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Multiparticle entanglement with quantum logic networks: Application to cold trapped ions
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We show how to construct a multiqubit control gate on a quantum register of an arbitrafy. Sinés gate
performs a single-qubit operation on a specific qubit conditioned by the state oNothemubits. We provide
an algorithm how to build up an array of networks consisting of single-qubit rotations and multiqubit control-
NOT (CNOT) gates for the synthesis of an arbitrary entangled quantum stal cufbits. We illustrate the
algorithm on a system of cold trapped ions. This example illuminates the efficiency of the direct implemen-
tation of the multiqubitcNoT gate compared to its decomposition into a network of two-qakiT gates.
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[. INTRODUCTION multiple-qubit gates rather than decompose them into el-
ementary single- and two-qubit gates.

Entanglement is probably the most intriguing aspect of In Sec. Ill we present a logical network with the help of
guantum theory1]. It attracts due attention not only for its which symmetric states of the forfi.1) can be synthesized.
epistemological importancg2] but also as an essential re- Section 1V is devoted to a general problem of synthesis of a
source for quantum information processing. In particularpure state of an arbitrafy qubit state. We present a simple
guantum computatiof®,5], quantum teleportatiof6], quan-  network in which an arbitrarid qubit state can be created. In
tum dense codin{j7], certain types of quantum key distribu- Sec. V we apply this algorithm to a specific problemNof
tions[8], and quantum secret sharing protod@kare rooted cold trapped ions. Following the original idea of Cirac and
in the existence of quantum entanglement. Zoller we show how the states of interest can be created. In

Recently, a lot of progress has been achieved in the inSec. VI we discuss the experimental realization of the pro-
vestigation of various properties and the possible applicatioposed scheme on cold trapped ions and we also briefly ad-
of quantum entanglement. Nevertheless, many questions adggess the efficiency of using multiqubit contmobT gates
still open. In particular is the problem of multiparticle en- rather than a network of two-qubit contrebT gates.
tanglemen{10]. Specifically, in contrast to classical correla-
tions, quantum entanglement cannot be freely shared among 1l. QUANTUM LOGIC GATES AND NETWORKS
many object$11,17. It has been shown recenfly3,14] that
in a finite system ofN qubits with N(N—1)/2 entangled
pairs the maximal possible concurren@especific measure
of entanglemenf12,15) is equal to 2N. This value of the
bipartite concurrence is achieved when thegubits are pre-
pared in a totally symmetric stat&), such that all except
one qubit are in the staté), i.e.,

Let us start with a brief description of those objects that
we will use later in the paper. We will follow the notation
used in Refs[3,4]. The qubit (quantum bit is a quantum
two-level system in which logical Boolean states 0 and 1 are
represented by a pair of normalized and mutually orthogonal
quantum states labeled @ and|1). These two states form
a computational basis and any other pure state of the qubit

1 can be written as a coherent superpositipf) = a|0)
—_(jo11...D+|101... 1) + B|1) with complex amplitudesy and B, such that|«|?
+|BJ?=1. We may represent a state of a qubit as a point on
the Bloch sphere with the parametrization=cosd/2 and
B=¢€'?sind/2. In quantum or atomic optics the qubit is of-

In order to study the multiparticle quantum entanglement inen represented by a two-level atdion) with two selected

more detail, we have to find ways how to prepésgnthe- internal levels denoted dg) and |e). The quantum register

size states of the form given by E¢L.1) in various physical .Of sizeN1is a collec_tlon O qubits. Thequar_1tum logic gate
systems. is a quantum device that performs a unitary operation on

In this paper we will study in detail howW qubits can be sglectet;l(targe)_ qupits conditiqned by states .Of Controllqu—
prepared in entangled states of the fofinl). We assume bits ldl_mng a given |nte_rval of time. A g.ate acting on a single
that the qubits are encoded in internal ionic states as origﬁ‘umt is termed as a smgle-qpbn _gate, gates acting on more
nally proposed in the model of the quantum processor b ubits are referred 1o as multhublt_ggtes. Buantum logic
Cirac and Zoller[16]. Our paper is organized as follows: etworkis a quantum device consisting of several quantum

Section Il is devoted to the description of quantum IogicIOgIC gates synchronized in time.
gates and networks. Here we present multiqubit controlled

gates. We show how these gates can be expressed in terms of
single-qubit and two-qubit gates, but we argue that for prac- A single-qubit gate corresponds to a unitary operatbr
tical purposes it is more appropriate to utilize directly represented in the computational bg§i, |1)} by the matrix

5= LS (o) [1-ie
|'—‘>_ \/Nj21|0>]|1> \/ﬁ

+]110... D+---+]111...0). (1.0

A. Single-qubit rotation
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FIG. 1. A schematic representation(@j a single-qubit rotation

defined by the relatiofi2.2), (b) a two-qubitcNoT gate defined by FIG. 2. A scheme of a multiqubit (contrdiNoT gate acting on
the transformatior(2.3), and (c) a multiqubit (controlj-not gate A+ 1 qubits withq control qubits (ny,...,mg). Themg.th qubit is
defined by the transformatici2.4). the target. The operatoR Ry, R,, R}, andR] are defined by Eq.

