigenstate
corresponding to the other, unknown, eigenvalue will eme
from outputd.

This procedure will allow us to find one of the eigenva
ues, if we know that they belong to a limited set, and gen
ate both eigenstates. A better procedure would allow us
find both eigenvalues, remove the restriction that they bel
to a particular set, and generate both eigenstates. Suc
algorithm is presented in Sec. III.

III. APPLICATION OF PHASE ESTIMATION TO FIND
UNKNOWN EIGENVALUES AND EIGENVECTORS

Suppose that we have an unkown controlled-U gate, and
we want to find its eigenvalues and generate qubits in
eigenstates. This can be done by modifying the phase
mation algorithm of Cleveet al. and using a singlet state a
the input@2#. One takes two phase-estimation circuits for t
same gate and sends into each circuit one of two partic
which together form a singlet state. This avoids the m
disadvantage of the original algorithm. There, besides
controlled-U gates, one also needed a qubit prepared in
of the eigenstates. Sending this qubit through the netw
would then generate an estimate of the eigenvalue for
eigenstate. An alternative is to send in a random qubit
which case one gets an estimate for a random eigenvalu
particular, the estimate corresponds to one of the eigenva
whose eigenstates have a nonzero overlap with the in
state. The original qubit is left in a state that is in clo
approximation to the eigenstate corresponding to the m
sured eigenvalue@3,4#.

Each of the two networks, which we shall labelA andB,
is constructed as follows. We haven control qubits, which
for network A we shall callA1,A2, . . .An, and one target
bit, which we shall callA. Each of the control bits is initially
in the state (u0&1u1&)/A2. Control bitA j is connected to a
gate that does nothing if the control bit is 0, and performs
operationU2 j 21

if the control bit is 1. The networkB is
identical. The effect of the entire network is given by

uCout&5G(Bn)B~U2n21
! . . . G(B1)B~U !

3G(An)A~U2n21
! . . . G(A1)A~U !uC in&. ~16!

Let the eigenstates ofU be uu1& and uu2& with eigenvalues
eif1 andeif2, respectively. As before, the singlet state can
expressed in terms of these eigenstates

ufs&AB5
1

A2
~ uu1&Auu2&B2uu2&Auu1&B). ~17!

The initial state of the system is then

uC in&5
1

A22n
~ uu1&Auu2&B2uu2&Auu1&B)

3 )
j 50

n21

~ u0&A j1u1&A j) )
k50

n21

~ u0&Bk1u1&Bk). ~18!
3-3
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After passing through the networks this state becomes

uC in&→
1

A22n F uu1&A)
j 50

n21

~ u0&A j1ei2 jf1u1&A j)uu2&B

3 )
k50

n21

~ u0&Bk1ei2kf2u1&Bk)2uu2&A)
j 50

n21

~ u0&A j

1ei2 jf2u1&A j)uu1&B)
k50

n21

(u0&Bk1ei2kf1u1&Bk)G .

~19!

The products in the above equation can be expressed
sum overn-digit binary numbers. For example,

)
j 50

n21

~ u0&A j1ei2 jf1u1&A j)5 (
y50

2n21

eif1yuy&An, . . . ,A1 . ~20!

The first digit of then-digit binary numbery corresponds to
the state of systemAn, the second to that ofA(n21), and so
on. In the above equation we have indicated this explic
with subscripts on the state, but in the future these will
omitted and this correspondence will be understood. It is
necessary to indiciate whetheruy& is a state ofAn, . . . ,A1
or Bn, . . . ,B1, and this will be indicated by the subscriptsĀ

and B̄, respectively. We then have that

uC init ial &→
1

A22n F uu1&AS (
y50

2n21

eif1yuy& ĀD uu2&B

3S (
w50

2n21

eif2wuw& B̄D 2uu2&A

3S (
y50

2n21

eif2yuy& ĀD uu1&BS (
w50

2n21

eif1wuw& B̄D G .

~21!

The next step is to apply the quantum inverse Fourier tra
form operation to statesĀ andB̄. This takes the stateuy& to

uy&→
1

2n/2 (
z50

2n21

e22p iyz/2n
uz&. ~22!

Before applying this, however, we want to express the pha
f1 and f2 in different way. First, letxj5f j /(2p) for j

51,2, which implies that 0<xj,1. In addition, letx̄ j be the
closest integer to 2nxj ~we assumex̄ j is expressed in binary
form! so that

xj5
x̄ j

2n
1d j , ~23!

where ud j u<1/2n11. If we now apply the inverse Fourie
transform we find that
04230
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y50

2n21

e2p iy [( x̄ j /2
n)1d j ] uy&

→ 1

2n/2 (
y50

2n21

(
z50

2n21

e2p iy( x̄ j 2z)/2n
e2p iyd j uz&. ~24!

It is possible to perform they summation in the above equa
tion

g~z; x̄ j ,d j !5
1

2n (
y50

2n21

e2p iy( x̄ j 2z)/2n
e2p iyd j

5
1

2n

12e2p id j2
n

12e2p i $[( x̄ j 2z)/2n] 1d j %
. ~25!

