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We show that the basic dynamical rules of quantum physics can be derived from its static proper-
ties and the condition that superluminal communication is forbidden. More precisely, the fact that the
dynamics has to be described by linear completely positive maps on density matrices is derived from
the following assumptions: (1) physical states are described by rays in a Hilbert space, (2) probabilities
for measurement outcomes at any given time are calculated according to the usual trace rule, and (3)
superluminal communication is excluded. This result also constrains possible nonlinear modifications of

quantum physics.

DOI: 10.1103/PhysRevLett.87.170405

The special theory of relativity is one of the cornerstones
of our present scientific world view. One of its most impor-
tant features is the fact that there is a maximum velocity for
signals, i.e., for anything that carries information, identical
to the velocity of light in vacuum. Another cornerstone of
our present understanding of the world is quantum physics.
Quantum physics seems to have “nonlocal” characteristics
due to the existence of entanglement. Most importantly,
it is not compatible with local hidden variables, as shown
by the violation of Bell’s inequalities [1], which has been
experimentally confirmed in many experiments [2].

It is very remarkable that, in spite of its nonlocal fea-
tures, quantum mechanics is compatible with the special
theory of relativity, if it is assumed that operators referring
to spacelike separated regions commute. In particular, the
theory obeys the “no-signaling condition”: one cannot ex-
ploit quantum entanglement between two spacelike sepa-
rated parties for faster-than-light communication. This can
be seen as an immediate consequence of the linearity of
quantum mechanics, cf. our discussion below.

Quantum mechanics is linear in two respects: at any
given time all measurement probabilities depend linearly
on the density matrix of the system; and the state of the
system at a given time depends linearly on its initial state.
It may seem natural to ask whether quantum mechanics
could be an approximation to some underlying nonlinear
theory. However, if one tries to modify the theory in this
spirit, e.g., by introducing nonlinear time evolution laws
for pure states [3], this easily leads to the possibility of
superluminal communication [4—6].

This peaceful, but fragile, coexistence between quan-
tum physics and special relativity has led physicists to ask
whether the no-signaling condition could be used as an
axiom in deriving basic features of quantum mechanics.
The answer to this question should at the same time pro-
vide insight into what types of modifications of quantum
physics are compatible with special relativity.
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Here we give a positive answer to the above question.
If the usual static characteristics of quantum mechanics
are assumed, then its dynamical rules can be derived from
the no-signaling assumption. By static characteristics we
mean the following: (i) The states of our systems are de-
scribed by vectors in a Hilbert space. In particular, this
implies the existence of entangled states, which will be es-
sential for our argument. (ii) At any given time we have the
usual observables described by projections in the Hilbert
space [7], and the probabilities for measurement results are
calculated according to the usual trace rule [8]: the prob-
ability for getting a positive result for the projector P in
the state |¢) is given by (| P|) = TrP|i) (|. This im-
plies that if at a given time the system is in states |¢;) with
probabilities p;, then the probabilities for measurement re-
sults of all the usual observables at this time can be calcu-
lated from its density matrix p = > p;|i) (.

We do not make any a priori assumption about the time
evolution of the system. For example, the states |¢/) could
evolve according to some nonlinear wave equation. Then
in general the density matrix of a probabilistic mixture of
states is not sufficient to determine the dynamics of the
system [9], one has to know the individual pure states [;)
and their probabilities p;.

Let us note that we also do not assume the projection
postulate. We will see that the possibility to prepare dif-
ferent probabilistic mixtures of pure states at a distance,
which is essential for our argument, already follows from
our assumptions (i) and (ii).

Our result is the following: the no-signaling condition
together with assumptions (i) and (ii) implies that the dy-
namics of the theory has to be described by completely
positive (CP) linear maps [10].

