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Universal state inversion and concurrence in arbitrary dimensions
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Wootters[Phys. Rev. Lett80, 2245(1998 ] has given an explicit formula for the entanglement of formation
of two qubits in terms of what he calls tlvencurrenceof the joint density operator. Wootters’s concurrence is
defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superop-
erator to a “universal inverter,” which acts on quantum systems of arbitrary dimension, and we introduce the
corresponding generalized concurrence for joint pure statBs ®fD, bipartite quantum systems. We call this
generalized concurrence theoncurrenceto emphasize its relation to the universal inverter. The universal
inverter, which is a positive, but not completely positive superoperator, is closely related to the completely
positive universaNoT superoperator, the quantum analogue of a classioalgate. We present a physical
realization of the universatoT superoperator.
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[. INTRODUCTION average pure-state concurrence. Wootters called this mini-

Entanglement plays a central role in quantum informatiormum the concurrence of the mixed state. UhimgAnntro-
theory [1,2]. Perhaps the most important measure of enduced a generalization of Wootters’s concurrence to higher
tanglement for bipartite systems is the entanglement of fordimensions, which we discuss further in Sec. Il B.
mation[3,4]. For a bipartite pure stafeV”B), the entangle- In this paper, we generalize the notion of concurrence to
ment of formation is given by the entropy of the marginal pairs of quantum systems of arbitrary dimension, in a way
density operatorp, and pg of systemsA andB. For a bi-  different from Uhimann’s. We show in Sec. Il that if the
partite mixed statep,g, the entanglement of formation is concurrence is to be generated by a product superoperator, as
given by the minimum average marginal entropy of en-in the expressiofi2), then the only suitable superoperator to
semble decompositions @fyg . go into the tensor product is what we call the “universal

Hill and Wootters[5] introduced another measure of en- inverter.” For a D-dimensional quantum system, which we
tanglement, called theoncurrence for pairs of qubits. The call a “qudit,” we denote the universal inverter . The
concurrence is defined with the help of a superoper&sor action of the universal inverter on a qudit statés given by
whose action on a qubit density operaper 1/2(1 + P. 5) is
to flip the spin of the qubit Sp(p)=rvp(l—p), (3)

1 2 > wherevp is a positive constant. Acting on a pure qudit state
Sap)=ayp*oy=5(1=P-0). @ |), the universal inverter maplsy) to a multiple of the

maximally mixed state in the subspace orthogonal .

Here, p* is the complex conjugatéor transposeof p rela-  The universal inverter has been used previously in studies of

tive to the eigenbasis af,. The concurrence of a pure state the separability of mixed states by Horodecki and Horodecki

| W Ag) Of two qubits is defined to bEs] [8].

The corresponding generalized concurrence for a joint

Co(Vap) = V(¥ apl S0 So(|W as) (W ag)) | ¥ ag) pure statd W ,g5) of aD, XD, system, in analogy to Eq2)

for qubits, is given b
= (W pglory @ 0, | W) @ ‘ gen by

Wootters[6] showed that the entanglement of formation of C(Vap)= \/<\PAB|SD1®SDz(|\I’AB><WAB|)|\PAB>

an arbitrary two-qubit mixed statpag can be written in >

terms of the minimum average pure-state concurrence, where - \/2 VD1VD2[1_tr(pA)]' )

the minimum is taken over all ensemble decompositions of

pag, and he derived an explicit expression for this minimumThus, for pure states, this generalized concurrence is simply
related to the purity of the marginal density operators. A
sensible choice for the constary , consistent with the con-

*Permanent address: Institute of Physics, Slovak Academy of Scieurrence for qubits, isp=1. We call the generalized con-

ences, DbravsKacesta 9, 842 28 Bratislava, Slovakia, and Facultycurrence(4) the | concurrenceto emphasize its relation to

of Informatics, Masaryk University, Botanické8a, 602 00 Brno, the universal inverter and also to distinguish it from a gen-

Czech Republic. eralized concurrence introduced by Uhimdri
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The universal inverter is a natural generalization to higheiGreek letter, e.g.|), and joint pure states of a bipartite
dimensions of the qubit spin flip. Only fdb =2, the spin  system by an upper-case Greek letter, é\y),
flip, does the universal inverter map pure states to pure
states. The universal inverter cannot be realized as a quantum A. Spin flip and qubit concurrence
dynamics, because though it is a positive superoperator, it is
not completely positive. In Sec. IID we explore a one-
parameter family of trace-preserving superoperators that a
closely related to the universal inverter, and we show that th
completely positive member of this family that is closest to
the universal inverter is the universabT superoperator _ : i )
[9,10]. The universahoT superoperator is thus a physically COMPlex conjugation of the state or operator in the eigenba-
realizable quantum analogue of the classiear gate. The =~ SIS ofo,. An antiunitary operator that satisfie€=+1, i.e.,

, : =4+ @, | iugati jugati i-
action of the universaltoT superoperator, denotefi,or, on @ ==, is called aconjugation conjugations are ordi-
a qudit state is given by narily introduced in quantum mechanics to represent time

reversal. Complex conjugation in some orthornormal basis is
a conjugation becausg?=1, and spin flip is a conjugation

A spin flip for a single qubit is effected by the antiunitary
fperatoro,C= —Coy, whereC denotes complex conjugation
in the eigenbasis ofr,. Acting on a state vectdry) or an
operator A, the antiunitary complex conjugation operator

givesC|y)=|y*) or CA=A*C, where|y*) and A* denote

1
Gnot(p)= ﬁ(DI —p)=p"OT, (5  because c('yC)T=CT0';=CO'y= —o,C. For a description of
other properties and uses of antilinear operators, see Ref.
In Sec. Ill, we give two physical realizations of the [15].

