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Universal state inversion and concurrence in arbitrary dimensions

Pranaw Rungta,1 V. Bužek,2,* Carlton M. Caves,1 M. Hillery,3 and G. J. Milburn4
1Center for Advanced Studies, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 871

2The Erwin Schro¨dinger Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Wien, Austria
3Department of Physics and Astronomy, Hunter College of CUNY, 695 Park Avenue, New York, New York 10021

4Centre for Quantum Computer Technology, The University of Queensland, Queensland 4072, Australia
~Received 13 February 2001; published 18 September 2001!

Wootters@Phys. Rev. Lett.80, 2245~1998!# has given an explicit formula for the entanglement of formation
of two qubits in terms of what he calls theconcurrenceof the joint density operator. Wootters’s concurrence is
defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superop-
erator to a ‘‘universal inverter,’’ which acts on quantum systems of arbitrary dimension, and we introduce the
corresponding generalized concurrence for joint pure states ofD13D2 bipartite quantum systems. We call this
generalized concurrence theI concurrenceto emphasize its relation to the universal inverter. The universal
inverter, which is a positive, but not completely positive superoperator, is closely related to the completely
positive universal-NOT superoperator, the quantum analogue of a classicalNOT gate. We present a physical
realization of the universal-NOT superoperator.
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I. INTRODUCTION
Entanglement plays a central role in quantum informat

theory @1,2#. Perhaps the most important measure of
tanglement for bipartite systems is the entanglement of
mation @3,4#. For a bipartite pure stateuCAB&, the entangle-
ment of formation is given by the entropy of the margin
density operatorsrA and rB of systemsA and B. For a bi-
partite mixed staterAB , the entanglement of formation i
given by the minimum average marginal entropy of e
semble decompositions ofrAB .

Hill and Wootters@5# introduced another measure of e
tanglement, called theconcurrence, for pairs of qubits. The
concurrence is defined with the help of a superoperatorS2,
whose action on a qubit density operatorr51/2(I 1PW •sW ) is
to flip the spin of the qubit

S2~r!5syr* sy5
1

2
~ I 2PW •sW !. ~1!

Here,r* is the complex conjugate~or transpose! of r rela-
tive to the eigenbasis ofsz . The concurrence of a pure sta
uCAB& of two qubits is defined to be@5#

C2~CAB![A^CABuS2^ S2~ uCAB&^CABu!uCAB&

5u^CABusy^ syuCAB* &u. ~2!

Wootters@6# showed that the entanglement of formation
an arbitrary two-qubit mixed staterAB can be written in
terms of the minimum average pure-state concurrence, w
the minimum is taken over all ensemble decompositions
rAB , and he derived an explicit expression for this minimu
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average pure-state concurrence. Wootters called this m
mum the concurrence of the mixed state. Uhlmann@7# intro-
duced a generalization of Wootters’s concurrence to hig
dimensions, which we discuss further in Sec. II B.

In this paper, we generalize the notion of concurrence
pairs of quantum systems of arbitrary dimension, in a w
different from Uhlmann’s. We show in Sec. II that if th
concurrence is to be generated by a product superoperato
in the expression~2!, then the only suitable superoperator
go into the tensor product is what we call the ‘‘univers
inverter.’’ For a D-dimensional quantum system, which w
call a ‘‘qudit,’’ we denote the universal inverter bySD . The
action of the universal inverter on a qudit stater is given by

SD~r!5nD~ I 2r!, ~3!

wherenD is a positive constant. Acting on a pure qudit sta
uc&, the universal inverter mapsuc& to a multiple of the
maximally mixed state in the subspace orthogonal touc&.
The universal inverter has been used previously in studie
the separability of mixed states by Horodecki and Horode
@8#.

The corresponding generalized concurrence for a jo
pure stateuCAB& of a D13D2 system, in analogy to Eq.~2!
for qubits, is given by

C~CAB![A^CABuSD1
^ SD2

~ uCAB&^CABu!uCAB&

5A2nD1
nD2

@12tr~rA
2 !#. ~4!

Thus, for pure states, this generalized concurrence is sim
related to the purity of the marginal density operators.
sensible choice for the constantnD , consistent with the con-
currence for qubits, isnD51. We call the generalized con
currence~4! the I concurrenceto emphasize its relation to
the universal inverter and also to distinguish it from a ge
eralized concurrence introduced by Uhlmann@7#.
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The universal inverter is a natural generalization to hig
dimensions of the qubit spin flip. Only forD52, the spin
flip, does the universal inverter map pure states to p
states. The universal inverter cannot be realized as a qua
dynamics, because though it is a positive superoperator,
not completely positive. In Sec. II D we explore a on
parameter family of trace-preserving superoperators that
closely related to the universal inverter, and we show that
completely positive member of this family that is closest
the universal inverter is the universal-NOT superoperator
@9,10#. The universal-NOT superoperator is thus a physical
realizable quantum analogue of the classicalNOT gate. The
action of the universal-NOT superoperator, denotedGNOT, on
a qudit state is given by

GNOT~r!5
1

D221
~DI 2r![rNOT. ~5!

In Sec. III, we give two physical realizations of th
universal-NOT superoperator, one in terms of the quantu
information distributor introduced by Braunstein, Buzˇek, and
Hillery @11# and the other in terms of a measurement of
isotropic POVM followed by state inversion.

The paper concludes in Sec. IV with a brief discuss
that includes the natural extension ofI concurrence to mixed
states.

II. UNIVERSAL INVERTER

In this section, we first review in Sec. II A, Wootters
spin-flip operation for a qubit and how it leads to an e
tanglement measure called the concurrence for an arbit
pure state of two qubits@6#. The main result of this paper i
to generalize the spin flip to a superoperator that we call
universal inverter. The universal inverter is defined in a
Hilbert-space dimensions, and it leads to a generalized c
currence for joint pure states of two quantum systems
arbitrary dimension. In Sec. II B, we formulate the requir
ments for the universal inverter and explore some of its pr
erties. In Sec. II C, we show that these requirements pick
a unique universal inverter up to a constant multiple, and
Sec. II D, we consider trace-preserving superoperators
are closely related to the universal inverter.

The formalism we use for superoperators has been u
extensively in open-systems theory@12#. The particular no-
tation we use can be found in Ref.@13# and is summarized
briefly in Appendix A, along with a description of sever
superoperators that play key roles in our discussion. In c
trast to Ref.@13#, we use(, instead of̂ , to denote the slot
into which one inserts the operator on which a superoper
acts, reservinĝ to denote tensor products between quant
systems. This superoperator formalism has been used to
lyze entanglement in Ref.@14#.

We refer to the two subsystems of a bipartite system
systemsA and B. Where necessary for clarity, we use su
scriptsA, B, andAB to distinguish quantities belonging t
the subsystems and to the joint system. To reduce notati
clutter, however, we omit these subscripts on pure sta
denoting pure states of a single system by a lower-c
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Greek letter, e.g.,uc&, and joint pure states of a bipartit
system by an upper-case Greek letter, e.g.,uC&.