This is equivalent to saying that under the given assump-
tions quantum physics is essentially the only option since,
according to the Kraus representation theorem [10], every
CP map can be realized by a quantum-mechanical process,
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i.e., by a linear and unitary evolution on a larger Hilbert
space. On the other hand, any quantum process corre-
sponds to a CP map. This result is a significant extension
of earlier work by one of the authors [5].

Let us first recall how the linearity of standard quantum
dynamics prevents the use of entanglement for superlumi-
nal communication [11]. Consider two parties, denoted by
Alice and Bob, who are spacelike separated, such that all
operations performed by Alice commute with all opera-
tions performed by Bob. Throughout this paper we will
assume that in this sense locality is implemented in the al-
gebra of the standard quantum operations, since otherwise
the possibility of superluminal signaling would be mani-
fest from the beginning. Can the two parties use a shared
entangled state |¢4p) in order to communicate in spite of
their spacelike separation?

The short answer is no, because the situation on Alice’s
side will always be described by the same reduced den-
sity matrix, irrespective of Bob’s actions. Alice’s reduced
density matrix is all that matters as a consequence of the
linearity of quantum physics.

Let us discuss this last point in more detail. A question
that is frequently raised in the present context is the fol-
lowing: Bob could choose to measure his system in two
different bases and thus “project” Alice’s system into dif-
ferent pure states depending on the basis he chose and his
measurement result. Since it is possible to distinguish two
different states in quantum mechanics, at least with some
probability, shouldn’t it be possible for Alice to infer his
choice of basis, at least in some percentage of the cases,
which would be dramatic enough?

Of course, the answer is no again. In order to gain in-
formation about which basis Bob chose to measure, Alice
can only perform some (generalized) measurement on her
system. She then has to compare the conditional proba-
bilities for a given result to occur, for the case that Bob
measured in the first or in the second basis. But these con-
ditional probabilities will always be exactly the same for
both possibilities.

This can be seen in the following way. Suppose that
Bob’s first choice projects Alice’s system into states |i;)
with probabilities p; and his second choice projects it
into states | ;) with probabilities g;. Alice can calculate
the probability for her obtained result for every one of
the states, and then weight these probabilities with the
probability to have this specific state. But because of the
linearity of any operation that Alice can perform on her
states during her generalized measurement procedure and
of the trace rule, her final result will depend only on the
density matrix of the probabilistic mixtures, which is
the same in both cases, because they were generated from
the same entangled state. For an example of how two such
mixtures can become distinguishable through a nonlinear
(non-quantum-mechanical) evolution, see [4].

Let us note that this argument also implies the
nonexistence of a perfect cloner in quantum mechan-
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ics because such a machine would allow superluminal
communication [12] by making it possible for Alice to
discriminate between Bob’s choices of basis.

We now show how quantum dynamics can be derived
from the no-signaling condition and “quantum statics” as
expressed in our assumptions (i) and (ii).

If we consider a subsystem of the whole Universe it
will in general be in an entangled state with other parts of
the Universe. In particular, a system A may be entangled
with another system B which is spacelike separated from
A, such that their observable algebras commute. The dy-
namics of the systems has to be such that in spite of this
entanglement no superluminal communication between A
and B is possible.

Suppose that A and B together are in the entangled state
|#)ap with reduced density matrix p, for system A. As a
consequence of the trace rule, by performing a measure-
ment of his system the observer B also prepares a certain
state in A. To see this, remember that the trace rule tells
us how to calculate the (joint) probability for measure-
ment results corresponding to any product of projectors
P4 ® Pg, namely, by calculating TragpapPa ® Pp. This
also tells us how to calculate the conditional probability to
find any P4, provided that Pp has been found. Namely,
we just have to divide the joint probability by the proba-
bility to find Pp in the first place. But having a way of
calculating the conditional probability for every P4 means
that we know the state in A conditional on B having found
Pp, since a state can be reconstructed from its expecta-
tion values for a linearly independent set of projectors. It
is given by TrppapPp/TrappapPp. Note that to arrive at
this conclusion we did not have to make use of the usual
projection postulate.