Promoted to an operator on operators, the spin flip be-

.un|versa.INOT.su_perop(_arator, one in terms Of. thve quantumcomes arantilinear superoperatos,COCo, , Which acts on
information distributor introduced by Braunstein, Blz and . - " X
operators according tor,CACoy=o,A*a,. Since we are

Hillery [11] and the other in terms of a measurement of theonI interested in the operation of the spin flip on Hermitian
isotropic POVM followed by state inversion. y P pin TP

The paper concludes in Sec. IV with a brief diSCussionoperators, where complex conjugation is equivalent to trans-

that includes the natural extensionlafoncurrence to mixed position, we can re_place this antilinear superoperator with
states the corresponding linear superoperator

S,=0,00°T,, (6)
Il. UNIVERSAL INVERTER

where7, denotes transposition in the eigenbasissgf(see
In this section, we first review in Sec. Il A, Wootters’s Appendix A). The subscript 2 distinguishes the spin flip and
spin-flip operation for a qubit and how it leads to an en-transposition in two dimensions from the similar quantities
tanglement measure called the concurrence for an arbitragsr arbitrary dimensions that we introduce later in this sec-

pure state of two qubites]. The main result of this paper is tjon.

to generalize the spin flip to a superoperator that we call the The action of the spin-flip superoperator on an arbitrary

universal inverter The universal inverter is defined in all qubit density operator,o=(l+I5-5)/2, is to invert the

Hilbert-space dimensions, and it leads to a generalized con: = - . . .
P g loch vectorP through the origin, as in Eq1). Since inver-

currence for joint pure states of two quantum systems or. ) . : :
sion commutes with rotations, representing unitary operators,

arbitrary dimension. In Sec. Il B, we formulate the require- h . diately thas A ith all unit
ments for the universal inverter and explore some of its prop\-Ne ave immediately 2 commutes with all unitary op-

erties. In Sec. Il C, we show that these requirements pick ol"aorsy, e, S,rUOUT=UOUTS,. .
a unique universal inverter up to a constant multiple, and in,. For a quqntum statp o'.c a tWC.)'QUb't systgm, the spin-
Sec. Il D, we consider trace-preserving superoperators thajPPed density operator, distinguished by a tilde, is

are closely related to the universal inverter. ~ .

The formalism we use for superoperators has been used p=588(p)=0 @0 p* o @0y, @)
extensively in open-systems thedid2]. The particular no-
tation we use can be found in R¢l.3] and is summarized
briefly in Appendix A, along with a description of severa

Hill and Wootterd 5] defined the concurrence of a two-qubit
| bure statep=|¥)(¥|, to be

superoperators that play key roles in our discussion. In con- =
trast to Ref[13], we use®, instead of®, to denote the slot Cao(W)=N\1r(pp) = V(¥|S,@ Sp(|¥)(W])[¥)
into which one inserts the operator on which a superoperator = (¥ oy@ oy | T*)). ®)

acts, reserving to denote tensor products between quantum
systems. This superoperator formalism has been used to anphe joint pure state can be written in terms of a Schmidt

lyze entanglement in Ref14]. decomposition,
We refer to the two subsystems of a bipartite system as
systemsA and B. Where necessary for clarity, we use sub- |UYy=a,|e;)®|f)+aye)®|f,), 9

scriptsA, B, andAB to distinguish quantities belonging to

the subsystems and to the joint system. To reduce notationwhere|ej> and|fj) are the orthonormal eigenvectors of the
clutter, however, we omit these subscripts on pure statesparginal density operators for the two qubits andanda,
denoting pure states of a single system by a lower-casere the(positive) square roots of the corresponding eigenval-
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ues. SinceS, commutes with all unitary operators, the con- It is clear that the analogues of properti@$—(3) are desir-

currenceC,(¥) is unchanged by local unitary transforma- able properties ofp, for the same reasons as for qubits, and

tions. This means that,(¥) is a function only ofa; and it turns out that they are sufficient to pick out a unique su-

a,; it is easy to verify thatC,(¥)=2a,a,. As noted by peroperatoSy up to a constant multiple.

Wootters, the concurrence can serve as a measurement of The upshot of this discussion is that we requfig to

entanglement: it is invariant under local unitary transforma-have the following properties:

tions, as any good measure of entanglement should be, and it (1') Sp maps Hermitian operators to Hermitian opera-

varies smoothly from 0 for pure product states to 1 for maxi-tors.

mally entangled pure states. (2") Sp commutes with all unitary operators.
Wootters[6] went on to show that the concurrence can  (3') (V|Sp,®Sp, (|'V)(V|)[¥) is non-negative for all

also be used to measure the entanglement of mixed states jofnt pure states¥) and goes to zero if and only ') is a

two qubits. He showed that the entanglement of formation oproduct state.

an arbitrary two-qubit mixed staje can be written in terms  The only superoperator that has these three properties is

of the minimum average pure-state concurrence of ensemble

decompositions op, and he derived an explicit expression Sp=vp(l1-1), (11

for this minimum in terms of the eigenvaluesf. Wootters
called the minimum the concurrence of the mixed state.
Uhimann[7] based his generalization of concurrence on
the fact that the spin flip is a conjugation, defining concur-
rence in arbitrary dimensions in terms of a conjugatédn
Following Uhlmann, we call his concurrence tBeconcur-
rence and we discuss it further in the next subsection.

where | is the unit superoperator relative to the left-right
action, Z is the unit superoperator relative to the ordinary
action, andvp is an arbitrary real constant. For the consid-
erations in Sec. Il D, we allowp to have a dependence on
D. For purposes of defining a generalized concurrence, how-
ever,vp should be independent @f; otherwise the general-
ized concurrence of a joint pure state could be changed sim-
ply by adding extra, unused dimensions to one or both
systems.

We show thatSy is the only superoperator allowed by

Our goal in this paper is to generalize the spin-flip superproperties (1)—(3') in Sec. Il C. For the remainder of this
operatorS, for a qubit to a superoperatdip that acts on  sypsection, we show thatS, does satisfy properties
gudit states and generates a generalized concurrend, for (1')=(3"), and we spell out some of its other properties and

X D bipartite quantum systems. The spin-flip superoperatoproperties of the corresponding concurrence. Notice, first,
has several important properties that we might wish its genthat S, takes an operatok to

eralization to retain:
(1) S, maps Hermitian operators to Hermitian operators. Sp(A)=vp[I(A)—Z(A)]=vp[tr(A)l —A], (12
(2) S, commutes with all unitary operators.
(3) (V|S,@8,(|¥){¥|)|¥) is nonnegative for all joint from which it is clgar thatSp satisfies properties (1 and
pure state¥) and goes to zero if and only {f#’) is a (2'). If Alis a density operatos, we get
product state.
(4) S, is a positive superoperator; i.e., it maps positive So(p)=vo(l—p). (13
operators to positive operators.
(5) S, is trace preserving.
(6) S, maps any pure state/){ | to the orthogonal pure

B. Universal inverter and | concurrence

Sincel —p is a positive operator for any, we have imme-
diately thatSy is a positive superoperator provided thatis
positive. The generalized concurrence is indifferent to a
State'é””.““'-. . . . - change in the sign ofp, so we are free to choosg, to be

(7) Sy is d_env_ed f20m+a conjugatiod, i.e., an antiunitary positive, which we do henceforth, thus makifg positive.
operator satisfying)“==1. . If vp=1/(D—-1), Sp is trace preserving; this trace-

