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We show that for any Hilbert-space dimension, the optimal 2L universal quantum cloner can be con-
structed from essentially the same quantum circuit, i.e., we find a universal design for universal cloners. In the
case of infinite dimensiongvhich includes continuous variable quantum systbetims universal cloner reduces
to an essentially classical device. More generally, we construct a universal quantum circuit for distributing
qudits in any dimension which acts covariantly under generalized displacements and momentum kicks. The
behavior of this covariant distributor is controlled by its initial state. We show that suitable choices for this
initial state yield both universal cloners and optimized cloners for limited alphabets of states related by
generalized phase-space displacements.
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[. INTRODUCTION made in the development of approximate quantum cloners.
Most of the effort has focused on two types of these, univer-
One of the main tasks in quantum-information processingsal cloners that copy all input states equally wé], and
and quantum computing is thiistribution of quantum infor- ~ probabilistic cloners that copy a known set of states per-
mation encoded in the states of quantum systems. Assumef@ctly, but do so with a probability less than[4]. In what
quantum system labeled as 1 is prepared inrknownpure ~ follows we shall concentrate amiversaldevices.
state described by a state vectdf); in an N-dimensional Quantum cloning both illuminates the limits imposed by
Hilbert space. The task is to transfeartially the informa- ~ duantum mechanics on the manipulation of quantum infor-

tion encoded in system 1 into a second system in a covariafpation and can be useful in applications. It has been shown

way. That is, the fidelity of the operation should not depenotsnl?'e d:?gg(');gé?g;%vmgi;?erop\igormzncsrgrm";ﬁgegtf%ue?_n'
on the particular choice of the input stdt),. In addition, P 9 P

we want to control the amount of information transferredtaln quantum computationt6]. In addition, it has been

¢ tem 1 t em 2. O f the simplest | hown in Ref[7] that quantum cloners can be used as opti-
rom system - 1o system . ne of the Simplest examples gl eavesdropping devices on the six-state cryptographic
such a transformation is state swapping,

_ , when the state ofiqtqc0l. We should also note that recently an interesting
system 1 is exchanged with tllenown) state of system 2. In cloning experiment has been propog@l. Moreover, two
this case the complete information is transferred. A”Otheéxperiments have been independently reporfied0] in
option is to leave the system 1 in the original state. Thesyhich cloning of optical fields has been realized.
two operations can be performed with unit fidelity irrespec-  Universal cloners can be either symmetric or asymmetric.
tive of the input state of system 1. We can also consider gn a symmetric cloner the quantum information is divided
case intermediate between these two limiting cases, i.e., bequally and the output clones are identical. In an asymmetric
tween no transfer and the complete transfer of informationcloner one of the clones receives more of the input quantum
One interesting version of this intermediate transformatiorinformation than the other. Symmetric cloners were first de-
involves the copyingcloning of quantum information from  veloped to copy qubit§3,11], but have been extended to
system 1 to system 2, where, after the transformation, eactopy states in spaces of arbitrary dimendit@,13,15, and
of the systems 1 and 2 has the same reduced state, whichiishas been proven that these cloners are opt[h@/11,17.
itself as close as possible to the original sta#(V|. In  The study of asymmetric cloners also began with the consid-
this case we often require that the fidelity of the informationeration of qubit§18—2Q and has been recently extended to
transfer does not depend on the initial state. systems of arbitrary dimensiofil3]. In addition, N— M
It is now well known that quantum information cannot be cloning of coherent statef.e., cloning in the continuous
exactly copied[1]. This no-cloningtheorem has important limit) has been considerdd4].
consequences for the whole field of quantum-information What we shall do here is to exhibit a quantum circuit for
processing 2]. Nonetheless, considerable progress has beesymmetric and asymmetric cloners in arbitrary numbers of
dimensions. In order to emphasize that what these devices do
is distribute quantum-information, we shall refer to them as
*Permanent address: Institute of Physics, Slovak Academy of Sciguantum information distributor@QID’s). The circuit con-
ences, Dbravskacesta 9, 842 28 Bratislava, Slovakia, and Facultysists of four controlledéoT (c-NOT) gates, or rather their
of Informatics, Masaryk University, Bontanick&8a, 602 00 Brno, generalization toN dimensions, and its form is the same for
Czech Republic. any number of dimensions. There are two inputs to this cir-
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cuit. The first is the state that supplies the information to béVithout loss of generality, it can be assumed that these bases

distributed between the two OUtpUtS. The second acts as e sets of eigenvectors of noncommuting Operﬁmdﬁ:

program and determines how the information is distributed.

