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1 Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
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Abstract
We generalize the entanglement swapping scheme originally proposed for two
pairs of qubits to an arbitrary number q of systems composed from an arbitrary
number mj of qudits. Each of the systems is supposed to be prepared in
a maximally entangled state of mj qudits, while different systems are not
correlated at all. We show that when a set of

∑q

j=1 aj particles (from each
of the q systems aj particles are measured) is subjected to a generalized Bell-
type measurement, the resulting set of

∑q

j=1(mj − aj ) particles will collapse
into a maximally entangled state.

PACS numbers: 0367, 0365T, 8970

1. Introduction

Recently quantum entanglement has been recognized as an important resource for quantum
information processing. In particular, quantum computation [1,2], quantum teleportation [3],
quantum dense coding [4], certain types of quantum key distribution [5] and quantum secret
sharing protocols [6] are rooted in the existence of quantum entanglement.

In spite of all the progress in the understanding of the nature of quantum entanglement
there are still open questions which have to be answered. In particular, it is not clear
yet how to uniquely quantify the degree of entanglement [7–11], or how to specify the
inseparability conditions for bi-partite multi-level systems (qudits) [12]. A further problem
which waits for a thorough illumination is the multiparticle entanglement [13]. There are
several aspects of quantum multiparticle correlations, for instance the investigation of intrinsic
n-party entanglement (i.e. generalizations of the GHZ state [14]). Another aspect of the
multiparticle entanglement is that in contrast to classical correlation it cannot freely be shared
among many objects [15–19].

In this paper we want to concentrate our attention on entanglement swapping. This
is a method designed to entangle particles which have never interacted. The entanglement
swapping has been proposed by Zukowski et al [20] for two pairs of entangled qubits in one of
the Bell states. Zeilinger et al [21] have generalized the entanglement swapping to multiparticle
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Slovakia, and Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic.
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systems. Bose et al [22] proposed a different version of multiparticle entanglement swapping
and suggested a few interesting ways of using this phenomenon. Bose et al [23] investigated the
purification protocol via entanglement swapping with non-maximally entangled states. This
approach has been further improved by Shi et al [24], and Hardy and Song [25]. Delayed-
choice entanglement swapping has been proposed and analysed by Peres [26]. In [29, 30]
the idea of entanglement swapping has been generalized to continuous variables. The use
of entanglement swapping for purification in continuous dimensions has been proposed by
Parker et al [27]. Entanglement swapping has been used not only for purification but also for
cryptographic protocols (see, for instance, [28]). Finally, we note that entanglement swapping
has been performed experimentally by Zeilinger et al [31].

In this paper we will unify all theoretical approaches to the entanglement swapping in one
generalized scheme. We present entanglement swapping for systems consisting of any number
of entangled systems, each composed of an arbitrary number of qudits (i.e. quantum particles
with Hilbert spaces of an arbitrary dimension D). This new unified approach allows us to
discuss in detail various scenarios of multiparticle entanglement. Moreover, our formalism
applies to all possible situations when quantum systems are maximally entangled. We do not
discuss in this paper entanglement swapping between partially entangled systems.

In section 2 we present a relevant formalism for a description of kinematics of quantum
states in D-dimensional Hilbert spaces. Section 3 serves as a simple introduction to our
swapping scheme. We show how via a Bell-type measurement entanglement swapping can be
realized. This idea is extended in section 4 for the case of two entangled states, each having
an arbitrary finite number of particles. In section 5 the most general entanglement scheme is
presented. We summarize our results in section 6.

2. Entangled qudits

Let theD-dimensional Hilbert space be spanned byD orthogonal normalized vectors |xk〉, or,
equivalently, by D vectors |pl〉, k, l = 0, . . . , D − 1. These bases are related by the discrete
Fourier transform

|xk〉 = 1√
D

D−1∑
l=0

exp
(
−i

2π

D
kl
)
|pl〉

|pl〉 = 1√
D

D−1∑
k=0

exp
(

i
2π

D
kl
)
|xk〉.