(2.5 and the gate is determined by the transformati@:%). The
gate corresponding to EQR.7) is represented by the same network

except the single-qubit rotatior®; and RI.

_ ( Woo W01) 2.1

WlO Wll
q
A special case of a single-qubit gate is a single-qubit rotation |‘P“0>|O>mq+1_’|\[’n°>|o>mq+1’ Vo) # ]1:[1 ®| 1>mj'
O [see Fig. 18)]. Its parametrization depends on the choice
of coordinates on the Bloch sphere. We will define it in the W,0[1) w01
matrix form in the basig|0), |1)} as follows: nosl=/Mg+q no/i=/mg. g2

(2.9

q
|\Pyes>|0>mq+l_>|que9|1>mq+lv |\Pye9:j1:[1 ®|1>mju

R00 ROl)

( coq 6/2) e'? sin(6/2) )
RlO I:211 ,

O(G,C/J):( —e ?sin(6/2)  cod 6/2)
(2.2
|‘Pyes>|1>mq+l_’|q,ye9|o>mq+l-
whered refers to the rotation and to the relative phase shift

of the stateg0) and|1) in the corresponding Hilbert space.
C. Multiqubit control- R gates

B. Two-qubit and multiqubit control- NOT gates A multiqubit (controlf-R gate acts om+1 qubits. The

) my,...,mq qubits represent the control part of the gate while
A two-qubit controlNOT (CNOT) gate acts on two quan- he Mq+1 qubit represents the targifig. 2]. This gate per-

tum bits denoted as the control and the target qubit, respegsrms 3 single-qubit rotation on the target qubit if all control

tively [see Fig. 10)]. If the control qubit (n,) is in the state g pits are in the statd). Otherwise, it acts trivially. Speak-

|1), the state of the target qubitrg) is flipped. Otherwise, ing precisely, if all control qubitsrfy ,...,mg) are in the state

the gate acts trivially, i.e., as a unity operaforwWe may 1), then the operatioR=RloRioR,R, is applied (from

characterize this gate with the help of the truth table right to left) on themq.; (targe} qubit. In the basis of the

10)1m, |0} m,—|0)im,| O, target qu't{|0>mq+1'|1>qu} we can introduce the matrices
cosé e'??sing 0 1
|00 m, | Lm, =00 m,[L)m,» R\ —ei24sing  coso |© 7711 o
(2.3
i¢ —_el¢
|1>m1|0>m2H|1>m1|1>m2! R, = 0 ) € Rl = 0_ €
1 _e*“ﬁ 0 ’ 1 e*ld) 0 ’
|1>m1| 1>m2—>|1>m1|0>m2- cog 6/2)  sin(6/2) )
2\ —sin(0/2) cog6/2))’

A multiqubit controlNOT (CNOT) gate is defined analogi-
cally [see Fig. 1c)]. The only difference is the number of (

control qubits. In other words, a multiqubit (contrbioT Z:

cog 0/2) —sin(6/2)
) : (2.9

gate acts orj+1 qubits withq control qubits (y,...,m) sin(0/2)  cog 6/2)
and themg, ; qubit is target. If all control qubits are in the

state|1), then the state of the target qubit is flipped. Other-where R;=O(, ), RI:OT(Tr,¢), R,=0(6,0), and R;
wise, the gate action is trivial. The truth table of the multi- = O(6,0). The operatiorD(6, ¢) is defined by the relation
qubit (controlf-NOT gate acting onmy,...,my;; qubits  (2.2. The matrix o denotes theNoT operation. If not all

reads as follows: control qubits are in the stat#), then the gate performs on
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the target qubit the operatidr= RIIRJIR,R; , wherel is the ¢ —
unity operator. We may write the truth table of the multiqubit ;
(control)?-R gate as follows:

|\Pno>|o>mq+1_>|q,”0>|0>mq+1’ Cul

|\Pno>|1>mq+1_’|q,no>|1>mq+lv t;

2.6)

. 2.
— @ i2¢ gj
|\Py95>|0>mq+1_>|\Py95>(cosa|o>mq+1 € sin 9|1>mq+1)’ FIG. 3. The network that realizes the transformation given by