The infinite-dimensional version of this circuit allows us to X[x ) =k[x,  Plp)=1|p), (2.2)

describe quantum-information distributors for continuous

variables. that is,
Let us formulate our problem more exactly. Assume the

N—1
original quantum system is in a pure state o
X= kEO K[Xi0) (X
N—1 =

W)= ZO CalXn)- (1.1) 2.3

“ N-1

P=2> 1lp)pi.

At the output of the quantum-information distributor we 1=0
would like to have two quantum systems each with a stat

described in aovariantform (l_‘:or instance, we can assume that the operatoasd P are

related to a discrete position and momentum of a particle on

R 2 a ring with a finite number of equidistant sitg4]. Specifi-
pV=(1- %)) (V| Nl cally, we can introduce a length scdleand two operators,
1 the positionx and the momenturp, such that
, :
~ a . - ~
P(zom):(l—az)|‘1’>2<‘l’|+W1lz, X[ X =xx),  plPY=pilP1), (2.4
where
where the real parametess and 8 quantify the amount of
information transferred from one system to the other. In par- P b 2
ticular, if =0, thenno information has been transfered w=Lyk P=p VT (2.9

from the original system, while, i&=0, then all of the in-

formation in system 1 has been transferred to system 2. Thepe lengthL can, for example, be taken equal {&/wm,
parametersy and B are relatedsee below. From the cova-  \yherem is the mass ands the frequency of a quantum
riant form of the output density operators it follows that the «armonicoscillator within a finite-dimensional Fock space
fidelity of the information transfer is input-state independent.(in what follows we use units such that=1).
The terms proportional td¢/N in the density operators de- The squared absolute values of the scalar product of
scribe the amount of noise introduced into the systems at thgigenkets(2.2) do not depend on the indicésl,
output by the information transfer process.

Our task in this paper is to develop a quantum circuit for [l pi)P= 1N, (2.6
the universal quantum-information distributor for arbitrary- . :
dimensional quantum systems. In Sec. Il we start our discui’—_Vh'Ch means that pairsk(l) form a discrete phase space

sion with the mathematical formalism needed to investigaté!-€-» Pairs &) represent “points” of the discrete phase
our problem. Then in Sec. Il we present a quantum networiSPacé on which a Wigner function can be definfb]. Next

for the universal quantum-information distributor, while in W& introduce operators that shittyclically permutg the ba-

Sec. IV we generalize the discussion to continuous variable$iS Vectors 26J:
Finally, in Sec. V we summarize our results. A
Rx(n)|xk>:|X(k+n)modN>!

Il. FROM DISCRETE TO CONTINUOUS VARIABLES ~ 2.7

Ro(M)|P1) =P +mymodN)

In order to make the discussion self-contained we first o .
present a brief review of the formalism describing quantumvhere the sums of indices are taken modl¢this summa-
states in a finite-dimensional Hilbert space. Here we followtion rule is considered throughout this paper; where it is clear
the notation introduced in Reff21,22 (see also Ref23]). ~ We will not explicitly write the symbol modl). The opera-
Let the N-dimensional Hilbert space be spanned Myor-  tors R,(n) and R,(m) can be expressed as powers of the

thogonal normalized vectofs,) and equivalently byN vec- operatorsR,(1) and ﬁp(l), respectively,

tors|p;), k,1=0, ... N—1, where these bases are related by A A A A
the discrete Fourier transform R«(n)=R}(1), Rp(m)=R{(1). (2.9
1 Nt 2 In the x basis these operators can be expressed as
X0 == 2 exp —iqrkl /), )
<Xk|Rx(n)|Xl>: Sk+n,l s
(2.2)

N-1 (2.9

1 2w R 2

lpi)= N & ex 'W“ X (x| Rp(m)|x)= 6 ex;<|Wml).

052313-2



QUANTUM-INFORMATION DISTRIBUTORS: QUANTUM.. .. PHYSICAL REVIEW A 63 052313

Moreover these operators fulfill the Weyl commutation rela-In order to prove the above relations we have used the stan-
tion [27—-29 dard relation> )\~ g exp 27 (k—k")PVN]=N&c .
) Let us denote the particles, or subsystems, in the state
- o e - o Emn as particles 2 and Barticle 1 will be the one we are
Rx(n)Rp(m)=exy{ ! Wmn) Ro(M)Ry(n);  (2.10 1[ryinr11rg to cplone, and indicg'?e this by subscripts on the state.
It is then interesting to note that the whole setNsf maxi-
although they do not commute, they form a representation afnally entangled statekE )23 can be generated from the