(1)

Without loss of generality, we assume that these bases are sets of eigenvectors of two non-
commuting operators, the ‘position’ x̂ and the ‘momentum’ p̂, such that

x̂|xk〉 = xk|xk〉 p̂|pl〉 = pl|pl〉 (2)

where

xk = L
√

2π

D
k pl = h̄

L

√
2π

D
l. (3)

The length, L can, for example, be taken to be equal to
√
h̄/ωm, where m is the mass and ω

the frequency of a quantum ‘harmonic’ oscillator within a finite-dimensional Fock space (in
what follows we use units such that h̄ = 1).

Next we introduce operators which shift (cyclically permute) the basis vectors [32]:

R̂x(n)|xk〉 = |x(k+n) mod D〉
R̂p(m)|pl〉 = |p(l+m) mod D〉 (4)
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where the sums of indices are taken moduloD. In the x-basis these operators can be expressed
as

〈xk|R̂x(n)|xl〉 = δk+n,l
〈xk|R̂p(m)|xl〉 = δk,l exp

(
i
2π

D
ml
)
.

(5)

Moreover these operators fulfil the Weyl commutation relation [33–35]

R̂x(n)R̂p(m) = exp
(

i
2π

D
mn
)
R̂p(m)R̂x(n) (6)

although they do not commute; they form a representation of an Abelian group in a ray space.
We can displace a state in arbitrary order using R̂x(n)R̂p(m) or R̂p(m)R̂x(n); the resulting
state will be the same—the corresponding kets will differ only by an unimportant multiplicative
factor. We see that the operators R̂x(n) and R̂p(m) displace states in the directions x and p,
respectively. The product R̂x(n)R̂p(m) acts as a displacement operator in the discrete phase
space (k, l) [36]. These operators can be expressed via the generators of translations (shifts)

R̂x(n) = exp(−ixnp̂)

R̂p(m) = exp(ipmx̂).
(7)

We note that the structure of the group associated with the operators R̂x(n) and R̂p(m) is
reminiscent of the group of phase-space translations (i.e. the Heisenberg group) in quantum
mechanics [37].

Let us assume a system of two qudits each described by a vector in a D-dimensional
Hilbert space H. The tensor product of the two Hilbert spaces can be spanned by a set of D2

maximally entangled two-qudit states (the analogue of the Bell basis for spin- 1
2 particles) [37]

|ψ(m, n)〉 = 1√
D

D−1∑
k=0

exp
(

i
2π

N
mk
)
|xk〉|x(k−n) mod N 〉 (8)

where m, n = 0, . . . , D − 1. These states form an orthonormal basis in the space H ⊗ H
〈ψ(k, l)|ψ(m, n)〉 = δk,mδl,n (9)

with
D−1∑
m,n=0

|ψ(m, n)〉〈ψ(m, n)| = Î ⊗ Î . (10)

In order to prove the above relations we have used the standard relation
∑D−1
n=0 exp[2π i(k −

k′)n/D] = Dδk,k′ .
It is interesting to note that the whole set ofD2 maximally entangled states |ψ(m, n)〉 can

be generated from the state |ψ(0, 0)〉 by the action of local unitary operations (shifts) of the
form

|ψ(m, n)〉 = R̂p(m)⊗ R̂x(n)|ψ(0, 0)〉. (11)

In what follows we shall simplify our notation. Because we will work mostly in the x-
basis we shall use the notation |xk〉 ≡ |k〉. In addition we will use the notation x � y instead
of (x − y) mod D. This serves to keep the derivations as synoptical as possible. Using this
notation we can write down the maximally entangled state of two qudits as

|ψ(l, k)〉01 = 1√
D

D−1∑
n=0

e
i2π ln
D |n〉0|n� k〉1 (12)

where parameters k and l can take values between 0 and D − 1.
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In general,M-particle maximally entangled states can be written as

|�〉 = |ψ(l, k1, k2, . . . , kM−1)〉 = 1√
D

D−1∑
n=0

e
i2π ln
D |n〉0

M−1⊗
i=1

|n� ki〉i . (13)

These particles are entangled in the sense that tracing out any (M − 1) particles leaves the
reduced density matrix of the remaining particle in a maximally mixed state described by the
density operator 1

D
I .