26 o Eq. (3.2.

|\I’yes>| 1>mq+1_’ |q}yes>(e sin 6|0>mq+1+ COSG' 1>mq+1)y

us assume that all qubits have been initially prepared in the
where[W ;) and|W .9 are defined in Eq(2.4). state|1), i.e., the whole system is in the sta®)N and the

If the preparation of a particular class of quantum stategjate realizes the operation

does not require the introduction of a relative phase shift
between the basis statf and|1), then a reduced quantum | )N Rog| 1)N 72 0),. + Ryq 1)V, (3.2
logic network is sufficient. In particular, the operatiéh !
=aR£oR2 on the target qubitrf,,,) conditioned by the
state of control qubitsrg,...,my) can be realized according
to the following truth table:

whereRy; andR;, are defined by the relatiof2.5).
Secondly, let us consider a network witN{2) control
qubits (4,...,Ccy_2) and two target qubitst(,t,) [see Fig.
4]. The network acts on the initial stdte)" as follows(each
V.20 V2|0 , . ; i .
¥ ro)l >mq+1_>| ol g arrow in the figure corresponds to an action of a gate in the
sequence
|\Pno>|1>mq+1H|\Pno>|1>mq+l'
(2.7 | DN —Rog N0y, + Ryy )N
|q’yes>|o>mq+1_’ |\Pyes>(0059|0>mq+l_ sin 9| l>mq+1)y !
—Ro 1)N"?|0)¢ [0}, + Ry )™ H0)y,
Voo |l Ve (Sin6|0 +cosé|1 .
[¥ye2l iy 1= [¥ye9 (SIN6|0)m,., +COSO Lo, ) —Ro VZ(0) )+ Ruf1)" (33
The results given above for the multiqubit contPgates
are compatible with the scheme proposed in IREf], where  Further, we design a network witiNE3) control qubits
a decomposition of multiqubitNOT gates into a network of (cy,...,Cy—3) and three target qubitd(,t,,t3) [see Fig. 5.
two-qubitcNOT gates has been presented. However, this deThis network acts as follows:
composition may require many elementary operations. It
seems to be more appropriate for some practical implemen- | 1)N— Ry 1)N~*0), + Ry )N
tations of quantum computind@or example, computing with
cold trapped iong16]) to implement directly multiqubit —Ro| 1)N7?0)¢ [0), + Ryg[1)N YOy,
CNOT gates. N Noo
—Ro1|1)"7°|0),[0)1,0)t,+ Raa| 1)™=|0)y,[O)y,

1Il. QUANTUM LOGIC NETWORKS FOR THE STATE _ _
Q —Rotl 1)N7310)¢, |0}, 0}, + Raal LN 2O)y,

SYNTHESIS
N—3 N
In this section we present quantum logic networks for the —Roi/1) |O>t1|0>t2|0>t3+ Ryl 1)™. (3.4
synthesis of specific types of coherent superpositions of mul-
tiqubit quantum states. Later we will use this result for con- c
struction of an algorithm for a generation of an arbitrary pure 1 7 T T

guantum state o qubits.
We will consider a quantum register of si2¢ i.e., N
qubits. Let us denote

N

s

N
_ N-2
|1>N:,-Hl @D, 11N H0)m, = J1:[1 ®[1)m, | ®10)m,.
j#k
(3. br —R]
Firstly, let us consider a simple network consisting of a t, oy an

multiqubit controlR gate having N—1) control qubits

(cq4,...,Cn_1) and a single target qubity) [see Fig. 3. Let FIG. 4. The network that realizes the transformatars).
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t; 4 . FIG. 7. The network for the synthesis of the generalization of
the GHZ state. The single-qubit rotatihis given by Eq.(2.2) for
FIG. 5. The network that realizes the transformat{8r)). R=0(w/2,7). The initial state ig0)N.

The arrangement of quantum logic networks with more

Up _
target qubits is straightforward. One has to add another mu||-1>N - \/iﬁ|1>Nl|0>1+ \ /¥|1>N

tiqubit cNOT gate acting on the added target qubit and then
one more multigubicNOT gate must be included at the end
of the network in order to erase “unwanted” changes on all
other terms in a superposition stdt®r instance, see the
fourth and fifth lines in Eq(3.4)].

As an example let us consider a network that prepares a
pure symmetric(with respect to permutatiopsentangled
state with just one qubit in the sta® and all others in the
state|1) [see Eq.(1.1)]. It can be shown that this state ex-
hibits the maximum degree of entanglement between any
pair of N qubits[14]. The network for the synthesis of the
state (1.1) from the initial state|1>N is shown in Fig. 6,
where the rotationt); are defined as follows:

[ N=] 1
N=j+1  JN-j+1

U= j=1,...N-1.