—

an Abelian group in a ray space. We can displace a state istate| E o) »3 by the action ofocal unitary operationgshifts)
arbitrary order usingfex(n)f?p(m) or Ifzp(m)f?x(n); the re-  Of the form

sulting state will be the same—the corresponding kets will L .

differ only by an unimportant multiplicative factor. We see |E mn 2= 12® Ry(N)Rp(M) | E o) 23, (2.17

that the operator&,(n) and R,(m) displace states in the acting just on system 3 in this particular case.

directionsx and p, respectively. The produdr,(n)Ry(m) From the definition of the statd& .3 it follows that
acts as a displacement operator in the discrete phase space

(k,1) [30]. These operators can be expressed via the genera-eyAare simultaneously eigenstates of the operaforsXs

tors of translationgshifts) and P+ Ps:
. 27 . A (5(2_5(3)|Emn>23:n|5mn>231
Ry (n)=ex —|WnP =exp(—iX,p), o (2.18
(2.11) (P2+P3)|Emn)23= M| E ) 23-
ﬁp(m):exy{ i Z_me) =exp(ipmX). We easily see that fal=2 the above formalism reduces to
N the well-known spinj particle (qubit) case.

) ) Now we introduce generalizations of the two-qubitoT
We note Ehat the strAucture of the group associated with th@ate(see also Ref32)). In the case of qubits theNOT gate
operatorsR,(n) and Ry(m) is reminiscent of the group of is represented by a two-particle operator such that if the first
phase-space translatiofi., the Heisenberg groum quan-  (contro) particle labeleda is in the statg0) nothing “hap-

tum mechanic$31]. _ _ . pens” to the state of the secolizrge) particle labeled. If,
A general single-particle state in thebasis can be ex- however, the control particle is in the stafé then the state
pressed as of the target is “flipped,” i.e., the stat®) is changed into
No1 N_1 the state|1) and vice versa. Formally we can express the
action of thisc-NOT gate as a two-qubit operator of the form
W)= 2 clxdi, > led?=1. (2.12
k=0 k=0 1
The basis of maximally entangled two-particle statdwe Dab:k,mEZO [K)a(k|@[(m+kjmod Z(m|.  (2.19
analog of the Bell basis for spih-particleg can be written
as[31] We note that in principle one can introduce an operady
N-1 defined as
— 1 2w
|Bmn = N go exp 1 1 mk |10 [ Xk~ mymodn) s i 1
Dlo= 2 [Ka(kl®|(m—kymod2y(m|. (2.20
(2.13) k,m=0

wherem,n=0,... N—1. We can also rewrite these maxi- |n the case of qubits these two operators are equal. This is
mally entangled states in thebasis: not the case when the dimension of the Hilbert space is
larger than Z32]. Let us generalize the above definition of

1 Nzl 2w I the operatoD for N>2. Before doing so, we shall simplify
) = IN 56 &P TN [P-nmoan)[P1)- our notation. Because we will work mostly in thebasis we
(2.14  shall use the notatiofx,)=|k) where it may be done so
unambiguously. With this in mind we now write

The stateg= ) form an orthonormal basis N1

(E | B = Semdin, 2.15 Dab:k,%;o Ik)a(k|®](m+k)modN)p(m|. (2.21)

with From the definition(2.21) it follows that the operatoD

acts on the basis vectors as

pzd

=

oty | EmaEmel =101 (218 B 1o/ M) = k)| (k+ m)modN), (2.22
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a k> k> wherex.. = (x*z/2) and<pw (x) is the wave function of the
D, state| V), i.e., <pw>(x)=(x|‘If>, which in the |x) basis is

b Im> [m-+k> expressed as

)= ——[ dxe, (010 (2.26
=— X, (X)|X), )
o [¥)

L o lk> V2T
D; where we have used the relati¢x|y) =27 §(x—y). The

b lm> Im-k> Wigner functionW,y(x,p) is a quasiprobability distribution

in phase space and is normalized so that
FIG. 1. Schematic description of the action of the control shift 1 (=
gatesD,;, and D;b as given by Eqs(2.23 and(2.24). ﬂJ dxdp V\{%(x,p): 1, (2.27

which means that this operator is equal to the conditional ] ] ) )
adder[33,34 and can be performed with the help of a Simmewhere dx dp'27 is the invariant measure in phase space
quantum network as discussed[B8]. (here we have takeh=1). _

If we take into account the definition of the shift operator ~ With these definitions we can represent a regularized ver-

R(n) given by Eq.(2.7) and the definition of the position Sion of an eigenstate of the position operatowith mean
and momentum operatofsandf) given by Eq.(2.8) we can value equal to zerdx,), as a state described by the Gaussian