Actually, every probabilistic mixture of pure states cor-
responding to the density matrix p4 can be prepared via
appropriate measurements on B [5,13]. We will give a
proof of this statement in the last part of this Letter.

Consider two such probabilistic mixtures {Py,, p;} and
{Pg,.q;}, where Py, is the projector corresponding to the
pure state |¢) and py is its probability, such that

D piPy, =D 4Py, = pa- (1)
i J

According to the no-signaling principle there should be no
way for the observer in A to distinguish these different
probabilistic mixtures.

A general dynamical evolution in system A is of the
form g: Py — g(Py), where, most importantly, g is not
necessarily linear. Furthermore, g(Py) does not have to be
a pure state, since system A could become entangled with
its environment, or |¢) could evolve into a probabilistic
mixture of pure states. As mentioned above, even if system
A is entangled with its environment, the trace rule implies
that at any given moment the results of measurements on
A will be completely determined by the reduced density
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matrix of the system. In this case we define g(Py) to
be the reduced density matrix of A. If [) evolves into
a probabilistic mixture, we define g(P,) to denote the
corresponding density matrix.

Under such dynamics the probabilistic mixture
{Py., px} goes into another probabilistic —mixture
{g(Py,), pr}.  Therefore the two final density matri-
ces after the action of g on two different probabilistic
mixtures {Py,, p;} and {Py,, q;} are

pa{Py,. pi}) = Z pig(Py,),
: @)
PAlPy.a) = D q;8(Py),
J
which a priori can be different.

Let us note that of course p) is always linear in the
g(Py,), because of the definition of the density matrix cor-
responding to a probabilistic mixture. However g, which
is a priori defined only on pure states, could have an ar-
bitrary functional dependence on the P,,. We will now
show that this dependence is constrained to be linear by
the no-signaling condition.

Let us recall that according to our assumptions the re-
sults of all standard quantum measurements in A at a given
time are determined by the reduced density matrix pj.
This means that the density matrix pj at any later time has
to be the same for all probabilistic mixtures corresponding
to a given initial density matrix p4, since otherwise Al-
ice could distinguish different mixtures at least with some
probability. That is, pj has to be a function of p4 only.

We can therefore write

ph = g(pa) = g(Z pin/fi), 3)

i.e., g now extends to density matrices. Equations (2) and
(3) together imply the linearity of g:

g<lZpiP¢i> = 2 pig(Py,). “4)

Positivity of g is necessary in order to ensure that g(p4)
is again a valid density matrix, i.e., to ensure the positivity
of all probabilities calculated from it.

As we have made no specific assumptions about the
system A apart from the fact that it can be entangled with
some other spacelike separated system, this means that the
dynamics of our theory has to be described by linear maps
on density matrices in general.

Linearity and positivity already imply complete positiv-
ity [10] in the present framework. To see this, consider
again two arbitrary subsystems A and B which may again
be in an entangled state |/)4p. Itis conceivable that system
A is changed locally (i.e., the system evolves, is measured,
etc.), which is described by some linear and positive opera-
tion g4, while nothing happens in B. This formally corre-
sponds to the operation g4 ® 15 on the whole system. The
joint operation g4 ® 1p should take the density matrix of
the composite system p4p into another valid (i.e., positive)
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density matrix, whatever the dimension of the system B.
But this is exactly the definition of complete positivity for
the map ga [10]. If g4 is positive but not CP, then by defi-
nition there is always some entangled state p4p for which
ga ® lp applied to p4p is no longer a positive density ma-
trix and thus leads to nonphysical results such as negative
probabilities.

In this way the existence of entangled states and the re-
quirements of positivity and linearity force us to admit only
completely positive dynamics. As mentioned above, this
means that under the given assumptions quantum dynam-
ics is essentially the only option since any CP map can be
realized by a quantum-mechanical process, while, on the
other hand, any quantum-mechanical process corresponds
to a CP map [14].