1 [N=] |
IN=j+1 N—j+1

The action of the network in Fig. 6 can be described as
follows:

(3.5

CUq 1 1
—— =DV 1)V o),

VN WN

N—2
N
1)

1 < N—-1 2 N
H...:J_Nj; |11)N-2|0), + \[Nm

CUN-1 N-2 1
— DNTH0Y + — 13N 0)y
—— T IO DO

+i|1 N

N )

CNOT N-1 1

—>\/_le1 |1>N_1|0>1+m|1>N_1|0>N
1 N

=—2> [N Yoy, (3.6
Nij=1

where|1)N denotes the state with all qubits in the stfie

and |1)N7!|0); represents the state of the register with (
—1) qubits in|1) and thejth qubit in the stateé0) [see the

notation in Eq.(3.1)].

A very simple example is the synthesis of the GHZ state,

N2 U - i.e., a coherent superposition with all qubits to be in the state
|0) or |1) with the same probability, i.eZ)guz=(|O)N
. L +|1)N)/v2. The corresponding network is shown in Fig. 7.
The single-qubit rotatioiR= O(#/2,7) defined in Eq(2.2)

FIG. 6. The network for the synthesis of the symmetric en-is applied on the initial statf0)™ and prepares the superpo-

tangled state1.1) on N qubits. The rotations); are given by Eq. siti

on (OYN+]0YN"11),)/v2. Applying sequentially all

(3.5. The N qubits are assumed to be initially in the stiigV. CNOT gates one prepares the GHZ stfe gz .
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(@ : a
3 N
N
(b) (© (d)
3 2 ——o—— ! FIG. 8. An array of networks
for the synthesis of an arbitrary
1 U 1 U e P U pure quantum _s_tat(a4.2) on three
1) *2) 3 qubits. The initial state i§000)
and the rotationsJ; are given by
2 $—bD 3 GS—b 3 —D Eqg. (4.4.
2. o 1 1
(e 3 ® 3 (g 2
1 2 3
IV. SYNTHESIS OF AN ARBITRARY PURE QUANTUM a ei2¢>jbj
STATE = ; j=0,... .
UJ (_e_|2¢jbj aJ ] J O; 161 (4 4)

Coherent manipulation with states of quantum registers
and, in particular, the synthesis of an arbitrary pure quantum
state is of central importance for quantum computing. One ofyhere aj=cos#; and b;=sing;. The initial state is|000).
the important tasks is the preparation of multiqubit entangledrhe network presented in Fig(8 prepares out of the state

states. _ _ |000 the superposition
Based on the discussion presented above we can propose

an array of quantum logic networks that prepare an arbitrary

state from the register initially prepared in the sf&g, i.e., a,|000) — e~ 12%0h| 111). (4.5
aN—1 11..1
Nl g(N)) = xiy= 4.1 . —
[0)"=19(N)) ,Zo cilx;) x=%...o olx), (4.9 Applying the network in Fig. &), a new term
xje{o,yN
where x is a binary representation of the numbéer Zhe — e2(41- %0 b, [001) (4.6)

proposed scheme can be generalized on the quantum register
of an arbitrary size, but for simplicity we will first consider
the case of three qubits.

A general state of three qubits is given as is added to the superpositiéh.5) while the amplitude of the

component000) is not affected at all. The application of the
|4(3)) = arp| 000) + &' ¥4 |001) + €' *20,| 010) + €' #3025/ 100) network given by Fig. &) adds another new term

+e'%4,|011) + €' 55| 101) + €' “6 arg| 110)
+e'%7a,|111), (4.2) —e'2(92=%)pga,b,|010) (4.7

where aq, ..., are real numbers satisfying the normaliza-
tion condition and does not influence the amplitudes of two foregoing terms
|000) and |001). Repeating this procedure, the network in

é aj2=1, 4.3 Fig. 8d) adds a new term
i=o

ande;,...,p, are relative phase factors. The global phase is —e'2(¢3~%0)pya,a,b4|100). (4.9
chosen such thapy=0.

In what follows we will present the procedure for the
synthesis of the stat@h.2). Let us use the abbreviated form Analogously, the network shown in Fig(e} adds a new
of the matrixR defined in Eq(2.5 which we denote as term
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FIG. 9. A compact form of the
array of the networks shown in
Fig. 8.