3. Two entangled pairs

First of all we study a simple example of entanglement swapping between two qutrits. Suppose
we have two systems each composed of two entangled three-dimensional pairs of particles.
The two systems are not correlated at all and the state vector describing this composite system
can be expressed as

|�〉 = |ψ(0, 0)〉01 ⊗ |ψ(0, 1)〉23

= 1√
3
(|00〉01 + |11〉01 + |22〉01)⊗ 1√

3
(|02〉23 + |10〉23 + |21〉23)

= 1
3

(|00〉01|02〉23 + |00〉01|10〉23 + |00〉01|21〉23

+|11〉01|02〉23 + |11〉01|10〉23 + |11〉01|21〉23

+|22〉01|02〉23 + |22〉01|10〉23 + |22〉01|21〉23
)
. (14)

Now assume we perform a projective Bell-type measurement of particles 1 and 2 in the basis
(12) with D = 3. If the measurement yields |ψ(r, s)〉12 for some fixed r and s, the other
two particles collapse into the state |ψ(l̃, k̃)〉03. This result of the measurement conditionally
‘selects’ the vectors of the form

|n〉0|n〉1|n′〉2|(n′ − 1) mod 3〉3 (15)

for n = 0 . . . 2, such that n′ ≡ n − s (mod 3) and k̃ = s + 1. The amplitude of the vector
|n〉1|(n− s) mod 3〉2 is ei2πnr/3. It must hold that

ei2πn0/3ei2πn′0/3 = e0 = ei2πnr/3ei2πnl̃/3. (16)

Since eui2π = eu
′i2π ∀u, u′ ∈ Z, the equation (16) holds for l̃ = (−r) mod 3. The previous

derivations yield that the state of the particles 0 and 3 collapses into the maximally entangled
state |ψ((0 − r) mod 3, (s + 1) mod 3)〉03 of two qutrits.

3.1. Measuring a general state

Let us consider now a slightly more complex situation. We have a system of two entangled pairs
in the general state |ψ(l, k)〉01 ⊗ |ψ(l′, k′)〉23. When we perform the measurement according
to the basis (12) with D = 3 we obtain the vector |ψ(r, s)〉12. The resulting state of particles
0 and 3 is again denoted as |ψ(l̃, k̃)〉03. In this case we are looking for the vectors of the form

|n〉0|n� k〉1|n′〉2|n′ � k′〉3 (17)

such that n′ ≡ n− k− s (mod 3), which yields k̃ = (k + s + k′) mod 3. The coefficient of the
vector |n� k〉1|n� k � s〉2 is ei2π(n−k)r/3. It must hold as before (see equation (16)) that

ei2πnl/3ei2π(n−k−s)l′/3 = ei2π(n−k)r/3ei2πnl̃/3ei2πx/3 (18)



Entanglement swapping between multi-qudit systems 4305

measurement

entangled pair

entangled pair

0 1

3 2
Figure 1. A schematical description of entanglement
swapping between two pairs of qubits (qudits). The qubits 1
and 2 are measured in the Bell basis. This measurement
results in the entanglement of the qubits 0 and 3, which have
never interacted directly.

for n = 0, 1, 2, where ei2πx/3 will be part of the phase shift of the vector |ψ(l̃, k̃)〉03. This
implies the congruence

n(l + l′ − r − l̃) ≡ −kr + kl′ + sl′ + x (mod 3). (19)

The case n = 0 gives −kr + kl′ + sl′ + x ≡ 0 (mod 3), so the x must be chosen such that this
congruence is satisfied. For n = 1 this leads to a relation

l̃ = (l + l′ − r) mod 3. (20)

The extension to an arbitrary finite-dimensional systems is straightforward. It suffices to
replace all ‘mod 3’ by ‘modD’ and n varies from 0 toD−1. In equation (17) the generalization
to aD-dimensional system gives us n′ ≡ n− k− s (mod D). Since n varies from 0 toD− 1,
we have D vectors of the form (17). Therefore their linear combination with appropriate
coefficients gives |ψ(l̃, k̃)〉03 and not only a linear combination of less thanD distinct vectors
of the form ei2πl̃n/D|n〉0|n� k̃〉3. We can now summarize our results as follows.