) - Wigner function
rewrite the operatob ., as

N-1 N-1 W‘Xw(x,p)=2€xn_ezgxz_e72§p2), (2.28
Dap= 2 [Kya(kl@RP (k)| m)p(m|= > [K)a(K] . . y
k,m=0 k=0 for which the variances of the position and momentum op-
5B/ 1o\ — amikap erators are £x)?=1e %€ and (Ap)?=1e%, respectively.
@R(k)=e g (223 The state (2.28 is a minimum uncertainty state, i.e.,
and analogously (Af()(AE))=% irrespective of the value of the squeezing pa-

rameteré. For the mean excitation number we find the ex-

N—1 N—1 —
At _ _ pressiom = sini? & We see that in the limif—, the state
Dan= k%‘éo [K)a(K|@|(m—k)modN)y(m|= .Z‘o [K)a(K described by Wigner functio2.28) is indeed a state with no

A . fluctuations in thex direction at the expense of infinite fluc-
@ RP)(—k)=eXaPp, (2.24  tuations in thep direction. In other words in the limig
—oo the statg2.28) is an eigenstate of.

where the §uperscripta and b indicate on which Hilbert Analogously a regularized eigenstate of the momentum
space the given operator acts. Now we see thalNfor2 the operator is described by the Wigner function

two operatord andDT do differ; they describe conditional
shifts in opposite directions. We see that the generalization W, >(x,p)=2exp(—e*Z‘fxz—ezfpz), (2.29

of the c-NOT operator are theonditional shifts The amount °

by which the targetin our case particle) is shifted depends where for the variances of the position and momentum op-
on the state of the control particla). In Fig. 1 we show a o 0t0rs we find £%)2=2e2¢ and (AD)2=Le 2¢ respec-
graphical representation of these conditional shift gates. 97=2 @p)=z ’ P

tively.
The wave functions corresponding to the std#28 and
Continuous limit (2.29 read
In the N— limit we have to take special care in han- 262
dling the expressions for the eigenstates of the position and o (x)=2Y4et ex;{ _© ) (2.30
momentum operatofs85]. To avoid divergences we have to xo) 2

regularize our states by “smearing” them. In other words,
the eigenstate of the operatrris replaced by a squeezed and

displaced statésee, e.g., Ref30]) with reduced quadrature

fluctuations in thex direction (see below. To express these <P‘po>(X)=21/4e_§/2 exr{ -
states explicitly we utilize the Wigner function representa-
tion, which for pure states is defined as

e %x?

s
respectively. We denote the corresponding ket vectors as
[Xo(€)) and|py(&)), where we have explicitly indicated that
these states are regularized versions of two specific eigen-
states of the position and momentum operators. X tistri-

(2.25 bution of the statep‘x&(x) is defined as usual, i.eElXD>(x)

1 (= _
= — * ipz
W, (X;P) ﬂfxdw\l,)(xmq,)(m)e ,
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:|‘P\XO>(X)|2’ and is normalized to unity apdx P|X0>(x)/\/27-r

=1. This distribution can also be obtained from the Wigner

function (2.28 via integration ovenp, i.e.,

l &
PLyX)= _\/ﬂf dp W, (x.p)= 21%¢ exp(—e*x?),
(2.32

which in the large¢ limit gives lim,_,.. P‘X >(x): V2 8(X),
as expected.

In an analogous way we define a maximally entangled

two-mode statd=qo(€)) in the continuous limit. Specifi-
cally, we define this state in a regularized form for which the
Wigner function read$36]

e?¢
WlEO&(xl,pl;xg,p2)=4 ex;{ - 7[(x1—x2)2+(p1+ P2)%]
e 2
- T[(X1+X2)2+(p1_pz)2] .

(2.33

This is a Wigner function describing a two-mode squeezed

vacuum. If we trace over one of the modes, i.e., if we per
form an integration over the parametersandp,, we obtain
from Eq. (2.33 a Wigner function of a thermal field,

1 o
Wth(xlxpl):Zf_ dXdeZW‘EO&(Xlapl;XvaZ)
2 p( xi+pi
—exp —
1+2

= =, 2.3
1+2n n 239

PHYSICAL REVIEW A 63 052313
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FIG. 2. A logic network of the QID as given by the unitary
transformation(3.4).

lll. NETWORK FOR QUANTUM-INFORMATION

DISTRIBUTION

We have shown earli¢B,12,37 that to perform quantum
cloning we need, apart from systems 1 and 2, between which
the information is shared, an additional quantum system 3
that mediates the distribution of the quantum-information.
Following this philosophy, we assume a quantum informa-
tion distributor to be a two-particle system (2 and 3) each of
the same physical type as the original system 1. Let us as-
sume that the quantum distributor is initially prepared in the
most general two-particle pure state