—e/2(¢a=¢0h a,a,a3b,/011),

4.9

while the networks shown in Figs.(f§ and 8g) add new
terms

— /2095~ b0 a,a,a5a,b5]101), (4.10
— e ¢0)b0a1a2a3a4a5b6| 110,

(4.11

respectively. The last network shown in FiggBalso deter-
mines the amplitude of the last term

— 2977 ¢0)pya,a,a5a4a586111).

(4.12

Comparing the output from the networks shown in Figs. 8

(see a compact form in Fig.)9determined by the relations
(4.5—-(4.12), with the expressiori4.2), we get the final re-
sults in Table I..

The coherent superpositio®.2) is completely deter-
mined by 15 parametersaf,...,a7;¢1,...,¢7). The nor-
malization condition(4.3) reduces this number to 14. The
networks in Fig. 8 are determined by 14 parameter
(bg,...,bg,bo,....,p6). Thus, the mapping between the state

(4.2) and the networks is clearly defined. From given values[h

of a; and ¢; one can calculaté; and ¢; according to the
expressions

Bo=3(7—¢7), ¢j:%(¢’j_¢’7), j=1,...6
(4.13

and

TABLE |. The network in Fig. 9 generates the stéde?) from
an empty registej000). The network is characterized by the coef-
ficientsa; , ¢; , whereb; = \/l—ajz. The statd4.2) is determined by
the coefficientsy; ,¢; . The table relates these two set of numbers.
The inverse relations are given by E¢4.13 and (4.14).

(4.19

which determine the single-qubit rotatio(¥4).

The state(4.2) contains terms corresponding to all pos-
sible permutations of three qubits. Howeverrealucedsu-
perposition with some terms missing might be desired. For
this purpose, we can skip networks responsible for the syn-
thesis of these terms or the corresponding paranigtean

be set to zero. For instance, in the case when the |@06)
does not appear in a final desired quantum state, we begin
with the initial statel111) and skip the network in Fig.(8).
If we do not wish, for a change, to generate the tétdr),
one may set the parametag to zero and the phase factor
can be chosen arbitrarilisee the table aboye

The scheme can be analogically extended to an arbitrary
number of qubits. In what follows we will briefly discuss the
extension on four qubits. These can be prepared, in general,

%n the coherent superposition consisting of 16 terms, i.e.,

0000, 0100, |0010, ... J111D.

The network in Fig. 1) prepares the superposition of
e termg0000 and|1111) with the corresponding complex
amplitudes, depending on the choice of the single-qubit ro-
tation R, . Application of the network in Fig. 1®) running
through all possible permutations of four qubits, i.e.,
(cq,ty,t0,t3)=1(1,2,3,9;(2,1,3,9;(3,1,2,9;(4,1,2,3},

adds to the superposition new terfd©00, [0100, |0010,
|0001) with corresponding amplitudes determined By.
Further, we apply the network of the type in Fig.(@0run-
ning through the permutations c¢{,C,,tq,t5)
={(3,4,1,2;(2,4,1,3;(2,3,1,9;(1,4,2,3;(1,3,2,;(1,2,3,4}
and the terms|0011),/0101),/0110,/1001,/1010, [1100
(with corresponding amplitudes given b¥;) will be in-
cluded to the state under construction. Finally, the network in
Fig. 1Qd) running through €1,C5,C3,t)
={(2,3,4,9;(3,4,1,2;(4,1,2,3;(1,2,3,4} generates new
terms|0111),]1011),|110), [1110.

j a; @j State
0 ag 0 (defaulh 000
1  bgby 2(p1— o)+ 7 001
2 bga;b, 2(po— )+ 7 010
3 boa,asbs 2(¢p3— o)+ 100
4 bga;asazb, 2(ps— o)+ 011
5 bga;asaza,bs 2(ps— o)+ 7 101
6 boaia,aza4asbg 2(pe— o)+ 110
7 bga,a,azasasag —2¢t+ 7 111

The extension tdN qubits is analogical. The state synthe-
sis is started from the initial stat®)N. Firstly, one uses the
network for the preparation of superpositions |6jN and
|1)N with determined amplitudes. Secondly, the networks
with one control qubit ¢;) and N—1 target qubits
(tq,...,tn—1) running through all permutations are applied.
Then, we employ the networks with two control qubits
(cq,cy) andN—2 target qubitstj, ... ,ty_»). Further, the

networks with more control qubits (3,4.. ,N—1). These
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1 ——o—— 0o ¢ .