Theorem 1. Suppose that |�〉 = |ψ(l, k)〉01 ⊗ |ψ(l′, k′)〉23 is the tensor product of two
maximally entangled pairs of qudits. Let us assume that the particles 1 and 2 are measured via
the Bell-type measurement in the basis (12). If the measurement yields the result |ψ(r, s)〉12,
then the two particles 0 and 3 collapse into the state

|ψ((l + l′ − r) mod D, (k + k′ + s) mod D)〉03. (21)

This is a maximally entangled state of qudits 0 and 3, which have never interacted before.

4. Entangling two multiparticle systems

4.1. Measurement of two particles

Suppose we have two uncorrelated systems of qudits. The first system with m1 + 1 qudits
is in a maximally entangled state |ψ(l, k1, . . . , km1)〉, while the second system with m2 + 1
qubits is in the state |ψ(l′, k′

1, . . . , k
′
m2
)〉. The state vector of the composite system then reads

|ψ(l, k1, . . . , km1)〉 ⊗ |ψ(l′, k′
1, . . . , k

′
m2
)〉. Now we can choose two arbitrary particles (one

from each of the two systems) to be measured using the Bell-type projective measurement.
Due to the cyclic symmetry we can assume that the ‘last’ particle of each of the two systems
is measured. Suppose that in a measurement we obtain a state |ψ(r, s)〉. Therefore we are
looking for vectors of the form

|n〉|n� k1〉 · · · |n� km1〉|n′〉 · · · |n′ � k′
m2

〉 (22)
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Figure 2. A schematical description of entanglement swapping between two sets of entangled
qudits. A single particle from each set is measured. This measurement results in entanglement
between the rest of the particles from both of the systems.

such that n′ ≡ n − km1 − s + k′
m2
(mod D). To simplify the following derivations we put

k0 = k′
0 = 0. Let

 k̃ = km1 + s − k′
m2
. (23)

Now we should determine the l̃ and therefore

ei2πnl/Dei2π(n−km1 −s+k′
m2
)l′/D = ei2π(n−km1 )r/Dei2πnl̃/Dei2πx/D. (24)

It follows that

n(l + l′ − r − l̃) ≡ −km1r + km1 l
′ + sl′ − k′

m2
l′ + x (mod D). (25)

As before (see equations (19) and (20)) for n = 1 we have

l̃ = (l + l′ − r) mod D. (26)

Once we have determined l̃, we can choose suitable x to satisfy the case n = 0. This means
the following congruence is equal to zero:

−km1r + km1 l
′ + sl′ − k′

m2
l′ + x ≡ 0 (mod D). (27)

The resulting state is |ψ(l̃, k̃1, . . . , k̃m1+m2−1)〉, where

k̃i = ki i < m1

k̃i = k′
i−m1

+ k̃ m1 � i.

In this section we have presented a technique which allows us to produce an entangled state
with any number of particles.

4.2. Measuring more than two particles

Suppose that we are measuring the last a1 particles of the first system and the last a2

particles of the second system. We again assume the Bell-type measurement in the basis
|ψ(r, s1, . . . , sa1+a2−1)〉 describing maximally entangled states of the a1 + a2 qudits.

Analogically as in the previous examples we are looking for vectors of the form

|n〉 · · · |n� km1−a1+1〉 · · · |n� km1〉 ⊗ |n′〉 · · · |n′ � k′
m2−a2+1〉 · · · |n′ � km2〉 (28)

such that n′ ≡ n − km1−a1+1 − sa1 + km2−a2+1 for a given result of the measurement
|�〉 = |ψ(r, s1, . . . , sa1+a2−1)〉. Let  k̃ = km1−a1+1 + sa1 − km2−a2+1 and k′

0 = 0. Now let
us determine l̃. It holds that

ei2π(nl−x)/Dei2π(n−km1−a1+1−sa1 +k′
m2−a2+1)l

′/D = ei2π(n−km1−a1+1)r/Dei2πnl̃/D. (29)

This leads again to the relation

l̃ = (l + l′ − r) mod D (30)
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Figure 3. The same as in figure 2 except that an arbitrary number of particles from each set is
measured.

so the state of the unmeasured particles is |ψ(l̃, k̃1, . . . , k̃m1+m2+1−a1−a2)〉, where

k̃i = ki i < m1 − a1 + 1

k̃i = k′
i−m1+a1−1 + k̃ m1 − a1 + 1 � i.