N—-1

| D) 5= m;:O Ami M) 2| K) 3. (3.1

In analogy with the quantum computational network used
in the quantum clondi37] we assume the QID network to be

Usp5=D3103:013D15, (3.2

with the idea being that the flow of information in the quan-

tum distributor, as described by the unitary opera®g), is
governed by the preparation of the distributor itself, i.e., by

the choice of the stat€8.1). In other words, we imagine the
transformation(3.2) as a universal “processor” or distribu-
tor and the staté3.1) as “software” through which the in-

formation flow is controlled. Using relatiof2.23) we can

wheren=sinlf ¢ is the mean excitation number in the two-
mode squeezed vacuum under consideration. We note th
the thermal stat€2.34) is a maximally mixed staté.e., with
the state with the highest value of the von Neumann enjropy

for a given mean excitation number. This means that the pure
state (2.33 is the most entangled state for a given meanp

excitation number. From this it follows that to create a truly
maximally entangled state, i.e., the st&2e33 in the limit

rewrite the QID transformation gsee also Ref.38])
at

U 1p5=exd —i(Xs—Xo) P11exi — iX1(P,+ Pa)]. (3.3
The distribution of information encoded in the original

article is performed via a sequence of four conditional shifts
D. The output state of the three-particle system after the four

controlled shifts are applied is

&é—o0, an infinite number of quanta is needed and so infinite

energy.
The two-mode wave function of the staf&.33 in the x
representation reads

e2§~ *2§~
- sz__ —Xi ) (2

4 39

¢z (X1iX2) = ﬁeXL< |

wherex. = (X;£X,). In what follows we shall denote this

regularized version of the maximally entangled state in a

semi-infinite Hilbert space alE yo(£)). Now that we have
laid out the formalism, we can resume our discussion.

|9)155=D31D31D15D 17 W) 1| ). (3.9

We present the graphical representation of the logical net-
work (3.4) with the conditional shift gateB,;, in Fig. 2.

The four operatorslﬁ act on the basis vectors
n)a|m),|k)s as

D31'531D 13'512| n)1|m),|k)s
=|(n—m-+k)modN) |(m+n)modN),

X |(k+n)modN);. (3.5
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As we shall see, the choice of the st&de),; controls the  where|py) is an eigenstate of the momentum operator with
flow of the quantum information contained in the staf®);  the mean value equal to zero. At the output we then find
through the QID.

Before examining this issue, however, it is useful to ex- U124 W) 1X0)2l Po)3= )2l E oo 13, (3.1
plore the covariance properties of this distributor for any
choice of|®),5. A device is covariant with respect to the which means that the information from the system 1 is com-
transformationJ, if application ofU to the input, i.e.|¥)  Ppletely transferred to the system 2 while at the output the

—.0|®), implies that the output density matrix representingSyStems 1 and 3 are in the maximally entangled state
. ~ (out) |E 00 13- Note that the output here is a state-exchanged ver-
the pair of outputsp'®", transforms a$39] sion of the output in Eq(3.9

Since these two cases realize the two extreme situations
(no information transfer and complete information transfer
When examining whether the distributor is covariant withit IS natural to ask what is the action of the QID if it is
respect to transformations of the folRy(n)R,(n), it is suf- prepared in a linear superposition of the stafigy),; and

ficient to confirm this covariant action for “displacements” [Xo)2|Pos- Let us take the input state of the QID to be

p(out)HEJ@Op(OUt)O—l@O_l_ (3.6

along thex andp axes separately, given W(An) andR,(n), |DY23= a| Z o) 23+ BlXo)2| Po)s» (3.12
respectively. If the state to be distributedRg(n)|¥), we
find wherea and B are real parameters. Note that from the nor-
A R . A malization condition(®|®)=1 it follows that these param-
Ry(N) 1| W) 1| D) p5— Ry(N) 1R (N) 2R, (N) 3| Q) 193, eters must fulfill the condition
3.
2aB
where | Q) 1,5 is given by Eq.(3.4). Similarly, if the input a’+ B2+ —~ -~ L (3.13

state isR,(n)|¥);, we have

. N . . When the QID transformation is applied with the QID ini-
Rp(n)q|¥)1|®) 25— Rp(n)lRp(n)ZRp(_n)3|Q>123-(3 3 tially prepared in the staté8.12 the output state becomes