N
D
\
-
o~
&l

(@) (b)
3 SV, ¢ Y S
4 %, t3 S, D FIG. 10. An array of networks
for the synthesis of an arbitrary
pure quantum staté4.1) of four
Cy ¢ GG ————o—— qubits as discussed in Sec. IV.
C; ® GG —o———
: d)
(© (
t, R? GG ———o———
2 S—b t1 —{R}—

procedures are repeated until we achibivel control qubits  sition) is much smaller than the frequency of the considered
(and one target qubitThe synthesis stops and a desired finalCOM mode. The ions in the trap represent qubits with two

state is prepared. distinct internal atomic states denoted |gs and |e) with
corresponding energy levels; and E., respectively. We
V. REALIZATION ON COLD TRAPPED IONS will consider individual-ion-addressing with a laser beam of

the frequencyw, represented by a classical traveling wave.

In previous sections we have proposed a scheme for thehen, in the interaction picture, in the rotating-wave approxi-

synthesis of an arbitrary pure quantum state of a systel of mation plus the weak-coupling regime and in the Lamb-

qubits. The implementation of the multiquiliioT gate has  picke limit we can write the Hamiltonian corresponding to
played the central role in our scheme. It is well known howthe interaction between thgh trapped ion (=1, ... N)

to decompose multiqubit gates into a network of single-qubitand the laser beam tuned on therrier (w, = wg)
and two-qubitcNOT gates[17]. However, it seems that a

direct implementation of multiqubitNOT gates in specific - i

quantum systems is more straightforward and requires less Aj=7(|e>j(g|+|g>j<e|) (5.9

elementary operation§or example, laser pulsgghan its

decomposition. We demonstrate this idea on a systetnldf  and on thefirst red sideband w, = wg— w,)

trapped ions We will briefly describe the system under con-

sideration and show how multiqubit gates can be imple- - hQjin R At

mented. Bj:T\/_N(|e>j<g|a+|g>j<e|a ) (5.2
The quantum system considered here is a model of a

string of N atomic ions confined in the linear Paul trap pro-\yhere). = |Q;le”? is the laser coupling constans,is the

posed by Cirac and Zoller in 19%5]. First experiments on laser phé\sez; iJs the Lamb-Dicke parametei,anda’ are the

a single ion and two ions were realized by the NIST group inyihijation and creation operators of the quantized COM

Boulder [18]. Experiments with more ions were done, for mode with the frequency,, whereéTé|n>=n|n> and w,

example, by the group in Innsbrugks). _ = (Ee—Ey)/4 is the atomic transition frequency.
The confinement of a system of trapped ions alongdhe £ rher, we can write the unitary evolution operators via

y, andz axes can be described by an anisotropic harmonigpich the action of the quantum gates is realized. Firstly, let
pseudopontential of frequencies<w, , where for the usual ;5 consider the evolution operator corresponding tlma
choice of trapping radio-frequendyf) voltage we getw;  ise on the carrierte k/|Q;]) applied on thg th ion with

= w,=wy. The ions are firstly Doppler cooled and then un-ihe apitrary initial choice of the laser phase such that
dergo the sideband cooling. Laser cooling minimizes their

motional energy and the ions oscillate around their equilib- . kr _ _

rium positions. In this case we can describe their motion in A d)):eXF{ - 7(|€‘>;<9|e*l¢—|g>j<e|e"/’) . (6.3
terms of normal modes. We will consider only the lowest,

center-of-masgCOM), vibrational collective mode of the Under the action of this unitary operator the two internal
ions along thez axis, when all the ions oscillate back and states of thgth ion are changed as follows:

forth as if they were a rigid body. The sideband cooling

leaves the ions in the quantum ground motional state; there- |g>]-—>cos{k7r/2)|g>j—e‘i¢sir(kw/2)|e>j ,
fore, we have to assume the Lamb-Dicke limit, i.e., the pho- .
ton recoil frequencycorresponding to the laser-cooling tran- |e>jﬂcos{k77/2)|e>j+e'¢sin(qu/2)|g)j ) (5.9
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Secondly, we have the evolution operator fdt7a pulse on q
the first red sidebandt(:ka-r\/ﬁlmjm) on the jth ion  |¥o)|0)m |0>‘>|\Pno>|g>mq+l|0>’ |\I’no>;&1_[l ®|e>mj,
=

choosing the laser phase such that o

|V o) €)m +1|0>_’|q,n0>|e>m

q+1

R ik . . |0),
B ()= — 5 (1o (olae #+10) (o)
(5.5 |q’yes>|g>mq+l|0>—’|\Pyes>|e>mq+l|o>v

which implies the transformation

q
|\I}yes>:H ®|e>mv
j=1 a

19)j10)—1g);/0),

|9)j|1)—cogkm/2)|g);|1)—ie ' ?sin(km/2)[e);|0), (5.6  [¥yed|€m,,,[0)—=|¥yed|Gm_.,[0). (5.10

|le)j|0)— cogkm/2)|e);|0)— el sin(k7/2)|g);[1), It is obvious from Eqgs(5.8) and(5.10 that the ions must be
kept in the ground motional state. This arrangement elimi-

where g=1, I, and |e,) denotes the upper internal level, nates heating processes that lead to decoherence. However, it

whereage,,) refers to an auxiliary internal levéduy). In the s still an experimental challenge to cool more than two ions

original proposal16] the values of the parametgr=1, || to the ground staten=0).