This function is peaked aboutz5 x̄ j and the maximum value
of its magnitude is greater than 2/p @2#. After applying the
inverse Fourier transform to both systemsĀ andB̄, our state
is

uCout&5
1

A2
F uu1&AS (

z50

2n21

g~z; x̄1 ,d1!uz& ĀD uu2&B

3S (
s50

2n21

g~s; x̄2 ,d2!us& B̄D
2uu2&AS (

z50

2n21

g~z; x̄2 ,d2!uz& ĀD uu1&B

3S (
s50

2n21

g~s; x̄1 ,d1!us& B̄D G . ~26!

We now measure both systemsĀ and B̄ in the computa-
tional basis. The most likely results are eitherx̄1 for Ā andx̄2

for B̄, in which case qubitA is in uu1& andB is in uu2&, or x̄2

for Ā andx̄1 for B̄, in which case qubitA is in uu2& andB is
in uu1&. In either case we have both the eigenvalues~to n
places in base 2! and qubits in the eigenvectors.

IV. HIGHER-DIMENSIONAL SYSTEMS

The reasoning in the preceding sections can be exten
from qubits to qudits,D-dimensional quantum systems. Th
fully antisymmetric state ofD D-dimensional quantum sys
tems is aU(D) singlet @8#. If we denote the computationa
basis states byun&, wheren50,1, . . . ,D21, this state can
be expressed as

ufs~D !&5
1

AD!
(

j 150

D21

••• (
j D50

D21

« j 1 , . . . ,j D
u j 1&•••u j D&,

~27!

where« j 1 , . . . ,j D
is the totally antisymmetric tensor of ran

D. Now consider a unitary operatorU whose eigenstates ar
3-4
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uuj&, where j 51, . . . ,D. The fact thatufs(D)& is a singlet
means that it can be expressed as

ufs~D !&5
1

AD!
eim (

j 151

D

••• (
j D51

D

« j 1 , . . . ,j D
uuj 1

&•••uuj D
&,

~28!

whereeim is a phase factor that depends on how the pha
of the eigenstates are chosen. We shall subsequently as
that they have been chosen so thatm50.

Let us now consider the following problem for the ca
D53; its generalization to the case of arbitrary dimension
straightforward. We are given a controlled-U gate, where the
control is a qubit and the target is a qutrit. If the control qu
is in the stateu0& nothing happens to the target qutrit, and
it is in the stateu1&, the operationU is performed on the
qutrit. This gate corresponds to the operatorGjk(U), wherej
is the control qubit andk is the target qutrit. We shall assum
that the operatorU has eigenvalues 1 and21, where the
eigenvalue 1 is degenerate, and we would like to produc
qutrit in the eigenstate corresponding to21.

This can be done with two controlled-U gates, two qubits,
and three qutrits. The initial state of the system is

uC in&a•••e5u1x&au1x&bufs~3!&cde. ~29!

Particlesa andb are qubits andc, d, ande are qutrits. Qubit
a is the control bit for qutritc and qubitb is the control bit
for qutrit d. The output state is given by

uCout&a•••e5Gac~U !Gbd~U !uC in&a•••e . ~30!

Let uu1& and uu2& be orthonormal eigenstates ofU with ei-
genvalue 1 anduv& be the eigenstate with eigenvalue21. In
terms of these states we have that

uCout&a•••e5
1

A6
@ u2x&au1x&b~ uvu1u2&cde2uvu2u1&cde)

1u1x&au2x&b~ uu2vu1&cde2uu1vu2&cde)

1u1x&au1x&b~ uu1u2v&cde2uu2u1v&cde)].

~31!
R

53
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We now measure qubitsa andb in the u6x& basis. If we find
a in the u2x& state, then qutritc is in the eigenstate with
eigenvalue21, while if qubit b is in the u2x& state, then it
is qutrit d that is in the21 eigenstate. Finally, if both o
these qubits is found to be in theu1x& state, then qutrite is
in the 21 eigenstate.

In the corresponding problem for qudits,U has eigenval-
ues 21, which is nondegenerate, and 1, which
(D21)-fold degenerate. The object is to produce a qudit
the eigenstate corresponding to21. To do so one uses
network consisting ofD21 qubits, D qudits in a singlet
state, andD21 controlled-U gates. The procedure is
simple generalization of the one just discussed for qutrits

V. CONCLUSION

We have shown that singlet states in combination w
controlled-U gates can be used to produce qubits or qud
in eigenstates of the operatorU. If U is the evolution opera-
tor corresponding to some Hamiltonian, its eigenstates
just those of the Hamiltonian. This procedure will not tell
what those eigenstates are, but we can perform meas
ments on the qudits in those states in order to gain inform
tion about them. We may also simply be interested in p
forming further operations on these states without measu
them first, and we now have a way of producing them.

If singlet states are combined with the phase-estima
algorithm for finding eigenvalues ofU, we can, in a certain
sense, diagonalize the operator. We saw that for qubits
both knew the eigenvalues, at least to a level of approxim
tion that we can determine, and we produced qubits in st
that are very close to the eigenstates ofU. This procedure
should generalize to qudits.
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