A. Spin flip and qubit concurrence

A spin flip for a single qubit is effected by the antiunita
operatorsyC52Csy , whereC denotes complex conjugatio
in the eigenbasis ofsz . Acting on a state vectoruc& or an
operator A, the antiunitary complex conjugation operat
givesCuc&5uc* & or CA5A* C, whereuc* & andA* denote
complex conjugation of the state or operator in the eigen
sis ofsz . An antiunitary operator that satisfiesQ2561, i.e.,
Q†56Q, is called aconjugation; conjugations are ordi-
narily introduced in quantum mechanics to represent ti
reversal. Complex conjugation in some orthornormal basi
a conjugation becauseC 251, and spin flip is a conjugation
because (syC)†5C †sy

†5Csy52syC. For a description of
other properties and uses of antilinear operators, see
@15#.

Promoted to an operator on operators, the spin flip
comes anantilinear superoperatorsyC(Csy , which acts on
operators according tosyCACsy5syA* sy . Since we are
only interested in the operation of the spin flip on Hermiti
operators, where complex conjugation is equivalent to tra
position, we can replace this antilinear superoperator w
the corresponding linear superoperator

S25sy(sy+T2 , ~6!

whereT2 denotes transposition in the eigenbasis ofsz ~see
Appendix A!. The subscript 2 distinguishes the spin flip a
transposition in two dimensions from the similar quantiti
for arbitrary dimensions that we introduce later in this se
tion.

The action of the spin-flip superoperator on an arbitra
qubit density operator,r5(I 1PW •sW )/2, is to invert the
Bloch vectorPW through the origin, as in Eq.~1!. Since inver-
sion commutes with rotations, representing unitary operat
we have immediately thatS2 commutes with all unitary op-
eratorsU, i.e., S 2+U(U†5U(U†+S2.

For a quantum stater of a two-qubit system, the spin
flipped density operator, distinguished by a tilde, is

r̃5S2^ S2~r!5sy^ syr* sy^ sy . ~7!

Hill and Wootters@5# defined the concurrence of a two-qub
pure state,r5uC&^Cu, to be

C2~C![Atr~rr̃ !5A^CuS2^ S2~ uC&^Cu!uC&

5u^Cusy^ syuC* &u. ~8!

The joint pure state can be written in terms of a Schm
decomposition,

uC&5a1ue1& ^ u f 1&1a2ue2& ^ u f 2&, ~9!

whereuej& and u f j& are the orthonormal eigenvectors of th
marginal density operators for the two qubits anda1 anda2
are the~positive! square roots of the corresponding eigenv
5-2
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ues. SinceS2 commutes with all unitary operators, the co
currenceC2(C) is unchanged by local unitary transform
tions. This means thatC2(C) is a function only ofa1 and
a2; it is easy to verify thatC2(C)52a1a2. As noted by
Wootters, the concurrence can serve as a measureme
entanglement: it is invariant under local unitary transform
tions, as any good measure of entanglement should be, a
varies smoothly from 0 for pure product states to 1 for ma
mally entangled pure states.

Wootters@6# went on to show that the concurrence c
also be used to measure the entanglement of mixed stat
two qubits. He showed that the entanglement of formation
an arbitrary two-qubit mixed stater can be written in terms
of the minimum average pure-state concurrence of ensem
decompositions ofr, and he derived an explicit expressio
for this minimum in terms of the eigenvalues ofrr̃. Wootters
called the minimum the concurrence of the mixed state.

Uhlmann @7# based his generalization of concurrence
the fact that the spin flip is a conjugation, defining conc
rence in arbitrary dimensions in terms of a conjugationQ.
Following Uhlmann, we call his concurrence theQ concur-
rence, and we discuss it further in the next subsection.

B. Universal inverter and I concurrence

Our goal in this paper is to generalize the spin-flip sup
operatorS2 for a qubit to a superoperatorSD that acts on
qudit states and generates a generalized concurrence foD1
3D2 bipartite quantum systems. The spin-flip superopera
has several important properties that we might wish its g
eralization to retain:

~1! S2 maps Hermitian operators to Hermitian operato
~2! S2 commutes with all unitary operators.
~3! ^CuS2^ S2(uC&^Cu)uC& is nonnegative for all joint

pure statesuC& and goes to zero if and only ifuC& is a
product state.

~4! S2 is a positive superoperator; i.e., it maps positi
operators to positive operators.

~5! S2 is trace preserving.
~6! S2 maps any pure stateuc&^cu to the orthogonal pure

stateuc'&^c'u.
~7! S2 is derived from a conjugationQ, i.e., an antiunitary

operator satisfyingQ2561.
Property~1! guarantees thatS2^ S2 maps Hermitian op-

erators to Hermitian operators~see Appendix B! and thus
that the quantitŷ CuS2^ S2(uC&^Cu)uC& of property~3! is
real. Property~2! ensures thatC2(C) is unchanged by loca
unitary transformations, as an entanglement measure sh
be. Property~3! makesC2(C) well defined, by ensuring tha
the quantity inside the square root is non-negative, and it
the zero so that pure product states, but no other pure st
have vanishing concurrence.

In generalizing the spin flip to higher dimensions, w
want the generalized concurrence of a pure stater
5uC&^Cu of a D13D2 bipartite system to be defined as f
qubits, i.e.,

C~C![A^CuSD1
^ SD2

~ uC&^Cu!uC&. ~10!
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It is clear that the analogues of properties~1!–~3! are desir-
able properties ofSD , for the same reasons as for qubits, a
it turns out that they are sufficient to pick out a unique s
peroperatorSD up to a constant multiple.

The upshot of this discussion is that we requireSD to
have the following properties:

(18) SD maps Hermitian operators to Hermitian oper
tors.

(28) SD commutes with all unitary operators.
(38) ^CuSD1

^ SD2
(uC&^Cu)uC& is non-negative for all

joint pure statesuC& and goes to zero if and only ifuC& is a
product state.

The only superoperator that has these three propertie

SD5nD~ I2I!, ~11!

where I is the unit superoperator relative to the left-rig
action, I is the unit superoperator relative to the ordina
action, andnD is an arbitrary real constant. For the consi
erations in Sec. II D, we allownD to have a dependence o
D. For purposes of defining a generalized concurrence, h
ever,nD should be independent ofD; otherwise the general
ized concurrence of a joint pure state could be changed s
ply by adding extra, unused dimensions to one or b
systems.

We show thatSD is the only superoperator allowed by
properties (18) –(38) in Sec. II C. For the remainder of thi
subsection, we show thatSD does satisfy properties
(18) –(38), and we spell out some of its other properties a
properties of the corresponding concurrence. Notice, fi
that SD takes an operatorA to

SD~A!5nD@ I ~A!2I~A!#5nD@ tr~A!I 2A#, ~12!

from which it is clear thatSD satisfies properties (18) and
(28). If A is a density operatorr, we get

SD~r!5nD~ I 2r!. ~13!