Property(1) guarantees tha,® 5, maps_Herm|t|an op- preserving normalization is useful for the considerations of
erators to Hefm'“a” operatoksee Appendix B and thys Sec. Il D, but we see below tha, =1 is a more reasonable
that the quantity ¥|S,® S(|'W){(W|)| W) of property(3) is normalization to use for the generalized concurre@¢w).

rea_\tl. Pr(t)pert%(Z) er:_sures thaCZ(\Pt) IS :mcha?ged by IOC?}' Finally, Sp maps a pure state=|#){¢| to a positive mul-
unitary transformations, as an entanglement measure shoujd " ... projector orthogonal to;

be. Property3) makesC,(W¥) well defined, by ensuring that

the quantity inside the square root is non-negative, and it sets So(l) (] =vo (1= ¥){]). (14)
the zero so that pure product states, but no other pure states,
have vanishing concurrence. It is this property that prompts us to caf, the universal

In generalizing the spin flip to higher dimensions, weinverter. We call the corresponding generalized concurrence
want the generalized concurrence of a pure state (10) thel concurrenceto emphasize its connection with in-
=|¥)(¥| of aD, XD, bipartite system to be defined as for version. Other properties &, which follow directly from
qubits, i.e., the corresponding properties bfand Z (see Appendix A

are thatSp is Hermitian relative to the ordinary action, i.e.,
C(W)= \(V[Sp,® Sp, ([ ¥ )(¥D]¥). (10 S5=38p, and that it changes sign under sharping, i,
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=—Sp . The universal inverter has been used previously byFor defining a concurrence, one should choose the scaling
Horodecki and HorodecKi8] to provide a criterion for the factor vp to be independent oD—otherwise, as noted

separability of mixed states. above, the pure stateconcurrence could be changed simply
We now see that propertid¢d)—(6) of the qubit spin flip by adding extra, unused dimensions to one of the
survive, in amended form, in its generalization: subsystems—and to be consistent with the qubit concur-
, ) . rence, one should choosg=1. With this choice, the pure-
(4,) Sp Is a positive superoperator. _ state | concurrence runs from zero for product states to
(5") SD_ is agosmve multiple of a trace-preserving super- J2(M—1)/M, whereM =min(D;,D,), for a maximally en-
operator, i.e.Sp(1)=vp(D—1)I. N . tangled state.
(6") Sp maps any pure state/)(y] to a positive multiple Of the seven properties of the spin flip listed above, the
of the projector onto the subspace orthogondlp first six survive, some in amended form, in the universal

It is worth pointing out that if we added to properties !nverter. The seventh, th&; is derived from a conjugation,

(1")—(3") the additional requirement th&, map each pure IS rr]lpt a tpi)r?]pert)r/]:StD, brﬁfnautsevii);ﬁephm :]\;\{orgjlmeni:jor;ﬁ, a
state to a multiple of some orthogonal state, then the supeF—O jugation cannot commute all unitanes, a us,

operator of Eq(11) would trivially be the only possibility for (L:Ja;]rlmot s’erve aks the ba.s's f[(_)r a7 m_easulre k?lf e_:nt?r?%le{nent.
the universal inverter. mann’s work on conjugationf/] is valuable in that i

We still have to deal with property’3 For that purpose, ggneralizes to r_;\II_ conjugations the expression that Wootters
we need the tensor-product superoperator gives 'for the minimum average pure-state concurrence of a
bipartite density operatop in terms of the eigenvalues of
Sp,®Sp,= levD2(|®I—I®I—I®I+I®Z)_ (15 pp. Our results shovv_, _however, that Uhlmgnlﬁ);concur—
rence[7], founded as it is on the use of conjugations, cannot
Applied to an arbitrary joint density operatgryg, this  Serve as the basis for a general measure of entanglement.

tensor-product superoperator gives There is another interesting form of the universal inverter,
which makes a direct connection to the fofi of the spin
SD1®SD2(pAB)= vp, vp, (1 @1 —pa®1 —1®pp+ PAB)- flip. Choosing an orthonormal badis;), let 7 be the super-

(16) operator that transposes matrix representations in this basis,
and letP, be the superoperator projector, relative to the left-

Projecting back ont@ g gives right action, which projects onto the subspace of operators
that are antisymmetric in this basis. We show in Appendix A
tr(paSp,®Sp,(paB)) that
_ _ 2y 2 2
_VDlVDZ[l tr(pa) —tr(pg) +tr(pap) 1=0. (17) Splvp=2 PpeT. (21)

The inequality here, which shows that the quantity in prop-__ . , . . .
erty (3') is non-negative, is proved in Appendix C, where it This form of the universal inverter has been given previously

is also shown that the inequality is saturated if and only if®y Horodecki and HorodecKB]. For qubits, if we use the
pas=pa®pg iS a product state, with, or pg a pure state. eigenstates of-, as the chosen basis, then the antisymmetric

For a joint pure state,g, this establishes property (R operator subspace is spanned by the normalized operator

It is useful to specialize Eq17) to a joint pure stat¢¥), ay/\2, so the projector onto this subspace 7,

in which case it becomes the square of the pure-statm- :|_‘7y)(‘7y|_/2: oyOay/2. Thus, in the two dimensions the
currence: universal inverter becomes, = v,0,0 o°7,, which agrees

with the spin flip if v,=1.
Cz(‘I’):<‘I’|501®SD2(|‘I'><‘I’|)|\P>
C. Derivation of universal inverter
=2vp vp [1-tr(p3)]. (18) .
We now show that the only superoperator that satisfies

Thus, thel concurrence measures the entanglement of a purioperties (1)—(3") of the preceding subsection is the uni-
state in terms of the purity, tp(f;)=tr(p§), of the marginal versal inverte11). As we proceed through the proof, we use

density operators. A joint pure state has a Schmidt decompdid t0 denote the operator under consideration.
As we show in Appendix B, property (1 implies thatGp

sition, . ) N + .
is left-right Hermitian, i.e.gp=G, and thus, has an eigen-
decomposition
. ) gD:E Ma|7a)(7a|:2 /"LaTaQTZU (22)
in terms of which the squarddconcurrence becomes @ a
C2(¥)=2 1— 4| g 2,2 where theu, are real(left-right) eigenvalues gnd the opera-
¥) VDlVDZ( 21: 8 VDlVD?g’k 88 tors 7, are the corresponding orthonormal eigenoperators.
(20 Property (2) implies that
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Go=UTOUGeuoUT=>, p ufr,uout7 U,
(23

which means that'7,U is an eigenoperator ofp,, with
eigenvalueu,, for any unitary operatdd. This result can be

PHYSICAL REVIEW &4 042315

(V|Gp® G (W)W )| W)= np+ v+ 2npvp tr(pR)
=(mpF vp)?=27pvp
X[1xtr(pR)].