refer to the situation where the transition excited by the laser

depends on the laser polarization. VI. DISCUSSION AND CONCLUSIONS

The operatorg5.3) and (5.5 provide us with the possi- ] . ]
bility of introducing the implementation of the single-qubit [N this paper we have shown how multiparticle entangled
rotation and multiqubitcNOT gate on selected ionGepre-  States can be constructed with the.help of multiqubit quan-
senting qubits It is obvious from the transformatiofs.4) ~ (UM gates. We have shown how to implement these gates on
that the evolution operata5.3) corresponds to the single- the system of_ cold trapped ions. This allows us to “realize”
qubit rotationO(k,$) on the jth ion [see the definiton any multiqubit controR gate and also any logic network
(2.2)]. The two-qubitcNOT gate(the myth ion is the control proposed in Secs. Il and IV. To understand the feasibility of

and them,th ion is the targétis realized by the evolution this algqrithm we present some estimations considering the
operator(from right to lefy application of the introduced gates and networks on cold

trapped ions.
The main aim of further discussion is to illustrate a range
of relevant physical parameters for implementation of pro-
posed scheme. Obviously, specific experimental setups have
which corresponds to a sequence of pulses as descnb%i be considered separately. We present just rough estimates

At B B By Av(0), (5.7

above. This transformation acts on two ions as of minimal times required for the realization of desired gate
operations.
19)m,|9)my|0)—=1G)m, | G)my|O). Let us consider calcium ion®Ca" with the “ground”
(computational state|g=S;,,) and the “excited” (computa-
|9)m, €)m,|0)—9)m, |€)m,|0), tional) state|e=Dg,). The lifetime of the ion on the meta-
(5.8  StableDs, level is 1.045 s.
|e>m1|9>m2|0>—>|e>m1|e>m2|0>, We will assumeN ions loaded and confined in the trap.

The ions will be individually addressed with a laser beam
(N=729nm) supposing the Gaussian intensity proffillg
—exp(—2p2/vv2) where p denotes the radial distance and

The ions are assumed to be cooled to the ground vibration?z\llve enlt?lg Tasirtrl])z at;ﬁag thZI;';XISFubr;hg & Els%to th.?hggg!; ebe-

state|0) before the operation. We have used the notafon |ecoil frequency of the calcium ion i=2.33 kHz, where
=J3(0) in the relation5.7). The two-qubitcNOT gate can be  fy=Eg/h, Eg=%2%k%2m, k=2=/\, and h=2x%. The
extended to the multiqubit (contrdiNOT gate acting org axial trapping frequency is, /27=110kHz. We can also

+1 ions (my,...,mq ions represent the control, while the calculate the Lamb-Dicke parameter=\Er/fw,, ie., 7
Mg+ 1th fon is the targetand can be realized by the follow- =0.15. The minimum spacing between two neighboring ions

|e>m1|e>m2|0>_)|e>ml|g>m2|o>-

ing evolution operatotfrom right to lef: is determined by the approximate form{iz0,21],
q 2 2.018 qZ 1/3
102 1,1 1|| 2,1l LI 71,1 Y172 Py
-Am )B H By 1[11:[q ij :|Bm1~’4mq+l(o) AZpyin No.ssg( 47780mw§> ) (6.0
(5.9
whereq is the ion chargemmn is the ion mass, andy is the
corresponding to the transformation permitivity of vacuum.

012305-8



MULTIPARTICLE ENTANGLEMENT WITH QUANTUM . .. PHYSICAL REVIEW A 64 012305

TABLE Il. N is the number of calcium ions in the trapz., is the minimal distance between two
neighboring iong6.1), T is the minimal time for the realization of the operatiBh [in Eq. (5.9)] for two
different values of the fidelitfF=99%, F=75%). N(.A) is the total number of the operation$ in the
network in Fig. 6, andN(3Y) andN(5?) are the total numbers of the operatidf’sand 32, respectivelyT
is the total minimal timg6.3) for the experimental preparation of the stétel) on N ions via the network
in Fig. 6. T 4=5 us is the time for the realization of the operatign[in Eq. (5.9)].