SinceI 2r is a positive operator for anyr, we have imme-
diately thatSD is a positive superoperator provided thatnD is
positive. The generalized concurrence is indifferent to
change in the sign ofnD , so we are free to choosenD to be
positive, which we do henceforth, thus makingSD positive.
If nD51/(D21), SD is trace preserving; this trace
preserving normalization is useful for the considerations
Sec. II D, but we see below thatnD51 is a more reasonabl
normalization to use for the generalized concurrenceC(C).
Finally, SD maps a pure stater5uc&^cu to a positive mul-
tiple of the projector orthogonal tor:

SD~ uc&^cu!5nD~ I 2uc&^cu!. ~14!

It is this property that prompts us to callSD the universal
inverter. We call the corresponding generalized concurren
~10! the I concurrenceto emphasize its connection with in
version. Other properties ofSD , which follow directly from
the corresponding properties ofI and I ~see Appendix A!,
are thatSD is Hermitian relative to the ordinary action, i.e
S D

35SD , and that it changes sign under sharping, i.e.,S D
#

5-3
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52SD . The universal inverter has been used previously
Horodecki and Horodecki@8# to provide a criterion for the
separability of mixed states.

We now see that properties~4!–~6! of the qubit spin flip
survive, in amended form, in its generalization:

(48) SD is a positive superoperator.
(58) SD is a positive multiple of a trace-preserving supe

operator, i.e.,S D
3(I )5nD(D21)I .

(68) SD maps any pure stateuc&^cu to a positive multiple
of the projector onto the subspace orthogonal touc&.

It is worth pointing out that if we added to propertie
(18) –(38) the additional requirement thatSD map each pure
state to a multiple of some orthogonal state, then the su
operator of Eq.~11! would trivially be the only possibility for
the universal inverter.

We still have to deal with property 38. For that purpose
we need the tensor-product superoperator

SD1
^ SD2

5nD1
nD2

~ I ^ I2I^ I2I ^ I1I^ I!. ~15!

Applied to an arbitrary joint density operatorrAB , this
tensor-product superoperator gives

SD1
^ SD2

~rAB!5nD1
nD2

~ I ^ I 2rA^ I 2I ^ rB1rAB!.
~16!

Projecting back ontorAB gives

tr„rABSD1
^ SD2

~rAB!…

5nD1
nD2

@12tr~rA
2 !2tr~rB

2 !1tr~rAB
2 !#>0. ~17!

The inequality here, which shows that the quantity in pro
erty (38) is non-negative, is proved in Appendix C, where
is also shown that the inequality is saturated if and only
rAB5rA^ rB is a product state, withrA or rB a pure state.
For a joint pure staterAB , this establishes property (38).

It is useful to specialize Eq.~17! to a joint pure stateuC&,
in which case it becomes the square of the pure-stateI con-
currence:

C2~C!5^CuSD1
^ SD2

~ uC&^Cu!uC&

52nD1
nD2

@12tr~rA
2 !#. ~18!

Thus, theI concurrence measures the entanglement of a p
state in terms of the purity, tr(rA

2)5tr(rB
2), of the marginal

density operators. A joint pure state has a Schmidt decom
sition,

uC&5(
j

aj uej& ^ u f j&, aj.0, ~19!

in terms of which the squaredI concurrence becomes

C2~C!52nD1
nD2S 12(

j
aj

4D 54nD1
nD2(j ,k

aj
2ak

2 .

~20!
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For defining a concurrence, one should choose the sca
factor nD to be independent ofD—otherwise, as noted
above, the pure stateI concurrence could be changed simp
by adding extra, unused dimensions to one of
subsystems—and to be consistent with the qubit conc
rence, one should choosenD51. With this choice, the pure
state I concurrence runs from zero for product states
A2(M21)/M , whereM5min(D1,D2), for a maximally en-
tangled state.

Of the seven properties of the spin flip listed above,
first six survive, some in amended form, in the univer
inverter. The seventh, thatS2 is derived from a conjugation
is not a property ofSD , because except in two dimensions
conjugation cannot commute with all unitaries, and th
cannot serve as the basis for a measure of entanglem
Uhlmann’s work on conjugations@7# is valuable in that it
generalizes to all conjugations the expression that Woot
gives for the minimum average pure-state concurrence
bipartite density operatorr in terms of the eigenvalues o
rr̃. Our results show, however, that Uhlmann’sQ concur-
rence@7#, founded as it is on the use of conjugations, can
serve as the basis for a general measure of entangleme

There is another interesting form of the universal invert
which makes a direct connection to the form~7! of the spin
flip. Choosing an orthonormal basisuej&, let T be the super-
operator that transposes matrix representations in this b
and letPA be the superoperator projector, relative to the le
right action, which projects onto the subspace of opera
that are antisymmetric in this basis. We show in Appendix
that

SD /nD52 PA+T. ~21!

This form of the universal inverter has been given previou
by Horodecki and Horodecki@8#. For qubits, if we use the
eigenstates ofsz as the chosen basis, then the antisymme
operator subspace is spanned by the normalized ope
sy /A2, so the projector onto this subspace isPA
5usy)(syu/25sy(sy/2. Thus, in the two dimensions th
universal inverter becomesS25n2sy(sy+T2, which agrees
with the spin flip if n251.

C. Derivation of universal inverter

We now show that the only superoperator that satis
properties (18) –(38) of the preceding subsection is the un
versal inverter~11!. As we proceed through the proof, we u
GD to denote the operator under consideration.

As we show in Appendix B, property (18) implies thatGD

is left-right Hermitian, i.e.,GD5G D
† , and thus, has an eigen

decomposition

GD5(
a

mauta)(tau5(
a

mata(ta
† , ~22!

where thema are real~left-right! eigenvalues and the opera
tors ta are the corresponding orthonormal eigenoperator

Property (28) implies that
5-4
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GD5U†(U+G D+U(U†5(
a

maU†taU(U†ta
†U,

~23!

which means thatU†taU is an eigenoperator ofGD , with
eigenvaluema , for any unitary operatorU. This result can be
restated as saying that the degenerate eigensubspacesGD
are invariant under all unitary transformations. We show
Appendix D that the only operator subspaces that are inv
ant under all unitary transformations are the one-dimensio
subspace spanned by the unit operator and
(D221)-dimensional subspace of trace-free operators. A
consequence,GD must have the form

GD5mDI/D1nDF. ~24!

Here,I5I (I is the unit superoperator relative to the ord
nary action,F is the superoperator that projects onto t
subspace of trace-free operators when acting to the right~see
Appendix A!, mD is the eigenvalue ofGD corresponding to
the normalized eigenoperatorI /AD, andnD is the eigenvalue
corresponding to all of the tracefree operators. Notice thatGD

is Hermitian relative to the ordinary action, i.e.,GD5G D
3 .