If »pvp=0, the top sign in Eq(31) shows that the quantity

(31)

restated as saying that the degenerate eigensubspaggs ofin property (3) is strictly positive, unlessyp=rp=0, a
are invariant under all unitary transformations. We show incase of no interest. I v, <0, the bottom sign in Eq.31)
Appendix D that the only operator subspaces that are invarishows that the quantity is nonnegative and goes to zero if

ant under all unitary transformations are the one-dimensionand only if 75 = —

subspace spanned by the unit operator and
(D2-1)-dimensional subspace of trace-free operators. As
consequencégjp must have the form

gD:/.LDI/D+ VD]:. (24)

Here,Z=10I is the unit superoperator relative to the ordi-

nary action,F is the superoperator that projects onto the

subspace of trace-free operators when acting to the (bgiet
Appendix A), up is the eigenvalue ofj corresponding to
the normalized eigenoperator/D, andvy, is the eigenvalue
corresponding to all of the tracefree operators. NoticeGhat
is Hermitian relative to the ordinary action, i.€p=G .

If we add1/\/D to a complete, orthonormal set of trace-

vp andp, is pure, i.e., the joint pure state

thés a product state. Thus, it turns out that the quantity in prop-

arty (3') is non-negative for all superoperators of the form
(26), but the only way to set the zero properly is to choose
7p=—vp, thus giving the universal inverter of Eqll).
The left-right eigenvalues of the universal inverter as¢
and/.LD:D’)?D"‘ VD:_(D_].)VD .

D. Trace-preserving superoperators

All superoperators of the forrf26) are proportional to a
trace-preserving superoperator, since

Gp(H=Gp(1)=(7p+Dwp)l.

RequiringGp to be trace preserving gives the condition

(32)

free operators, we obtain a complete, orthonormal set of op-

erators, so the unit superoperator in the left-right sense is

given by

|=7ID+F, (25)
from which we get
Gp=npZ+vpl, (26)
where
7p=(pp—vp)/D. (27)

Now we impose property (3. In doing so, it is sufficient
to consider the requirements of property’(3n the case
where the two subsystems have the same dimer3ioim
this case, the tensor-product superoperator takes the form

Gp®Gp=13I0T+ npvp(I®1+101)+ v3l®l. (28)

Applying this superoperator to a joint density opergiqg
gives

2 2
Go®Gp(pas) = mppast Mo Vp(pPaA® 1 +1®pg) +vpl @1,

(29)
and projecting this back onte,g yields
tr(pae9o®Gn(pap))
= 75tr(pie) + movoltr(ph) +tr(pg)1+vg.  (30)

Specializing to a joint pure statd’), we get

7p=1-Dwp (33
[up=D—vp(D2—1)], which allows us to eliminate one pa-
rameter and to write the trace-preserving versiogfas

gDT:(l_DVD)I+ VDI. (34)

Acting on an arbitrary input state, this superoperator gives

Gp1(p)=(1=Dvp)p+vpl. (35
It is instructive to investigate this one-parameter family of
trace-preserving operators.

We first ask which of the trace-preserving operai@4
are completely positive. The condition that a superoperator
be completely positive is that its left-right eigenvalues be
non-negative(see Appendix A Thus, the condition for the
complete positivity ofGp is thatup=0 andvp=0, which
is equivalent to

D
Og VD$ 52—1

—. (36)
When vp =0, Gpt=Z is the unit superoperator, and when
vp=D/(D?-1),

D
gDT:ﬁ}—:ﬁ(Dl_DEgNOT (37
is the universaNoT superoperatof9,10]. Notice that the
universalNOT superoperator is a multiple ¢f, the superop-
erator whose right action projects onto the subspace of trace-
free operators. Since the dynamics of a quantum system must
be completely positive, the universebT superoperator is
the closest physical approximation to the universal inverter
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in the one-parameter familB5); it is the quantum analogue lll. PHYSICAL REALIZATIONS OF THE UNIVERSAL-  NoT
of the classicalNoT gate. We present a realization of the SUPEROPERATOR
universalNOT superoperator in Sec. lll.

Another interesting completely positive superoperator oc-
curs forvp=1/(D+1):

In this section we give two physical realizations of the
universalNOT superoperatoGyor of Eq. (37), the first in
terms of the quantum information distributor introduced by

1 Braunstein, Buek, and Hillery[11] and the second in terms
(1+1)= —I+ +1fz Gay - (38 of a measurement of the isotropic POVM followed by state
inversion.

This superoperator was used to generate operator expansio SFor the .f|rst, conS|der. a qud't In a pure s.t@te|¢,//><_¢|..

in Ref.[14], where it was shown that it is the unique trace- S shown in Sec. Il, the ideal inversion of this state is given

preserving superoperator that satisfiesG'=G*=¢* and by

commutes with all unitaries. In contrast, the universal in-

verter is the unique superoperator that satisflegg '=G SDT(p):%(l —p)=p", (45)

= —G* and commutes with all unitaries. D-1

As shown in Ref[14], the superoperat@,, is the trace-
preserving version of the superoperator that describes projethere Spr is the trace-preserving version of the universal
tion onto a random pure state, inverter [see Eq.(42)]. The inverted statg’ is the maxi-
mally mixed state in thed —1)-dimensional subspace or-
dy thogonal to the input state=|)(y|. Notice that by con-
gAV:Dj 7|¢><¢|®|¢><¢|’ (39 struction, trpp*)=0 for pure input states.

As shown in Sec. Il D, the trace-preserving universal in-
wheredV is the unitarily invariant integration measure on VerterSpr is a positive, but not completely positive superop-
projective Hilbert space andis the corresponding total vol- €rator and as such cannot be realized physically. In the one-
ume. Projection onto a random pure state is the measuremep@rameter family of trace-preserving inverters considered in
that results in the optimal estimation of the state of the qudifec. Il D, the universaoT superoperatogyor of Eq. (37)

[16]. This estimated state is given by the density operator is the closest completely positive superoperator to the uni-
versal inverter. We denote the physically possible inversion

gDT_D+1

1 of the statep obtained using the universabT superoperator
On(p)==—=(l +P)- (40) as
D+1
The superoperatdy,, returns in Sec. Il as an ingredient in NOT_ _ _
one of the physical realizations of the universalr super- P =nor(p)= Dz—l(DI p): (48
operator.