T (us) T (mg)

N AZpgin (um)  F=99% F=75% N(A4) N(BYH N(B) F=99% F=75%

2 24.4 312 62.4 3 2 1 1.26 0.265
3 20.8 382 76.4 9 8 3 5.39 1.11
4 18.0 441 88.3 15 18 5 12.4 2.55
5 15.9 493 98.7 21 32 7 22.8 4.65
6 14.3 540 108 27 50 9 36.9 7.48
7 13.1 584 117 33 72 11 55.1 11.2
8 12.2 624 125 39 98 13 77.6 15.7
9 11.4 662 132 45 128 15 105 21.1
10 10.8 698 140 51 162 17 137 27.7
15 8.59 855 171 81 392 27 382 76.7
20 7.31 987 197 111 722 37 786 157

The multiqubitcNOT gate on the ions is realized by the ber of all operations, when preparing the stétel) on N
evolution operator5.9). We will consider three types of el- ions, is N?+4N—10. The explicit expression for the total
ementary operation$l) #/2 pulse on the carrigtd) defined time reads
by the relation(5.3), (2) 7 pulse ), and(3) 27 pulse B?)
on the first red sideban¢b.5. Each elementary operation T=N(A)T 4+ N(BYHYTz+N(B?)2T5. (6.3
takes a certain time to be implemented on the system of cold
trapped ions. Steanet al. addressed in detail the speed of In what follows we will consider several situations with
ion-trap information processors [22]. the number of trapped ions varying from 2 to 20. In a given

First, the single-qubit rotatiori.4) can be made much ion trap for different values of ions we obtain different mini-
faster than two-qubit operation#t,3%), because the Lamb- mal spacingsAz.,, [see Eq.(6.1)]. The minimal spacing
Dicke parameter; can be set to zer@.e., the laser beam is between ions has to be larger than the half-width of the
perpendicular to the axis). Thus, || can be made large Gaussian profile of the addressing laser beam. In the Inns-
without restrictions on the weak-coupling regime characterbruck experimenf23] the width of the Gaussian profile is
ized by the conditionQ|<w,. We will assume|Q|/2  proportional to 1@m. Even for 20 ions with Az,
=50kHz and estimate the time required for the single-qubit=7.31um [see Eq(6.1)] and the given width of the Gauss-
rotation asT 4= m/2|Q|=5 us. ian profile, the ratio between the light intensity of the laser

Second, by definition for the operatiof® and B2, the  addressing a given ion to the intensity of the same beam on
Lamb-Dicke parameter must be nonzgsee Eq(5.2)]. This  the neighboring ion is as small as 1.4%. Therefore, indi-
means that some unwanted off-resonant transitions will b&idual ions can be addressed rather efficiently.
present, which may significantly affect times required for the As follows from Eqg.(6.2) the minimal time for the gate

operationsi3t2 operation depends on the required fidelity of the process. In
In Ref. [22] it has been shown that the minimal speedour case we consider two values of the fidelity, namely
1/T 5 for the realization of the operatid®' is proportional to  =99% andF=75%. Given these values we can estimate

the geometric mean of the recoil and trapping frequency, i.erelevant physical parameters.
In Table Il we present results of our estimations. From

here we can conclude that for a given lifetime of calcium
1 2v2e |[ER o, ! :
== N7 2 (6.2 ions (1.045 g one can perform in our scheme a coherent
5 N m manipulation with up to 20 ions with the fidelity 99%. It

seems to be a very optimistic estimation; however, we did

where the imprecisioe= \/1—F is defined via the fidelitf  not optimize the network itself.
of the process. The time for the operatiBf is then 2T'5. We have chosen the cold trapped ions as an example for

Once the gate times are estimated, we can determine thbe situation when the direct implementation of the multiqu-
minimal total timeT required for the experimental prepara- bit CNOT gate (using elementary operations, i.e., in this case
tion of the statg1.1) on calcium ions. The total tim€is the  laser pulsesis much less demanding than the decomposition
sum of times of all operationsl, B, 8%, which appear in of multiqubitcNoOT gates into the network of two-quiiNoT
the implementation of the network in Fig. 6. The total num-gates. For instance, let us consider the multiqahidT gate
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on six qubits. Using the results of R¢fL7] we can decom- even more significant with the increasing number of the ions.
pose this multiqubitNoT gate into the network composed of Obviously, the smaller the number of pulses the easier the
12 two-qubitcNOT gates. In addition, this network had to be scheme can be implemented.

extended by three additional auxiliary qubits. The multibit

CNOT gate onN ions (5.9) is realized by A+ 1 laser pulses.

Each two-qubittNOT gate on two ions is then realized using ACKNOWLEDGMENTS

five laser pulseg5.7). It means that all together 60 pulses
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