If we add I /AD to a complete, orthonormal set of trac
free operators, we obtain a complete, orthonormal set of
erators, so the unit superoperator in the left-right sens
given by

I5I/D1F, ~25!

from which we get

GD5hDI1nDI , ~26!

where

hD5~mD2nD!/D. ~27!

Now we impose property (38). In doing so, it is sufficient
to consider the requirements of property (38) in the case
where the two subsystems have the same dimensionD. In
this case, the tensor-product superoperator takes the for

GD ^ GD5hD
2 I^ I1hDnD~I^ I1I ^ I!1nD

2 I ^ I . ~28!

Applying this superoperator to a joint density operatorrAB
gives

GD ^ GD~rAB!5hD
2 rAB1hDnD~rA^ I 1I ^ rB!1nD

2 I ^ I ,

~29!

and projecting this back ontorAB yields

tr„rABGD ^ GD~rAB!…

5hD
2 tr~rAB

2 !1hDnD@ tr~rA
2 !1tr~rB

2 !#1nD
2 . ~30!

Specializing to a joint pure stateuC&, we get
04231
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^CuGD ^ GD~ uC&^Cu!uC&5hD
2 1nD

2 12hDnD tr~rA
2 !

5~hD7nD!262hDnD

3@16tr~rA
2 !#. ~31!

If hDnD>0, the top sign in Eq.~31! shows that the quantity
in property (38) is strictly positive, unlesshD5nD50, a
case of no interest. IfhDnD,0, the bottom sign in Eq.~31!
shows that the quantity is nonnegative and goes to zer
and only ifhD52nD andrA is pure, i.e., the joint pure stat
is a product state. Thus, it turns out that the quantity in pr
erty (38) is non-negative for all superoperators of the for
~26!, but the only way to set the zero properly is to choo
hD52nD , thus giving the universal inverter of Eq.~11!.
The left-right eigenvalues of the universal inverter arenD
andmD5DhD1nD52(D21)nD .

D. Trace-preserving superoperators

All superoperators of the form~26! are proportional to a
trace-preserving superoperator, since

G D
3~ I !5GD~ I !5~hD1DnD!I . ~32!

RequiringGD to be trace preserving gives the condition

hD512DnD ~33!

@mD5D2nD(D221)#, which allows us to eliminate one pa
rameter and to write the trace-preserving version ofGD as

GDT5~12DnD!I1nDI . ~34!

Acting on an arbitrary input stater, this superoperator give

GDT~r!5~12DnD!r1nDI . ~35!

It is instructive to investigate this one-parameter family
trace-preserving operators.

We first ask which of the trace-preserving operators~34!
are completely positive. The condition that a superopera
be completely positive is that its left-right eigenvalues
non-negative~see Appendix A!. Thus, the condition for the
complete positivity ofGDT is thatmD>0 andnD>0, which
is equivalent to

0<nD<
D

D221
. ~36!

When nD50, GDT5I is the unit superoperator, and whe
nD5D/(D221),

GDT5
D

D221
F5

1

D221
~DI2I![GNOT ~37!

is the universal-NOT superoperator@9,10#. Notice that the
universal-NOT superoperator is a multiple ofF, the superop-
erator whose right action projects onto the subspace of tr
free operators. Since the dynamics of a quantum system m
be completely positive, the universal-NOT superoperator is
the closest physical approximation to the universal inve
5-5
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in the one-parameter family~35!; it is the quantum analogu
of the classicalNOT gate. We present a realization of th
universal-NOT superoperator in Sec. III.

Another interesting completely positive superoperator
curs fornD51/(D11):

GDT5
1

D11
~ I1I!5

1

D
I1

1

D11
F[GAV . ~38!

This superoperator was used to generate operator expan
in Ref. @14#, where it was shown that it is the unique trac
preserving superoperator that satisfiesG5G †5G 35G # and
commutes with all unitaries. In contrast, the universal
verter is the unique superoperator that satisfiesG5G †5G 3

52G # and commutes with all unitaries.
As shown in Ref.@14#, the superoperatorGAV is the trace-

preserving version of the superoperator that describes pro
tion onto a random pure state,

GAV5DE dV
V uc&^cu(uc&^cu, ~39!

where dV is the unitarily invariant integration measure o
projective Hilbert space andV is the corresponding total vol
ume. Projection onto a random pure state is the measure
that results in the optimal estimation of the state of the qu
@16#. This estimated state is given by the density operato

GAV~r!5
1

D11
~ I 1r!. ~40!

The superoperatorGAV returns in Sec. III as an ingredient i
one of the physical realizations of the universal-NOT super-
operator.

We now consider which of the trace-preserving operat
~34! are positive. Lettingpj be the eigenvalues of the inpu
density operatorr, one sees that the eigenvalues ofGDT(r)
@Eq. 35!# are (12DnD)pj1nD . The condition thatGDT be
positive is that these eigenvalues be non-negative for al
put eigenvaluespj , which is equivalent to

0<nD<
1

D21
. ~41!

When nD51/(D21), GDT becomes the trace-preservin
version of the universal inverter,

SDT5
1

D21
~ I2I!. ~42!

The positive superoperators are convex combinations oI
andSDT :

GDT5@12nD~D21!#I1nD~D21!SDT . ~43!

Notice that the universal-NOT superoperator can be written a

GNOT5
1

2
~SDT1GAV !. ~44!
04231
-

ons
-

-

c-

ent
it

s

-

III. PHYSICAL REALIZATIONS OF THE UNIVERSAL- NOT

SUPEROPERATOR

In this section we give two physical realizations of th
universal-NOT superoperatorGNOT of Eq. ~37!, the first in
terms of the quantum information distributor introduced
Braunstein, Buzˇek, and Hillery@11# and the second in term
of a measurement of the isotropic POVM followed by sta
inversion.

For the first, consider a qudit in a pure stater5uc&^cu.
As shown in Sec. II, the ideal inversion of this state is giv
by

SDT~r!5
1

D21
~ I 2r![r', ~45!

where SDT is the trace-preserving version of the univers
inverter @see Eq.~42!#. The inverted stater' is the maxi-
mally mixed state in the (D21)-dimensional subspace o
thogonal to the input stater5uc&^cu. Notice that by con-
struction, tr(rr')50 for pure input states.

As shown in Sec. II D, the trace-preserving universal
verterSDT is a positive, but not completely positive supero
erator and as such cannot be realized physically. In the o
parameter family of trace-preserving inverters considered
Sec. II D, the universal-NOT superoperatorGNOT of Eq. ~37!
is the closest completely positive superoperator to the u
versal inverter. We denote the physically possible invers
of the stater obtained using the universal-NOT superoperator
as

rNOT[GNOT~r!5
1

D221
~DI 2r!. ~46!