We now consider which of the trace-preserving operators |n order to realize the universalbT superoperator, we
(34) are positive. Lettingp; be the eigenvalues of the input couple the qudit to be inverted, denotedAyto the quantum
density operatop, one sees that the eigenvaluesggf(p) information distributor(QID) introduced in Ref[11]. The
[Eq. 35] are (1-Dwp)pj+vp. The condition thapr be  QID is composed of two ancilla qudit® and C, each of
positive is that these eigenvalues be non-negative for all inwhich has the same dimensi@nas quditA. To describe the

put eigenvalue®; , which is equivalent to universal inverter, we introduce several operators and states
for qudits.
1 First we need the conjugate “position” and “momentum”
O<vps ——. (41 -
D-1 operatorsx andp. The eigenvectors of are denoted bjx,),

When vp=1/(D—-1), Gpr becomes the trace-preserving X[ Xie) = X Xic), (47
version of the universal inverter,

with the eigenvalues given by,=k\2#x/D; analogously,
1 the eigenstates qf are denoted byp,)
SDT:m(I_I) (42) k/»

o o P|PK) = Pkl Pw) (48)
The positive superoperators are convex combination$ of

andSpr: with the eigenvalues given bg,=ky27/D. We use units

such that the two operators are dimensionless. The two sets
of eigenvectors{|x,)} and{|p,)}, form bases in the qudit
Hilbert space and are related by a discrete Fourier transform,

Gor=[1-vp(D—-1)]Z+ vp(D—-1)Spr. (43

Notice that the universaloT superoperator can be written as

1 .
gNOTZE(SDT_I'gAV)- (44) |Xk>:_ 2 e 27Dy, (49

ﬁ

042315-6



UNIVERSAL STATE INVERSION AND CONCURRENCE ...

1 D-1
lp) = D go e®™KP ).

(50)
The translatior(shift) operators, defined by
R(n)=e P R,(m)=ePm, (51
cyclically permute the basis vectors according to
Ru(M)[X10) =Xk + nymod)» (52
Ro(M)[P1) =[P + mymodp)» (53

where the sums of indices are taken modbDlo
An orthonormal basis oD? two-qudit maximally en-
tangled state$= ) is given by

D-1
1 .
|:mn>:\/_5 kgo ez71-|mk/D|Xk>(X)|X(k-¢—n)m0dD>1 (54)

wherem,n=0, ... D—1. Using Eq.(49), we can rewrite
the state$_mn> in the joint momentum basis

D-1
1 )
|Emn>:\/_5 |:Eo e 2™ Ip 1 medn) @[P1).  (55)

The statd Eqo) can be written as
1 D-1
N5 Eo |P-1 moap) ®|P1)-

(56)

o= \/— E X ®|x)=—=

It is interesting to note that the whole set Bf maximally
entangled statelE ) can be generated fromE ,y) by the
action oflocal unitary operationgshifts):

|Emn>:Rp(m)®Rx(n)|EOO>- (57

Now we are ready to describe the QID. The ancilla qudits,

B andC, are initially prepared in the state

|®)gc=&1|Earsct €2l X0)e®|Po)c - (58
The phase freedom i) can be used to makg real and
non-negative, but thed, is in general complex. We do not
use the freedom to mak®& non-negative, thereby retaining
for use below the ability to multiply botl; and ¢, by — 1.
Normalization of|®gc) imposes the constraint

+& 2a
1=§%4&F+iﬁ%;éi=ﬁ+alwf+—§é,
(59
whereé,=a+ib. Solving for &;, we get
a , ,D°-1
fi=—gt\1-b*-a®—. (60)

PHYSICAL REVIEW &4 042315

We discard the other solution of the quadratic equation, be-
cause it can be converted to this solution by multiplying both
&, andé, by —1. Sinceé, is real, we must have

2_

D2

a’+h%<1, (61)

which means that, lies on or within an ellipse that has
principal radiusD//D?—1=1 along the real axis and prin-
cipal radius 1 along the imaginary axis. Therefore, we con-
clude that

2

D?-1°

0<|&l*< (62)

It is easy to see that the minimum value &f occurs when
£=D/JD?—1, this minimum value being &
=—1/JD?—1. Itis also easy to see that the maximum value
of &, occurs whené, is real; the maximum occurs @,
=-1/yD?~1 and is given by¢;=D/\D?—1. The upshot

is that ¢, is bounded by

(63

I <& = —
JyD?2-1 JyD2-1

The negative values af; are unimportant, because they can
be converted to positive values by multiplying bath and
&, by —1. What is important is thdt,|? has the same range
of possible values as,|?.

We now allow quditA to interact with the two ancilla
qudits, the resulting dynamics described by the unitary op-
erator

iXa(Pgt+Pc)],
(64)

Uasc=exfd —i(Xc—Xg)palexd —

(for more details, see Ref11]). For an initial pure statgy)
of qudit A, the joint state after the interaction is

Uasd ¥)a®|P)sc= &1l )a®|Eo0)sct &2l ¥)s® | Eodac-
(65)

The output states of the individual qudits after tracing out the
other two qudits are

fl(fz |§2|2
(out)
b(&+8)| &
(out) 2 el
(If =05 Jrtph (67)
G(6+E) | E+]6)
(out) _ T
wherep is an arbitrary initial state of qudid andp' is its

transpose. Taking into account the constrabf), we can
rewrite the output states of quditsandB as

p(Aout):(1_|§2|2)p+|§2|2|/D, (69)
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pPW=(1—£2)p+ £21/D. (70  away the result of the measurement of the isotropic POVM,
the resulting trace-preserving operation is
As far as quditA is concerned, the QID acts Iike2 the super-
operatorGyt of Egs.(34) and (35) with Dvp= . As far
ag quditBDi; congerrged), the EQII% first swz[;ps|t§ﬁ|e stateof J Sored A([¢)=Sor°Gn (78)
andB and then acts lik&pt with Dvp= £3.
Rewriting the output state of quditin terms of the ideal whereG,y is the superoperator that describes projection onto

inverted state’ = (1—p)/(D—1), we get a random pure stafesee Eq.(39)].
Using the forms(42) and (38), we can write the overall
p=(|£&,|2—1)(D—1)p* +[D—|£&|3(D—1)]I/D. operation as
(71)
1
To makep{®™ as close as possible i, we need to maxi- Sore9a=pz—7 (I =De(1+ D) =527 (DI =D)=Gyor,
mize |&,|?; i.e., we need to choose (79
2
Dyp= |§2|2:E)_, (720  where we use the fact th&tl =DI. This demonstrates that
D°-1 the universaNOT superoperator results from a measurement

. . ) of the isotropic POVM followed by state inversion.
thus making the action of the QID on quditthe same as the ! b W y nversi

action of the universaloT superoperator given in E¢46).