=

Combinations of these two “displacements” act in the natu- Usod W) 1| ®)25= a|¥)1|Eog2at BIV)2l Eoo) 13-
ral way, so that if we “translate” the input state by a certain

amount, the reduced density matnxeg of the three outputs a[feracing over the systems 2 (1) and 3 we find the reduced
translated by the same amount, and if we perform a momen-

tum “translation” on the input state, the reduced densityStated for system 12) at the output to be described by
matrices of outputs 1 and 2 are translated in momentum by 208 2

the same amount, while that of output 3 has its momentum ,3(1‘3“0: ( a’+ _),3(“1)+ —1,

translated by the opposite amount. This implies that this QID N N

is covariant with respect to translations and momentum

tr_anslatiqns, and that the fidelities of the output reducgd den- A(°“‘)=(,32+ 2“_:3 (i) a_zj (3.15
sity matrices are unaffected when these transformations are p2 N /P N ’
applied to the input.

Having established the covariant action of our distributor R 2aB .. (N—2ap).
in arbitrary dimensions for any input sta®),;, we now P(sour):T(P(m))T"" Tl

wish to determine how this state affects the flow of quantum

information in the QID. ~ (in ) ] o
(i) Let us first assume that the QID stdte) is initially ~ Wherep("™=|W)(W| is the density operator of the original

prepared in the maximally entangled stéfyo),; given by  state of system 1, ang)" is the transposed operator.

Eg. (2.14). Taking the original system to be prepared in the Taking into account conditio3.13 we can directly re-

state(1.1) we find after the QID transformation write the last two density operators in the fofh2). This
. means that QID is the covariant transformation that in a con-
U124 V)1 Eo)23= V)1 E o) 23 (3.9 trolled way distributes information between the two systems.

There is a price to pay for this covariant information distri-
that system 1 remains in the original state while the QIDbution which is reflected by the additional noise.
remains in its initial maximally entangled stdf€y),3. This
means that even though the three-particle system has inter-
acted via four controlled shifts the total state is unchanged.

(ii) Instead, let us assume the QID is initially prepared in Let us assume that=4, i.e., the two output¢3.15 are
the product state equal. In this case QID acts as a universal quantum cloner for

arbitrary dimensions. From E¢3.12 we find the initial state
|®)23=X0)2|Po)3> (3.10  of the cloner to be

Cloner
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N—-1

> (X2 [Xm)2) X (3.1

m=0

1
|¢>23—m

With this initial QID state the output of the cloner yields two
clones of the form

A iy l=s.
pi=sp(M+—1 j=12. (3.17)
The scaling factos is
~ N+2 31
ST 2N+ 1) (3.18

Finally, system 3 of the cloner has a reduced state given by

~ (out) _ 1

Ps T TNF1 (319

o 1.
(T4 _—
(P + b

i.e., this piece of the cloner is left in a state proportional to
the transposed state of the original quantum system plus

completely random noise.

IV. CONTINUOQUS LIMIT

PHYSICAL REVIEW A 63 052313

4dap
J4+2 sinif 2¢

With this initial preparation of the QID, the univerdab-
varian information distribution of continuous variables is
realized using the network described in E8;2). The opera-

tor U,,3 acts on the basis statps, )1|X,),|X3)3 as

a2+,82+

(4.9

LA1123|X1>1|X2>2|X3>3:|Z1>1|22>2|23>3' (4.9

where z;=X;—Xy+ X3, Zp=X;+Xp, and z3=X;+X3. As-
suming that the original system is initially prepared in the
state

1
|‘P>1:Ej dxq (X1)[X1)1, (4.6

the output of the QID becomes

Uod W) | (&) 05— f dx; dx; dxg

(277)3/2
X ah(X1) (X2, X3) [X1— Xp+X3)1

(4.7)

X[X1+Xo)2 [X1+X3)3.

In what follows we make a connection between the dis-Upon tracing out modes 2 and 3 we obtain from &q7) the
crete and the continuous cases. The role of the controlled€nsity operator describing the original system at the output
shifts (NOT’s) in the continuous limit is obvious—it is a con- ©f the QID:

ditional shift down thex axis in phase space. Consequently,
the QID operatof3.3) has a clear meaning in the continuous
limit. Our goal now is to find the continuous analog of the
initial state|®),5 (3.12 of the QID. This is rather straight-

forward: we simply need to use the regularized versions of

the stategxo(€)), |po(£)), and |Ey(€)) as introduced in

1

(277)3/2

XX+ p)(x1+ 7],

;)(lout):

fdndxldxi PO U (XK — X} 5 7)

4.9

Sec. II. The input state of the QID in the continuous case caMhere the integral kermnel(x;—x;;7) is given by the ex-

then be written as

|D(£))25= | Eoo(£))23t BIXo(€))2lPo(£))3,

which in thex basis becomes

4.9

1
|(I>(§))23:ﬂf dxp dxg m(X2,X3)[X2)[X3), (4.2
where

m(X2,X3) = iz (X2,X3) + Bihix ,(X2) 1p ) (X3),
4.3

and the Gaussian functionsb‘x())(xz), ¢|po>(x3), and
12,9(X2.X3) are defined by Eqg2.30, (2.31), and(2.39,
respectively.