In order to realize the universal-NOT superoperator, we
couple the qudit to be inverted, denoted byA, to the quantum
information distributor~QID! introduced in Ref.@11#. The
QID is composed of two ancilla qudits,B and C, each of
which has the same dimensionD as quditA. To describe the
universal inverter, we introduce several operators and st
for qudits.

First we need the conjugate ‘‘position’’ and ‘‘momentum
operators,x andp. The eigenvectors ofx are denoted byuxk&,

xuxk&5xkuxk&, ~47!

with the eigenvalues given byxk5kA2p/D; analogously,
the eigenstates ofp are denoted byupk&,

pupk&5pkupk&, ~48!

with the eigenvalues given bypk5kA2p/D. We use units
such that the two operators are dimensionless. The two
of eigenvectors,$uxk&% and $upk&%, form bases in the qudi
Hilbert space and are related by a discrete Fourier transfo

uxk&5
1

AD (
l 50

D21

e22p ikl /Dupl&, ~49!
5-6
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upl&5
1

AD (
k50

D21

e2p ikl /Duxk&. ~50!

The translation~shift! operators, defined by

Rx~n!5e2 ixnp, Rp~m!5eipmx, ~51!

cyclically permute the basis vectors according to

Rx~n!uxk&5ux(k1n)modD&, ~52!

Rp~m!upl&5up( l 1m)modD&, ~53!

where the sums of indices are taken moduloD.
An orthonormal basis ofD2 two-qudit maximally en-

tangled statesuJmn& is given by

uJmn&5
1

AD (
k50

D21

e2p imk/Duxk& ^ ux(k1n)modD&, ~54!

where m,n50, . . . ,D21. Using Eq.~49!, we can rewrite
the statesuJmn& in the joint momentum basis

uJmn&5
1

AD (
l 50

D21

e22p inl /Dup(m2 l )modD& ^ upl&. ~55!

The stateuJ00& can be written as

uJ00&5
1

AD
(
k50

D21

uxk& ^ uxk&5
1

AD
(
l 50

D21

up2 l modD& ^ upl&.

~56!

It is interesting to note that the whole set ofD2 maximally
entangled statesuJmn& can be generated fromuJ00& by the
action of local unitary operations~shifts!:

uJmn&5Rp~m! ^ Rx~n!uJ00&. ~57!

Now we are ready to describe the QID. The ancilla qud
B andC, are initially prepared in the state

uF&BC5j1uJ00&BC1j2ux0&B^ up0&C . ~58!

The phase freedom inuF&BC can be used to makej1 real and
non-negative, but thenj2 is in general complex. We do no
use the freedom to makej1 non-negative, thereby retainin
for use below the ability to multiply bothj1 andj2 by 21.

Normalization ofuFBC& imposes the constraint

15j1
21uj2u21

j1~j21j2* !

D
5j1

21a21b21
2aj1

D
,

~59!

wherej25a1 ib. Solving for j1, we get

j152
a

D
1A12b22a2

D221

D2 . ~60!
04231
,

We discard the other solution of the quadratic equation,
cause it can be converted to this solution by multiplying bo
j1 andj2 by 21. Sincej1 is real, we must have

D221

D2 a21b2<1, ~61!

which means thatj2 lies on or within an ellipse that ha
principal radiusD/AD221>1 along the real axis and prin
cipal radius 1 along the imaginary axis. Therefore, we c
clude that

0<uj2u2<
D2

D221
. ~62!

It is easy to see that the minimum value ofj1 occurs when
j25D/AD221, this minimum value being j1

521/AD221. It is also easy to see that the maximum val
of j1 occurs whenj2 is real; the maximum occurs atj2

521/AD221 and is given byj15D/AD221. The upshot
is thatj1 is bounded by

2
1

AD221
<j1<

D

AD221
. ~63!

The negative values ofj1 are unimportant, because they ca
be converted to positive values by multiplying bothj1 and
j2 by 21. What is important is thatuj1u2 has the same rang
of possible values asuj2u2.

We now allow quditA to interact with the two ancilla
qudits, the resulting dynamics described by the unitary
erator

UABC5exp@2 i ~xC2xB!pA#exp@2 ixA~pB1pC!#,
~64!

~for more details, see Ref.@11#!. For an initial pure stateuc&
of qudit A, the joint state after the interaction is

UABCuc&A^ uF&BC5j1uc&A^ uJ00&BC1j2uc&B^ uJ00&AC .

~65!

The output states of the individual qudits after tracing out
other two qudits are

rA
(out)5S j1

21
j1~j21j2* !

D D r1
uj2u2

D
I , ~66!

rB
(out)5S uj2u21

j1~j21j2* !

D D r1
j1

2

D
I , ~67!

rC
(out)5

j1~j21j2* !

D
rT1

j1
21uj2u2

D
I , ~68!

wherer is an arbitrary initial state of quditA and rT is its
transpose. Taking into account the constraint~59!, we can
rewrite the output states of quditsA andB as

rA
(out)5~12uj2u2!r1uj2u2I /D, ~69!
5-7
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rB
(out)5~12j1

2!r1j1
2I /D. ~70!

As far as quditA is concerned, the QID acts like the supe
operatorGDT of Eqs.~34! and ~35! with DnD5uj2u2. As far
as quditB is concerned, the QID first swaps the states oA
andB and then acts likeGDT with DnD5j1

2.
Rewriting the output state of quditA in terms of the ideal

inverted stater'5(I 2r)/(D21), we get

rA
(out)5~ uj2u221!~D21!r'1@D2uj2u2~D21!#I /D.

~71!

To makerA
(out) as close as possible tor', we need to maxi-

mize uj2u2; i.e., we need to choose

DnD5uj2u25
D2

D221
, ~72!

thus making the action of the QID on quditA the same as the
action of the universal-NOT superoperator given in Eq.~46!.
Notice that the QID gives the superoperatorGAV of Eq. ~38!
whenDnD5uj2u25D/(D11).

When uj2u2 has its maximum value,j1
251/(D221), so

the output state~70! of qudit B becomes

rB
(out)5S 12

1

D221
D r1

1

~D221!

I

D
. ~73!

Notice that in the limit of largeD, we haveuj2u→1 andj1
→0. The output state of quditB reduces to the input state o
qudit A, and the output states ofA andC reduce to the maxi-
mally mixed stateI /D. All this is a consequence of the fac
that the initial state of quditsB and C limits to uF&BC
→ux0&B^ up0&C , and the QID swaps the states ofA andB

UABCuc&A^ uJ00&BC5uc&B^ uJ00&AC . ~74!

Our second realization of the universal-NOT superoperator
starts with a measurement of the isotropic POVM

dE~ uc&)5D
dV
V uc&^cu, ~75!

where

E dE~ uc&)5DE dV
V uc&^cu5I . ~76!