Notice that the QID gives the superoperadhy of Eq. (38) IV. CONCLUSION
whenDyp= |2§2|2:'_3/(D+ 1). ) ) The concurrence introduced by Hill and Woottgs$ and
When |&,|* has its maximum valueg7=1/(D*~1), SO py wootters[6] provides a good measure of the entangle-
the output stat¢70) of qudit B becomes ment of any state of two qubits, pure or mixed. The Hill-
Wootters concurrence is generated with the help of the su-
Pl 1 1 pt 1 |_ 73 peroperator that flips the spin of a qubit. In this paper, we
D2-1 (D?-1) D have identified the crucial properties of the spin-flip super-

operator, which allow it to generate a good entanglement
Notice that in the limit of largeD, we have|&,|—1 and¢, ~ measure for pure states of two qubits. By generalizing these
—0. The output state of quda reduces to the input state of properties to systems of arbitrary dimension, we have singled
qudit A, and the output states #fandC reduce to the maxi- Out a unique superoperator, which we call the universal in-
mally mixed statd/D. All this is a consequence of the fact verter. In the same way that the spin flip generates a concur-
that the initial state of qudit® and C limits to |®)gc  rence for pairs of qubits, the universal inverter generates a

—|X0)s®|po)c, and the QID swaps the statesAdfandB concurrence, which we call tHeconcurrence, for joint pure
states of pairs of quantum systems of arbitrary dimension.
Unsd ¥)a®|Eosc=|#)8®|Eodac- (74  This pure-statel concurrence measures entanglement in

terms of the purity of the marginal density operators of the
Our second realization of the universabT superoperator joint pure state.

starts with a measurement of the isotropic POVM It is natural to define thé concurrence of mixed states of
4y D, XD, quantum systems as the minimum averagencur-
_ rence of ensemble decompositions of the joint density opera-
dE =D— , 75
(1) V |9 (75) tor. Property (3) of thel concurrence—that thé concur-

rence of a pure statpV) is zero if and only if|¥) is a
where product state—implies immediately that the mixed-state con-
currence just defined is zero if and only if the mixed state is
f dE(|¢/>)=Df d_V|¢><l//|:| (76) separable. We are investigating fu_rther properties of this
V ' mixed-statd concurrence and how it is related to other mea-
sures of mixed-state entanglement.
We assume that the measurement projects the system onto The universal inverter turns out to be the ideal inverter of
the measured state, so the operation that describes a measysare states, since it takes a pure state to the maximally mixed
ment whose result is the staig) is state in the subspace orthogonal to the pure state. Because
dv the universal inverter is a positive, but not completely posi-
_ tive superoperator, it cannot be realized as the dynamics of a
dA(|l//>)—D7|l//><¢f|®|l/l><l//|. 77 quantum system coupled to an ancilla. We have shown that
among a one-parameter family of inverting superoperators,
Knowing that the system is in the staig), we can invertthe the completely positive superoperator that comes closest to
state. The operation that describes the measurement followedhieving an ideal state inversion is a superoperator called
by inversion is Spred.A(|#)), where Spt is the trace- the universaNOT superoperator, and we have presented a
preserving version of the universal inverter. If we now throwphysical realization of the universabT.
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APPENDIX A: SUPEROPERATOR FORMALISM This expression provides the fundamental connection be-
AND SPECIAL SUPEROPERATORS tween the two actions of a superoperator.

With respect to the left-right action, a superoperator

The formalism we use for superoperators has been usgglorks just like an operator. Multiplication of superoperators
extensively in open-systems thedi§2]. In this appendix, g and A is given by

we summarize our notation, which follows that of R3],

and we introduce and describe key properties of several su-

peroperators that are important for our analysis. BA= 2 By Aypl ) (74, (A7)
The space of linear operators acting on a Hilbert spfdce why

is aD2-dimensional complex vector space. We introduce OPand the

erator “kets” |[A)=A and “bras” (A|=A", distinguished

from vector kets and bras by the use of smooth brackets. The (A|ATB)=(B|A|A)*, (A8)

natural operator inner product can be written a§B)

=tr(A'B). An orthonormal basi$ej) induces an orthonor- is given by

mal operator basis

&) (e = T =Ta, (A1) AT=2, HigrgOro=2 Agolro)(mgl.  (A9)

left-right” adjoint, defined by

where the Greek index is an abbreviation for two Romanyit respect to the ordinary action, superoperator multipli-
indices. Not all orthonormal operator bases are of this outerzaiion denoted as a compositita A, is given by

product form. In the following,r, can be a general ortho-

normal operator basis, or it can be specialized to an outer-

product basis. BoA= 2 BysAupTyT,OThT. (A10)
The space of superoperators &f i.e., linear maps on @78

. 4 - -
operators, is &"-dimensional complex vector space. A SU- The adjoint with respect to the ordinary action, denoted by
peroperatot4 is specified by its “matrix elements” A%, is defined by

Ajjmi= (e | Al e )(ey) | em). (A2) tr(A*(B)]TA)=tr(BT A(A)). (A11)

for the superoperator can be written in terms of its matrixX|, terms of a representation in an operator basis, this “cross”

elements as adjoint becomes
= = T
A_Ii,EmkA”’mklel><ej|®|ek><em|_;ﬁ AasTaOTp AX:EB A’;;;TZG)W. (A12)
=> Aupl 7o) (Tg]. (A3)  Notice that
a,p

(BoA)T=BTe AT and (BA)*=B*A*. (A13)
The ordinary actionof .4 on an operatoA, used above to
generate the matrix elements, is obtained by dropping an We can formalize the connection between the two kinds
operatorA into the center of the representationAfin place  of action by defining an operation, called “sharp,” which

of the © sign, i.e., exchanges the two
A¥|A)=A(A). (A14)
AR =2 AupT ATh. (A4) |
@p Simple consequences of the definition are that
There is clearly another way that can act onA, the left- (A=A (A15)
right action, ’
(B A)#=B*A*, (Al6)
AlA) =2, A, sl Ta A), A5 ) .
A ;5 B|T )(Tﬁ| ) (A5) The matrix elements oft# are given by
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Al = (e (el A% lem)(ew) which are the generators of SDJ. We label these operators
by a Greek indexx, which runs from 1 tadD?—1. The op-
=tr(|ej) (e A(lem)(ex])) erators are defined by
:<eI|A(|em><ek|)|ei> a=1,...D—-1:
= Aim,jk (A17) L -1
ich impli Aa=F-Ef(E Tkk—(J—l)T--), 2<j=<D,
which implies that i -1 &1 i
(A22)
= A mden{em ©le(el. A18
Ij,Emk 1j m €){eml Olex)(ej] (A18) «=D, ... (D+2)(D—1)/2:
A superoperator is left-right Hermitian, i.e4=A 1 .
and only if it has an eigendecomposition Ne=T§)= \/E(Tijr 7)), 1sj<ks=D, (A23)
A= ol ) (7ol = 2 pamaOry, (AL9) a=D(D+1)/2,... D?~1:
. . —i
where theu,, are real(leﬁ-rlght) eigenvalues and the opera- \,= ](k*)E — (1~ 7q), 1<j<k=D. (A24)
tors 7, are orthonormal eigenoperators. V2