There are three crucial ingredients in our argument:
the existence of entanglement, the trace rule, and the no-
signaling condition. Specifically, the trace rule leads to
the preparation at a distance of probabilistic mixtures and
thus, as it were, to the right-hand side of Eq. (4). On the
other hand, the no-signaling condition tells us that the dy-
namics is allowed to depend only on the reduced density
matrix, which leads to the left-hand side of Eq. (4). In the
derivation of complete positivity, we have also used the
assumption that the identity operation on a subsystem is a
permitted dynamical evolution.

Nonlinear modifications of quantum mechanics [15,16]
have to give up at least one of these assumptions. For in-
stance, if the dynamics is allowed to depend on the reduced
density matrix p,4 in a nonlinear way, then it is clear that
pa cannot correspond to a probabilistic mixture of pure
states, cf. [15]. But p4 will correspond to such a mixture
whenever the observer in B chooses to make appropriate
measurements, as long as we believe in the trace rule, ac-
cording to our above argument. This seems to imply that,
at least for separated systems, the trace rule has to be modi-
fied in such a nonlinear theory.

Another example would be a theory where some en-
tangled states are a priori excluded. In this case some
non-CP maps might be permissible. An extreme example
would be a theory without entanglement. Such a theory
would of course be in conflict with experiments. An ex-
ample of a linear, positive, but non-CP map consistent with
no-signaling is the transposition of the density matrix of
the whole Universe (physically corresponding to a time
reversal). However, in this case the identity operation on a
subsystem is not an allowed dynamics.

In this Letter we have taken quantum statics as a start-
ing point. Svetlichny [17] recently investigated the pos-
sibility of deriving the Hilbert space structure itself in the
context of quantum logic, using Lorentz covariance as an
ingredient.

For completeness, let us finally show that any mixture
corresponding to a given density matrix can be prepared
at a distance from any entangled state with the correct
reduced density matrix [5,13]. Let us denote the system
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under consideration by A and the remote system by B.
Let us denote the eigenvector representation of ps by
i1 Axlvi){vil. Since the joint state |f)4p needs to
have the correct reduced density matrix, it must have
a Schmidt decomposition |)ap = D 1_; v/ Ax lvi)lgs),
where the |g;) are orthonormal states of system B.

We want to show that any decomposition of ps as a
mixture of pure states can be prepared from this state by
operations on system B only. To this end, consider an arbi-
trary decomposition ps = > /-, x;|i;){(t;], where in gen-
eral m > r. Clearly this decomposition could be obtained
from a state |p)ap = D/, /Xi i) |la;), with the |a;)
being an orthonormal basis of a m-dimensional Hilbert
space H,,.

It seems that we now require a larger Hilbert space in
location B in order to accommodate all the orthonormal
|a;). But the state |¢p)4p must also have a Schmidt rep-
resentation |p)ap = D ;_; Ak lvi) |hi), with |hy) being
orthonormal states in B. This implies that |¢)4p and |/)ap
are connected by a unitary transformation on B alone:
|p)ap = 14 ® Uplih)ap. The dimension of the support of
the reduced density matrix pp is the same for both states,
since it is given by the dimension of the support of p4.

Thus one can prepare |¢)ap from any state with the
correct reduced density matrix by extending the system B
locally to m dimensions (using an appropriate ancilla), and
then perform the required measurement in the basis of the
|a;). This will correspond to a generalized measurement
[8] on the original r-dimensional system. In this way every
possible decomposition of p4 can be prepared at a distance.

In conclusion, we have shown that the basic dynami-
cal rule of quantum physics can be derived from its static
properties and the condition of no superluminal communi-
cation. This result puts significant constraints on nonlinear
modifications of quantum physics. It is clearly difficult to
modify just parts of the whole structure. More universal
departures from the formalism may still be possible with-
out violating the no-signaling condition. We would like to
mention the related recent work by Mielnik [18].
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