We assume that the measurement projects the system
the measured state, so the operation that describes a mea
ment whose result is the stateuc& is

dA~ uc&)5D
dV
V uc&^cu(uc&^cu. ~77!

Knowing that the system is in the stateuc&, we can invert the
state. The operation that describes the measurement follo
by inversion is SDT+dA(uc&), where SDT is the trace-
preserving version of the universal inverter. If we now thro
04231
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away the result of the measurement of the isotropic POV
the resulting trace-preserving operation is

E SDT+dA~ uc&)5SDT+GAV , ~78!

whereGAV is the superoperator that describes projection o
a random pure state@see Eq.~39!#.

Using the forms~42! and ~38!, we can write the overall
operation as

SDT+GAV5
1

D221
~ I2I!+~ I1I!5

1

D221
~DI2I!5GNOT,

~79!

where we use the fact thatI +I5DI . This demonstrates tha
the universal-NOT superoperator results from a measurem
of the isotropic POVM followed by state inversion.

IV. CONCLUSION

The concurrence introduced by Hill and Wootters@5# and
by Wootters@6# provides a good measure of the entang
ment of any state of two qubits, pure or mixed. The Hi
Wootters concurrence is generated with the help of the
peroperator that flips the spin of a qubit. In this paper,
have identified the crucial properties of the spin-flip sup
operator, which allow it to generate a good entanglem
measure for pure states of two qubits. By generalizing th
properties to systems of arbitrary dimension, we have sing
out a unique superoperator, which we call the universal
verter. In the same way that the spin flip generates a con
rence for pairs of qubits, the universal inverter generate
concurrence, which we call theI concurrence, for joint pure
states of pairs of quantum systems of arbitrary dimens
This pure-stateI concurrence measures entanglement
terms of the purity of the marginal density operators of t
joint pure state.

It is natural to define theI concurrence of mixed states o
D13D2 quantum systems as the minimum averageI concur-
rence of ensemble decompositions of the joint density op
tor. Property (38) of the I concurrence—that theI concur-
rence of a pure stateuC& is zero if and only if uC& is a
product state—implies immediately that the mixed-state c
currence just defined is zero if and only if the mixed state
separable. We are investigating further properties of t
mixed-stateI concurrence and how it is related to other me
sures of mixed-state entanglement.

The universal inverter turns out to be the ideal inverter
pure states, since it takes a pure state to the maximally m
state in the subspace orthogonal to the pure state. Bec
the universal inverter is a positive, but not completely po
tive superoperator, it cannot be realized as the dynamics
quantum system coupled to an ancilla. We have shown
among a one-parameter family of inverting superoperat
the completely positive superoperator that comes closes
achieving an ideal state inversion is a superoperator ca
the universal-NOT superoperator, and we have presented
physical realization of the universal-NOT.
5-8
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APPENDIX A: SUPEROPERATOR FORMALISM
AND SPECIAL SUPEROPERATORS

The formalism we use for superoperators has been u
extensively in open-systems theory@12#. In this appendix,
we summarize our notation, which follows that of Ref.@13#,
and we introduce and describe key properties of severa
peroperators that are important for our analysis.

The space of linear operators acting on a Hilbert spacH
is aD2-dimensional complex vector space. We introduce
erator ‘‘kets’’ uA)5A and ‘‘bras’’ (Au5A†, distinguished
from vector kets and bras by the use of smooth brackets.
natural operator inner product can be written as (AuB)
5tr(A†B). An orthonormal basisuej& induces an orthonor
mal operator basis

uej&^eku5t jk[ta , ~A1!

where the Greek index is an abbreviation for two Rom
indices. Not all orthonormal operator bases are of this ou
product form. In the following,ta can be a general ortho
normal operator basis, or it can be specialized to an ou
product basis.

The space of superoperators onH, i.e., linear maps on
operators, is aD4-dimensional complex vector space. A s
peroperatorA is specified by its ‘‘matrix elements’’

Al j ,mk[^el uA~ uej&^eku!uem&, ~A2!

for the superoperator can be written in terms of its ma
elements as

A5 (
l j ,mk

Al j ,mkuel&^ej u(uek&^emu5(
a,b

Aabta(tb
†

5(
a,b

Aabuta)~tbu. ~A3!

The ordinary actionof A on an operatorA, used above to
generate the matrix elements, is obtained by dropping
operatorA into the center of the representation ofA, in place
of the ( sign, i.e.,

A~A!5(
a,b

AabtaAtb
† . ~A4!

There is clearly another way thatA can act onA, the left-
right action,

AuA)[(
a,b

Aabuta)~tbuA!, ~A5!
04231
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in terms of which the matrix elements are

Aab5~tauAutb!

5~ uel&^ej uuAuuem&^eku!

5^el uA~ uej&^eku!uem&

5Al j ,mk . ~A6!

This expression provides the fundamental connection
tween the two actions of a superoperator.

With respect to the left-right action, a superopera
works just like an operator. Multiplication of superoperato
B andA is given by

BA5 (
a,b,g

BagAgbuta)~tbu, ~A7!

and the ‘‘left-right’’ adjoint, defined by

~AuA †uB!5~BuAuA!* , ~A8!

is given by

A †5(
a,b

Aab* tb(ta
†5(

a,b
Aba* uta)~tbu. ~A9!

With respect to the ordinary action, superoperator multip
cation, denoted as a compositionB+A, is given by

B+A5 (
a,b,g,d

BgdAabtgta(tb
†td

† . ~A10!

The adjoint with respect to the ordinary action, denoted
A 3, is defined by

tr„@A 3~B!#†A…5tr„B†A~A!…. ~A11!

In terms of a representation in an operator basis, this ‘‘cro
adjoint becomes

A 35(
a,b

Aab* ta
†(tb . ~A12!

Notice that

~B+A!†5B †+A † and ~BA!35B 3A 3. ~A13!

We can formalize the connection between the two kin
of action by defining an operation, called ‘‘sharp,’’ whic
exchanges the two

A #uA)[A~A!. ~A14!

Simple consequences of the definition are that

~A #!†5~A 3!#, ~A15!

~B+A!#5B #A #. ~A16!

The matrix elements ofA # are given by
5-9
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A l j ,mk
# 5~ uel&^ej uuA #uuem&^eku!

5tr„uej&^el uA~ uem&^eku!…

5^el uA~ uem&^eku!uej&

5Alm, jk , ~A17!

which implies that

A #5 (
l j ,mk

Al j ,mkuel&^emu(uek&^ej u. ~A18!

A superoperator is left-right Hermitian, i.e.,A †5A, if
and only if it has an eigendecomposition

A5(
a

mauta)(tau5(
a

mata(ta
† , ~A19!

where thema are real~left-right! eigenvalues and the opera
tors ta are orthonormal eigenoperators.

A superoperator istrace preservingif, under the ordinary
action, it leaves the trace unchanged, i.e., if tr(A)
5tr@A(A)#5tr„@A 3(I )#†A… for all operatorsA. Thus,A is
trace preserving if and only ifA 3(I )5I .