A superoperator israce preservingf, under the ordinary
action, it leaves the trace unchanged, i.e., ifAy( In Ed.(A22), « stands for a single Roman indgxwhereas
=t A(A)]=tr((A*(1)]TA) for all operatorsA. Thus, A is N Egs. (A23) and (A24), it stands for the pair of Roman
trace preserving if and only it *(1)=1. indices,jk. These operators are Hermitian generalizations of

A superoperator is said to h@ositiveif it maps positive the two-dimensional Pauli operators: the operaté?) are
operators to positive operators under the ordinary action. Aliagonal in the chosen basis, likg ; for each pair of dimen-
superoperator igompletely positivef it and all its exten- ~ sions, the operato@23) are like the Pauli operatar, ; and
sions Z® A to tensor-product spaces, whefeis the unit  for each pair of dimensions, the operatoh4) are likeo, .
superoperator on the appended space, are positive. It can beLike the Pauli operators, the operators are orthonor-
shown that4 is completely positive if and only if it is posi- mal, i.e.,
tive relative to the left-right action, i.e.A{.A|A)=0 for all
operatorsA (for a proof in the present notation, see Ref.
[13]). This is equivalent to saying that is left-right Hermit-
ian with non-negative left-right eigenvalues.

In this paper we make use of several special superoper
tors, whose properties we summarize here. The identity s
peroperator with respect to the ordinary action is

(Aa|7\ﬁ)=tl’()\a)\5)=5alg (A25)

Thus, they constitute an operator basis for the subspace of
trace-free operators. Indeed, we can define a superoperator
rolector

F=2 ) (Mol =2 NON,, (A26)

=1ol % le){ej|Olen(ed. (A20) which relative to the left-right action, projects onto the sub-
space of trace-free operators. Notice that F'=F*.

This superoperator is Hermitian in both senses, Ze:Z" If we add to the set of operatois, the normalized unit
=I*.lItis the identity superoperator relative to the ordinarygperator|/,/D, we obtain an orthonormal operator basis.
action becausg(A) =A for all operatorsA, but its left-right  Thys, the unit superoperatbrcan be written as

action givesZ|A)=tr(A)l.

The identity superoperator with respect to the left-right |I)(I|
action is |= +E N\ |=TID+F. (A27)

|:E |T“)(T“|:j§|; |ej><ek|©|ek><ej|_ (A21) Writing F=1-17/D, we find that

4 | D*-1_ F

This superoperator is also Hermitian in both senses, li.e., F=l-p=pz I p (A28)
=IT=1%. It is the identity superoperator relative to the left-
right action becausgA)=A for all operatorsA, but its or- In the chosen basis, the operat¢f22) and (A23) are
dinary action gived(A)=tr(A)l. Since sharping exchanges real and symmetric. Together withi\/D, they constitute a
the two kinds of action, it is clear that*=1. set of D(D+1)/2 orthonormal operators, which span the

To define the remaining superoperators, it is useful to insubspace of operators that are symmetric in the chosen basis.
troduce a set oD?—1 trace-free Hermitian operatof$7], In contrast, theD(D —1)/2 operators in EqtA24) are pure
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imaginary and antisymmetric and span the subspace of op- 2PeT=1+7I=(D+1)Gy , (A39)
erators that are antisymmetric in the chosen basis. We can
define superoperator projectors,

ZPAOT: I _I: SD /VD . (A40)
_[nal _ _
Ps=—p +A2rea| INa(Nal, (A29)  The form(A40) has been given previousf].
APPENDIX B: SUPEROPERATOR THEOREM
PAEM i%gmaryl)‘“)()\“L (A30) In this appendix, we show that a superoperator is Hermit-

ian relative to the left-right action if and only if it maps all
which relative to the left-right action, project onto the sym- Hermitian operators to Hermitian operators.
metric and antisymmetric operator subspaces. Notice that Let A be a superoperator, and lef) be an orthonormal
Ps=PL=Pg andPy=Pr=Px . It is clear that basis, which induces an orthonormal operator bgesjs ey/.
Notice that

= Ps+ PA . (A31)

The last superoperator we need is the superoperator that (&l AT(le) () leny=(len)(ejllATIem)(ex)
transposes operators in the chosen basis. The ordinary action = (lem)(exl[Alle)(eD*
of the transposition superoperator is given by

=(enA(ex)(ej))]e)*

_ T
7—(A)=§ |e]-><ek|A|ej><ek|, (A32) <el|[-/4(|ek><ej|)] |em>- (Bl)
Here, the first and third equalities follow from relating the
so the superoperator has the form ordinary action of a superoperator to its left-right actjéuj.
(AB)], the second equality follows from the definition of the
left-right adjoint of A [Eq. (A8)], and the fourth equality
T= Ek lej) (e Ofey)(el. (A33)  follows from the definition of the operator adjoint. Equation
b (B1) gives the relation between the operator adjoint and the

The transposition superoperator is Hermitian in both sensd€ft-right superoperator adjoint:

and is unchanged by sharping, i.6=7'=7"=7". In ad-
dition to satisfyingZe7=7Z, the transposition superoperator tla. _ It
has the propeny that AT(lej)ed)=LAed(eDI". (82)

Thus, we have thatl=A", i.e., A is left-right Hermitian, if

loT=1, (A34)  and only if
which in view of Eq.(A16), is equivalent taZ7="71.
It is easy to see thaPs—P,, acting to the right, trans- A(|ej><ek|):[A(|ek><ej|)]T (B3)

poses an operator, i.e.,
for all j and k. This result allows us to prove the desired