Theorem 2. Suppose that we have two entangled systems with m1 + 1 and m2 + 1 particles,
respectively, initially prepared in the state

|�〉 = |ψ(l, k1, . . . , km1〉 ⊗ |ψ(l′, k′
1, . . . , k

′
m2

〉 (31)

and suppose that we subject the last a1 particles from the first system and the last a2

particles from the second system to a joint Bell-type measurement in the basis formed
by vectors |ψ(r, s1, . . . , sa1+a2−1)〉. Then the vector describing the state of the remaining
m1 +m2 + 2 − a1 − a2 particles after the measurement is

|ψ(l̃, k̃1, . . . , k̃m1+m2+1−a1−a2)〉 (32)

where

k̃i = ki i < m1 − a1 + 1

k̃i = k′
i−m1+a1−1 + k̃ m1 − a1 + 1 � i

l̃ = (l + l′ − r) (modD).

This means that the remaining particles end up in a maximally entangled state.

5. Many multiparticle entangled states

In what follows we describe the most general situation for entanglement swapping: Suppose
we have q systems. The j th system is composed ofmj +1 (j = 1, . . . , q) particles which are in
a maximally entangled state |ψ(lj , kj1 , . . . , kjmj )〉. The different systems are totally factorized,
so the state vector of the composite system reads

|�〉 =
q⊗
j=1

|ψ(lj , kj1 , . . . , kjmj )〉. (33)

(We note that superscripts do not denote the power, but they serve as indices.) Further we
assume a multiparticle Bell-type measurement. Specifically, we consider aj particles from the
j th state, ∀j ∈ 1 . . . q, to be measured simultaneously in the basis

|ψ(r, s1
1 , . . . , s

1
a1
, s2

1 , . . . , s
q

aq−1)〉. (34)
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The total number of measured particles is
∑q

j=1 aj . After the measurement these particles
collapse into one of the vectors (34). Therefore we look for the vectors

|n1〉|n1 � k1
1〉 · · · |n1 � k1

m1−a1+1〉 · · · |n1 � k1
m1

〉
⊗ · · · ⊗ |nq〉 · · · |nq � kqmq−aq+1〉 · · · |nq � kqmq 〉 (35)

such that
n2 ≡ n1 − k1

m1−a1+1 − s1
a1

+ k2
m2−a2+1 (mod D)

n3 ≡ n1 − k1
m1−a1+1 − s2

a2
+ k3

m3−a3+1 (mod D)
...

(36)

which in general can be expressed as

ni ≡ n1 − km1−a1+1 − si−1
ai−1

+ kimi−ai+1 (mod D) (37)

for ∀i = 2 . . . q. It remains to determine l̃. As before we have
q∏
j=1

ei2πnj lj /D = ei2π(n1−km1−a1+1)r/Dei2πn1 l̃/Dei2πx/D (38)

which yields

n1

((
q∑
j=1

lj

)
− r − l̃

)
≡ −km1−a1+1r + x +

q∑
j=2

lj
(
k1
m1−a1+1 + sj−1

aj−1
− kjmj−aj+1

)
(mod D).

(39)

The right-hand side of the congruence (39) is equal to 0 (mod D), which affects only the global
phase. Therefore we can write

l̃ =
((

q∑
j=1

lj

)
− r

)
(modD). (40)

Consequently a set of
∑
j (mj−aj+1) unmeasured particles becomes entangled due to the Bell-

type measurement performed on the
∑
j aj particles. The state of the unmeasured particles

is

|ψ(l̃, k̃1
1, . . . , k̃

1
m1−a1+1, k̃

2
1, . . . , k̃

q
mq−aq )〉. (41)

Together there are
(∑q

j=1mj − aj + 1
)− 1 k̃ and they must satisfy the condition

k̃
j

i = kji + nj − n1 i � mj − aj
k̃
j

mj−aj+1 = nj+1 − n1.
(42)