A superoperator is said to bepositive if it maps positive
operators to positive operators under the ordinary action
superoperator iscompletely positiveif it and all its exten-
sions I^ A to tensor-product spaces, whereI is the unit
superoperator on the appended space, are positive. It ca
shown thatA is completely positive if and only if it is posi
tive relative to the left-right action, i.e., (AuAuA)>0 for all
operatorsA ~for a proof in the present notation, see R
@13#!. This is equivalent to saying thatA is left-right Hermit-
ian with non-negative left-right eigenvalues.

In this paper we make use of several special superop
tors, whose properties we summarize here. The identity
peroperator with respect to the ordinary action is

I5I (I 5(
j ,k

uej&^ej u(uek&^eku. ~A20!

This superoperator is Hermitian in both senses, i.e.,I5I †

5I 3. It is the identity superoperator relative to the ordina
action becauseI(A)5A for all operatorsA, but its left-right
action givesIuA)5tr(A)I .

The identity superoperator with respect to the left-rig
action is

I5(
a

uta)(tau5(
j ,k

uej&^eku(uek&^ej u. ~A21!

This superoperator is also Hermitian in both senses, i.eI
5I†5I3. It is the identity superoperator relative to the le
right action becauseI uA)5A for all operatorsA, but its or-
dinary action givesI (A)5tr(A)I . Since sharping exchange
the two kinds of action, it is clear thatI #5I .

To define the remaining superoperators, it is useful to
troduce a set ofD221 trace-free Hermitian operators@17#,
04231
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which are the generators of SU(D). We label these operator
by a Greek indexa, which runs from 1 toD221. The op-
erators are defined by

a51, . . . ,D21:

la5G j[
1

Aj ~ j 21!
S (

k51

j 21

tkk2~ j 21!t j j D , 2< j <D,

~A22!

a5D, . . . ,~D12!~D21!/2:

la5G jk
(1)[

1

A2
~t jk1tk j!, 1< j ,k<D, ~A23!

a5D~D11!/2, . . . ,D221:

la5G jk
(2)[

2 i

A2
~t jk2tk j!, 1< j ,k<D. ~A24!

In Eq. ~A22!, a stands for a single Roman indexj, whereas
in Eqs. ~A23! and ~A24!, it stands for the pair of Roman
indices,jk. These operators are Hermitian generalizations
the two-dimensional Pauli operators: the operators~A22! are
diagonal in the chosen basis, likesz ; for each pair of dimen-
sions, the operators~A23! are like the Pauli operatorsx ; and
for each pair of dimensions, the operators~A24! are likesy .

Like the Pauli operators, the operatorsla are orthonor-
mal, i.e.,

~laulb!5tr~lalb!5dab . ~A25!

Thus, they constitute an operator basis for the subspac
trace-free operators. Indeed, we can define a superope
projector,

F[(
a

ula)(lau5(
a

la(la , ~A26!

which relative to the left-right action, projects onto the su
space of trace-free operators. Notice thatF5F †5F 3.

If we add to the set of operatorsla the normalized unit
operator I /AD, we obtain an orthonormal operator bas
Thus, the unit superoperatorI can be written as

I5
uI )~ I u

D
1(

a
ula~lau5I/D1F. ~A27!

Writing F5I2I/D, we find that

F #5I2
I

D
5

D221

D2 I2
F
D

. ~A28!

In the chosen basis, the operators~A22! and ~A23! are
real and symmetric. Together withI /AD, they constitute a
set of D(D11)/2 orthonormal operators, which span th
subspace of operators that are symmetric in the chosen b
In contrast, theD(D21)/2 operators in Eq.~A24! are pure
5-10
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imaginary and antisymmetric and span the subspace of
erators that are antisymmetric in the chosen basis. We
define superoperator projectors,

PS[
uI )~ I u

D
1 (

la real
ula~lau, ~A29!

PA[ (
la imaginary

ula)~lau, ~A30!

which relative to the left-right action, project onto the sym
metric and antisymmetric operator subspaces. Notice
PS5P S

†5P S
3 andPA5P A

†5P A
3 . It is clear that

I5PS1PA . ~A31!

The last superoperator we need is the superoperator
transposes operators in the chosen basis. The ordinary a
of the transposition superoperator is given by

T~A!5(
j ,k

uej&^ekuAuej&^eku, ~A32!

so the superoperator has the form

T5(
j ,k

uej&^eku(uej&^eku. ~A33!

The transposition superoperator is Hermitian in both sen
and is unchanged by sharping, i.e.,T5T †5T 35T #. In ad-
dition to satisfyingT+T5I, the transposition superoperat
has the property that

I +T5I , ~A34!

which in view of Eq.~A16!, is equivalent toIT5I.
It is easy to see thatPS2PA , acting to the right, trans

poses an operator, i.e.,

PSuA)2PAuA)5T~A!5T #uA), ~A35!

which gives us, sinceT is invariant under sharping,

T5T #5PS2PA . ~A36!

Combined with Eq.~A31!, this gives us

PS5
1

2
~ I1T !, ~A37!

PA5
1

2
~ I2T !. ~A38!

Combining these forms with Eq.~A34! yields
04231
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2PS+T5I1I5~D11!GAV , ~A39!

2PA+T5I2I5SD /nD . ~A40!

The form ~A40! has been given previously@8#.

APPENDIX B: SUPEROPERATOR THEOREM

In this appendix, we show that a superoperator is Herm
ian relative to the left-right action if and only if it maps a
Hermitian operators to Hermitian operators.

Let A be a superoperator, and letuej& be an orthonormal
basis, which induces an orthonormal operator basisuej&^eku.
Notice that

^el uA †~ uej&^eku!uem&5~ uel&^ej uuA †uuem&^eku!

5~ uem&^ekuuAuuel&^ej u!*

5^emuA~ uek&^ej u!uel&*

5^el u@A~ uek&^ej u!#†uem&. ~B1!

Here, the first and third equalities follow from relating th
ordinary action of a superoperator to its left-right action@Eq.
~A6!#, the second equality follows from the definition of th
left-right adjoint of A @Eq. ~A8!#, and the fourth equality
follows from the definition of the operator adjoint. Equatio
~B1! gives the relation between the operator adjoint and
left-right superoperator adjoint:

A †~ uej&^eku!5@A~ uek&^ej u!#†. ~B2!

Thus, we have thatA5A †, i.e.,A is left-right Hermitian, if
and only if

A~ uej&^eku!5@A~ uek&^ej u!#† ~B3!

for all j and k. This result allows us to prove the desire
theorem easily.

Theorem. A superoperatorA is left-right Hermitian if and
only if it maps all Hermitian operators to Hermitian oper
tors.