For finite values of squeezing the stat&;q(£)).; and
[X0(€))2]|po(€))3 are not mutually orthogonal, and therefore,

pression
1 X~ Xtn
K(X1—X1; =—fd (——x;——x
( 1 1 77) 2@ X M 2 1 2 1
xX-n , xtmn _,
S 1’7_"1)' 4.9

From the fact that the trace of the density matf#®) is
equal to unity we find that the integral kern@.9) has to
fulfill the condition

1
Ef dypK(0;7)=1. (4.10

The kernel itself can be expressed in the form

K(xq;m)=a?Ky(xg; 1)+ BPo(X1; 1)+ aBKs(Xq; 7).
(4.11)

in order to fulfill the normalization condition for the state where we have introduced the notatiap:xl—xi. Using

|®), the parametersy and g have to fulfill a condition
analogous to Eq(3.13,

the explicit expressions for the wave functions describing the

input state of the QID we find for the kernel functions
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_ e—2€_2 e2¢ which is equivalent to the conditiof#.10).
Ka(xq;m)=¢f exr{ o XTS5 772) , (412 From Eq.(4.12 we find the Wigner functioW*1(x’,p")
1 h 2 1 K 2¢ e
e _coshar, 2 WHi(x’,p’)=e exr{——(X’ +p' )}, (4.20
ICZ(X]_, 7])_ mexr{ 2 X]_ 2 cosh % /A 2

(4.13 which in the limit of large squeezing reads

2 WEL(x',p") 27 8(x")8(p"). (4.21)

K3(;1;77):\/W

The Wigner functionW*2(x’,p’) of the kernel(4.13 reads
p[ e (1 +e%) X2+ (2+sint? 2&) o2
Xexpg —

—2¢ o2f 1 x'?+p'?
o WGP = 0 Z—exp[ - % 2
e % (1-e*)x, n (1+2n)
Xjexp - ——— _
3e “+e where we have used the notatinrsint? & so that cosh@

(4.14 ing (i.e., the IargeTIimit) is equal to the Wigner function of
athermalitate(z.34) with the mean number of excitations

It is now easy to check that equal to 2. N _
Analogously we can evaluate the explicit expression for

1 1 the Wigner functionV*3(x’,p") of the kernel(4.15. This is

\/:J dnKq.(0;n)= \/:f dn Ky(0;7)=1, rather cumbersome, and, since we are interested only in the

2m 2m large squeezing limit, we present the corresponding Wigner
function only in this limit:

e ¥(—1+e%)x,
+expg —

=1+2n. We note that this Wigner function for large squeez-
3e %+e* ]

(4.19 -

1 f 4
—— | dnK3(0; ) =—F—mmmess
\/ﬁ Va+2 Smi 25 WK3(X,,p,)22\/EEX[{_eT(X’Z'i‘p,Z)
from which it follows that the kernek’(0;#) satisfies con-

dition (4.10.

In what follows we utilize the Wigner-function formalism
to analyze the performance of the cloning machine. We find
a WignerW(x,p){" of the output staté4.8) which we ex-
press as a convolution of the Wigner functid™(x,p) of

the input mode and the Wigner functioW*(x,p) of the

, (4.23

which in the large¢ limit can be formally expressed as
Wrs(x',p")—8\2me 265(x")8(p). (429

Now we can give the explicit expression for the Wigner
functionW{°"(x, p) of the output mode 1, for which we find

kernel (4.17):
(out)_i "do'WE(x’ n’ yytout) — 2N :3_2 1 g(in)
W(x,p)1 —wa dx’ dp"WH(x",p'), (X, p) = Wy (X,p)+27TJ dx’ dp’ WY
X WD (x=x',p+p’), (4.16 X (x=x",p—p")W*z(x',p")
where +4\2e"#a WM (x,p). (4.29

1 , We note that in the largé limit the third term in right-
Wh(x',p’)= \/?f dz P ?K(z,x"). (417 hand side of Eq(4.25 will vanish due to the factoe™ 2.
i Taking into account that in the large squeezing., largen)