Theorem 3. Suppose we have q entangled systems each composed of mj + 1 particles
(j = 1, . . . , q). Let the whole system is initially in the state (33). Let us subject the last
aj particles from j th (∀j = 1 . . . q) system to the Bell-type measurement in the basis formed
by vectors (34). Given the result of the measurement (34) the

∑
j (mj − aj + 1) unmeasured

particles collapse into the maximally entangled state

|ψ(l̃, k̃1
1, . . . , k̃

1
m1−a1+1, k̃

2
1, . . . , k̃

q
mq−aq )〉 (43)

where

l̃ =
((

q∑
j=1

lj

)
− r

)
(modD) (44)

and

k̃
j

i = kji + nj − n1 i � mj − aj
k̃
j

mj−aj+1 = nj+1 − n1.
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Figure 4. The same as in figure 3 except that many initially uncorrelated multi-qudit systems are
considered.

6. Conclusion

In this paper we have presented a general formalism describing entanglement swapping
between multi-qudit systems. We have shown that by performing Bell-type measurements
one can create entangled states (with an arbitrary number of particles) from particles which
have never interacted before.

Even though our formalism has been developed for finite-dimensional Hilbert space, it
can be generalized for continuous variables, i.e. D → ∞. In this case qudits are replaced by
harmonic oscillators (e.g. quantized modes of an electromagnetic field). Formally, in the limit
D → ∞ we can substitute a two-qudit maximally entangled state by a two-mode correlated
state, i.e.

1√
D

∑
n

eiplxn |xn〉|xn − xk〉 → |ψ(x, p)〉 (45)

where

|ψ(x, p)〉 ≡ 1√
2π

∫
dx̃ eipx̃ |x̃〉0|x̃ − x〉1. (46)

Analogously, a multi-mode entangled state in the continuous limit can be expressed as

1√
2π

∫
dx̃ eipx̃ |x̃〉0

M−1⊗
j=1

|x̃ − xj 〉j . (47)

Once these states are defined one can formally perform the same manipulations as in the case
of qudits, i.e. generalized Bell measurements, etc. Nevertheless, we remind ourselves that the
maximally correlated states (45) as well as (47) requite infinite energy for their creation. For
this reason it is desirable to consider two-mode (and multi-mode) squeezed states, which in the
limit of infinite squeezing are equal to (45) and (47), respectively. It is convenient to describe
these two-mode states in term of their Wigner functions. In particular, the Wigner function
corresponding to a regularized version of the state |ψ(0, 0)〉 is [38]

W(x1, p1; x2, p2) = 4 exp

{
−e2ξ

2

[
(x1 − x2)

2 + (p1 + p2)
2
]}

× exp

{
−e−2ξ

2

[
(x1 + x2)

2 + (p1 − p2)
2
]}
. (48)
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This is a Wigner function describing a two-mode squeezed vacuum. If we trace over one of
the modes, i.e. if we perform an integration over the parameters x2 and p2, we obtain from (48)
a Wigner function of a thermal field where n̄ = sinh2 ξ is the mean excitation number in the
two-mode squeezed vacuum under consideration. We note that the thermal state is a maximally
mixed state (i.e. with the state with the highest value of the von Neumann entropy) for a given
mean excitation number. This means that the pure state (48) is the most entangled state for a
given mean excitation number. From this it follows that to create a truly maximally entangled
state, i.e. the state (48) in the limit ξ → ∞, an infinite number of quanta is needed and so
infinite energy.

From (48) one can easily find the Wigner functions of other states |ψ(x, p)〉. We remind
ourselves that Wigner functions are invariant under canonical transformations (7). Taking into
account that states |ψ(x, p)〉 can be obtained from |ψ(0, 0)〉 by a canonical transformation
(see (11))

|ψ(x, p)〉 = R̂p(p)⊗ R̂x(x)|ψ(0, 0)〉 (49)

its Wigner function can be obtained via a simple substitution of variables from the Wigner
function (48). The generalized Bell measurement in this representation corresponds to a
POVM measurement of the Artur–Kelly type [36]. This formalism in the infinite squeezing
then leads to a perfect entanglement swapping between harmonic oscillators.
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