Proof: First supposeA is left-right Hermitian, i.e.,A
5A †. This implies thatA has a complete, orthonormal set
eigenoperatorsta , with real eigenvaluesma . Using the
eigendecomposition~A19!, we have for any Hermitian op
eratorH,

A~H !5(
a

mataHta
†5A~H !†. ~B4!

Now, supposeA maps all Hermitian operators to Hermi
ian operators. Lettingt jk5uej&^eku, it follows that
5-11
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A~t jk!5AS 1

2
~t jk1tk j!1 i

2 i

2
~t jk2tk j! D

5AS 1

2
~t jk1tk j! D1 iAS 2 i

2
~t jk2tk j! D

5FAS 1

2
~t jk1tk j! D G†

1 i FAS 2 i

2
~t jk2tk j! D G†

5FAS 1

2
~t jk1tk j! D2 iAS 2 i

2
~t jk2tk j! D G†

5FAS 1

2
~t jk1tk j!2 i

2 i

2
~t jk2tk j! D G†

5@A~tk j!#
†.

~B5!

Equation~B3! then implies thatA5A †.
Since a superoperator is left-right Hermitian if and only

it has an eigendecomposition as in Eq.~A19!, we can con-
clude, by grouping together positive and negative eigen
ues, that being left-right Hermitian is equivalent to being t
difference between two completely positive superoperat
Using the theorem, we have that a superoperator take
Hermitian operators to Hermitian operators if and only if it
the difference between two completely positive superope
tors. This generalizes a result of Yu@18#, who showed that a
positive superoperator is the difference between two co
pletely positive superoperators. From our perspective,
can say that since a positive superoperator takes positive
erators to positive operators, it also takes Hermitian ope
tors to Hermitian operators, and thus, is left-right Hermitia
A positive operator that is not completely positive has one
more negative left-right eigenvalues.

We can get one further result relevant to the consid
ations in this paper: ifA andB are left-right Hermitian su-
peroperators for two separate quantum systems, thenA^ B is
also left-right Hermitian, and thus, maps all Hermitian o
erators of the joint system to Hermitian operators.

APPENDIX C: INEQUALITY FOR PURITY

Let

rA5(
j 51

D1

m j uej&^ej u and rB5 (
k51

D2

nku f k&^ f ku ~C1!

be the eigendecompositions ofrA andrB . In the joint basis
uej& ^ u f k&, rAB has the form

rAB5 (
j ,k,l ,m

r jk,lmuej&^el u ^ u f k&^ f mu. ~C2!

The diagonal forms of the marginal density operators sh
that

(
k51

D2

r jk,lk5m jd j l and (
j 51

D1

r jk, jm5nkdkm . ~C3!
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Thus, the diagonal elements ofr jk,lm are a probability distri-
bution pjk5r jk, jk , whose marginals are the eigenvalues
the marginal density operators:

(
k51

D2

pjk5m j and (
j 51

D1

pjk5nk . ~C4!

We now can write

11tr~rAB
2 !511 (

j ,k,l ,m
ur jk,lmu2

>11(
j ,k

pjk
2

5 (
j ,k,l ,m

pjkplm1(
j ,k

pjk
2

5 (
j ,k,m

pjkpjm1 (
j Þ l ,k,m

pjkplm

1(
j ,k,l

pjkplk2 (
j Þ l ,k

pjkplk

5(
j

S (
k

pjkD 2

1(
k

S (
j

pjkD 2

1 (
j Þ l ,kÞm

pjkplm

>(
j

m j
21(

k
nk

25tr~rA
2 !1tr~rB

2 !. ~C5!

The first inequality here is saturated if and only ifrAB is
diagonal in the basisuej& ^ u f k&. The second inequality is
saturated if and only ifpjkplm50 wheneverj Þ l andkÞm.
This requirement is equivalent to saying that the nonz
entries inpjk are restricted to one row or to one column.
view of the first requirement, this means that overall equa
is achieved in Eq.~C5! if and only if rAB5rA^ rB is a
product state, withrA or rB a pure state.

APPENDIX D: UNITARILY INVARIANT OPERATOR
SUBSPACES

In this appendix, we show that the vector space of ope
tors acting on aD-dimensional Hilbert space has only tw
proper operator subspaces that are invariant under all un
transformations. These two subspaces are the o
dimensional subspace spanned by the unit operatorI and the
subspace consisting of all trace-free operators.

It is obvious that the subspace consisting of multiples oI
and the subspace of trace-free operators are unitarily inv
ant. To show that these are the only unitarily invariant pro
subspaces, we consider a unitarily invariant subspace th
not the subspace spanned byI, and we show that this sub
space is either the subspace of trace-free operators o
entire operator space. LetA be a nonzero operator in th
unitarily invariant subspace, which is not a multiple ofI.
There exists an orthonormal basisuej& such thatA11ÞA22.
Adopt this basis, in whichA has the representation
5-12
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A5 (
j ,k51

D

Ajkuej&^eku. ~D1!

Consider the unitary operatorU that changes the sign o
ue1&, i.e., Uue1&52ue1& and Uuej&5uej& for j 52, . . . ,D.
Also in the unitarily invariant subspace is the operator

B5
1

2
~A1UAU†!5A11ue1&^e1u1 (

j ,k52

D

Ajkuej&^eku.

~D2!

Do the same thing to the second basis vector; i.e., use
unitary operatorV defined by Vue2&52ue2&, and Vuej&
5uej& for j 51 and j 53, . . . ,D. Also in the subspace is th
operator

C5
1

2
~B1VBV†!

5A11ue1&^e1u1A22ue2&^e2u1 (
j ,k53

D

Ajkuej&^eku.

~D3!

Now consider the unitary operatorW that swapsue1& and
ue2&, i.e., Wue1&5ue2&, Wue2&5ue1&, and Wuej&5uej& for
-

m

.

04231
he

j 53, . . . ,D. Also in the subspace is the~nonzero! trace-free
operator

D5C2WCW†5~A112A22!~ ue1&^e1u2ue2&^e2u!.
~D4!

We conclude that the subspace contains the trace-free
erator ue1&^e1u2ue2&^e2u, which is a Paulisz operator for
the first two dimensions. From this operator, we can gene
by unitary transformations that interchange basis vector
sz-like operator for every pair of dimensions, and from the
sz operators, we can generate by unitary transformation
sx and asy operator for every pair of dimensions. Sinc
these Pauli-like operators span the space of trace-free op
tors, we conclude that any unitarily invariant operator su
space that is not the space spanned byI contains all trace-
free operators.

The unitarily invariant subspace could be the subspac
trace-free operators. Suppose that it is not and thus cont
an operatorE that is not trace free. Defining a trace-fre
operatorF5E2tr(E)I /D, we see thatI can be written as
linear combination ofF andE, and thus, is in the subspac
Since the tracefree operators together withI span the entire
space of operators, we conclude that in this case the unita
invariant subspace is the entire operator space. This es
lishes our result.
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