PslA) = PalA)=T(A)=T*|A), (A35)  theorem easily.
. ) . o . . TheoremA superoperato is left-right Hermitian if and
which gives us, sincis invariant under sharping, only if it maps all Hermitian operators to Hermitian opera-
tors.
T=T"=Pg—P,. (A36) Proof. First supposeA is left-right Hermitian, i.e., A
= A", This implies that4 has a complete, orthonormal set of
Combined with Eq(A31), this gives us eigenoperatorsr,, with real eigenvaluesu,. Using the
eigendecompositiofA19), we have for any Hermitian op-
1 eratorH,
PS:§(|+T), (A37)
AH) =2 parHTh=AH)". (B4)
1 a
PA=§(I—T)- (A38)

Now, supposed maps all Hermitian operators to Hermit-
Combining these forms with E¢A34) yields ian operators. Letting;=|e;)(ey/, it follows that
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1 =i
A(Tjk):A(E(Tjk_l' Tkj)+i7(7'jk—7'kj))

PHYSICAL REVIEW A 64 042315

Thus, the diagonal elements @f |, are a probability distri-
bution pj,= pj jx » Whose marginals are the eigenvalues of

+iA

1 =i
:A(E(Tjk+7kj) 7(Tjk—7kj))

1
+i

+
A

(1 —i
:>A<§(Tjk+7kj) 7(Tjk—7kj))

—i t
—iA<7(Tjk—Tkj)”

(1
=| A 5 (Ti+ 7))

+
=[A( Tkj)]T-

(B5)

(1 =i
Z_A(E(Tjk+7kj)—i 7(7'jk_7'kj)>

Equation(B3) then implies that4d=A".

Since a superoperator is left-right Hermitian if and only if
it has an eigendecomposition as in £419), we can con-
clude, by grouping together positive and negative eigenval-
ues, that being left-right Hermitian is equivalent to being the
difference between two completely positive superoperators.
Using the theorem, we have that a superoperator takes all
Hermitian operators to Hermitian operators if and only if it is
the difference between two completely positive superopera-
tors. This generalizes a result of YL8], who showed that a
positive superoperator is the difference between two com-
pletely positive superoperators. From our perspective, we
can say that since a positive superoperator takes positive op-
erators to positive operators, it also takes Hermitian opera-
tors to Hermitian operators, and thus, is left-right Hermitian.

the marginal density operators:

Dy Dy

gl Pjxk=#mj and jzl Pjk= Vi - (CH

We now can write

1+1tr(pag) = 1+j ;m |pjkiml?

+j2kl PikPik— > PikPix

i# Tk

3(3af 3(3n)

+ 2 PijkPim

j#1,k#sm

=2 p+ 2 v=tpR) +ir(pd). (CH)

A positive operator that is not completely positive has one or - The first inequality here is saturated if and onlyifg is

more negative left-right eigenvalues.

diagonal in the basisej)®|f). The second inequality is

We can get one further result relevant to the considerygirated if and only ipjpim=0 whenever 1 andk+ m.

ations in this paper: ifA and B are left-right Hermitian su-
peroperators for two separate quantum systems, tftef is

also left-right Hermitian, and thus, maps all Hermitian op-

erators of the joint system to Hermitian operators.

APPENDIX C: INEQUALITY FOR PURITY

Let
D, D,
PA:]Zl wilej(e and Pszgl rdf (il (C1)

be the eigendecompositions @f andpg. In the joint basis
lejy®|fy), pag has the form

PAB=, ;m Pikiml (el @] fi)(frl. (C2
The diagonal forms of the marginal density operators sho
that

Dy Dy
kzlpjk,lk:,“jﬁjl and Jlejk,jm:thskm- (C3

W

This requirement is equivalent to saying that the nonzero
entries inp;, are restricted to one row or to one column. In
view of the first requirement, this means that overall equality
is achieved in Eq(C5) if and only if pag=pa®pg is a
product state, wittp, or pg a pure state.

APPENDIX D: UNITARILY INVARIANT OPERATOR
SUBSPACES

In this appendix, we show that the vector space of opera-
tors acting on aD-dimensional Hilbert space has only two
proper operator subspaces that are invariant under all unitary
transformations. These two subspaces are the one-
dimensional subspace spanned by the unit opetaad the
subspace consisting of all trace-free operators.

It is obvious that the subspace consisting of multiples of
and the subspace of trace-free operators are unitarily invari-
ant. To show that these are the only unitarily invariant proper
subspaces, we consider a unitarily invariant subspace that is
not the subspace spanned khyand we show that this sub-
space is either the subspace of trace-free operators or the
entire operator space. L& be a nonzero operator in the
unitarily invariant subspace, which is not a multiple lof
There exists an orthonormal ba$e§> such thatAq;# A,,.
Adopt this basis, in whiclA has the representation
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D

A= Aule)ed. (D1)
j,k=1

Consider the unitary operattt that changes the sign of

le1), i.e., Ule;)=—|e;) and Ulej)=|e;) for j=2,...D.
Also in the unitarily invariant subspace is the operator

1 . °
B=;(A+UAU )=A11|f'31><‘531|+jé2 Ajcle)(ed.

2
(D2)

Do the same thing to the second basis vector; i.e., use th

unitary operatorV defined by V|e,)=—|e,), and V|e))

=|ej> for j=1 andj=3, ... D. Also in the subspace is the

operator

1
C= §(B+VBVT)
D
=Apler)(er|+Axyle) (e, + j és Ajk|ej><ek|-
(D3)

Now consider the unitary operatdW that swaps/e;) and
ley), ie., Wey)=|e,), Wley)=|e;), and W|e;)=|e;) for
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j=3,...D.Also in the subspace is tHaonzerg trace-free
operator

D=C-WCW=(A;;—~Ayn)(|er)(e]—e)(e]).

We conclude that the subspace contains the trace-free op-
erator |e;)(e;| —|e,)(e,|, which is a Paulic, operator for
the first two dimensions. From this operator, we can generate
by unitary transformations that interchange basis vectors, a
o,-like operator for every pair of dimensions, and from these
o, operators, we can generate by unitary transformations a
(‘?X and ao, operator for every pair of dimensions. Since
these Pauli-like operators span the space of trace-free opera-
tors, we conclude that any unitarily invariant operator sub-
space that is not the space spanned lopntains all trace-
free operators.

The unitarily invariant subspace could be the subspace of
trace-free operators. Suppose that it is not and thus contains
an operatork that is not trace free. Defining a trace-free
operatorF=E—tr(E)I/D, we see that can be written as
linear combination of andE, and thus, is in the subspace.
Since the tracefree operators together wigpan the entire
space of operators, we conclude that in this case the unitarily
invariant subspace is the entire operator space. This estab-
lishes our result.
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