Erom our definitions it follows that limit the functionW*2(x,p) is essentially equal to a Wigner

function of a thermal field(2.34 with a mean excitation

WX, p") = a®Wri(x’,p") + B2Wr2(x’,p’) number of 2 [we will denote this Wigner function as
+aBWSs(x,p'), (4.18  Wu(x,p;2n)], we can rewrite the Wigner functio@.25 at

the output of the QID as
whereWXi(x’,p’) are the Wigner functions of the kernels

K: (j=1,2,3). We can easily check that . 2 .
A : g \A/&°“t><x,p>=a2vv&'“><x,p>+f—w f dx'dp' Wi (x",p’)

1
. ’ I\WE (v! 1) — —
277J dxdp" WX, =1 419 X Wi(x—x',p—p’;2n). (4.26
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Therefore, the output Wigner function is simply times the  with Werner's result[17] for the optimal cloner in the
input Wigner function plugd? times the convolution of the infinite-dimensional limit.
input Wigner function and that of a thermal state.
Finally we evaluate the fidelity of the QID transformation, V. CONCLUSIONS
which is defined as
We have shown that for any dimension the optimal uni-

~ (out 1 in versal quantum cloner can be constructed from essentially
]:J'=<\I'|p§ )|\P>=Zf dxdp W )(X’p)WJ(OUt)(X’p)' the same quantum circuit, i.e., what we have is a universal
4.2 design for universal cloners. In the case of infinite dimen-
sions(which includes continuous variable quantum systems
the universal cloner reduces to a classical device. By con-
trast, Cerfet al, have shown that, if one designs a continu-
ous cloner optimized to copy certain sets of states, then one

In the large squeezing limit the fidelit{#.27) can be ap-
proximated as

f dx dpf dx’ dp’ WiV(x,p)Wy(Xx—x',p—p’,2n) can achieve higher fidelities than those available to the truly
' universal cloners studied herg88]. In particular, they
X W (x" p") showed that it is possible to design a cloner that will copy
) any coherent state with a fidelity of 2/3. Their cloner also fits
_ T , 2 12 within the structure of the QID analyzed here if one chooses
2n+ 1f dxf dx” OO (x| the initial cloner state as

W @~ (x=x)?2(2n+1) (4.29
. . . . . 1 X3+ X3
The integrals on the right-hand side of this equation are less |q)>23:—f dxdxg exp — ——=—||Xo)|Xp+ X3).
than or equal to 1, so that the entire right-hand side goes to V272 2
zero as I asn—o. Therefore, we find that in the large G.D
squeezing limit the fidelity of the QID is indeed input-state

independent, andF; = o while F,= 2. . _ _ .
It is interesting to note that this cloner also produces approxi-

mate versions of the transpose of coherent states at its third
_ o s o 4 output. The transpose of the coherent stajds |z* ). If the
If in the limit {—c we takea”="=; then the rans- ;5 1 14 the cloner i$z), thenp" is a Gaussian staiéhat
formations described above describe the symmetric cloner. ~ou) o1y ; . )
In the limit £¢— ¢, the fidelity of the output density matrices 'S+ (X/p3’"|x") is a Gaussianthat is concentrated about the
to the original state is. This is consistent with what we POINtz* in phase space. Itis, however, more spread out than
expect from the limitN— limit of Eq. (3.17). a coherent state, and its fidelity with the actual transposed
The fact that in the continuous case the fidelity of thestate is 1/2.
copies is} is suggestive; it makes one think of a coin toss. In  For continuous systems, these specialized cloners will be
fact, one can construct a continuogsniversa) cloner, more useful than the universal one. Because of their covari-
which is much simpler than the one given above but achievegnce properties, they will clone any two states that differ by
the same fidelity, whose most important component is a fliponly a translation in phase space with the same fidelity. For
ping coin[13]. This cloner has two inputs, one for the stateexample, the fact that the cloner in R¢88] clones the
we wish to clone and one for a completely random statezacuum with fidelity 2/3 implies that it clones all coherent
(ideally an infinite-temperature thermal stat&Vhat the states with the same fidelity. One can easily imagine gener-
cloner does is to flip a coin, and if the result is heads thalizing this result and designing cloners to optimally clone
original input state is sent to output 1 and the random state tentire classes of states; if by choosing the corfdct,; the
output 2. If instead the result is tails the input state is sent teloner has been optimized to clone a particular dtétg by
output 2 and the random state to output 1. Assuming that, onovariance it will automatically be optimal for all states gen-
average, the overlap between the input state and the randoenated from W) by displacements in phase space. For finite-
state is small, this “cloner” will clone the input with a fi- dimensional systems, however, universal cloners do better
delity of . From this we can conclude that for continuousthan classical devices and the simple universal circuit pre-
guantum systems the universal cloner is effectively a comsented here shows how they may be constructed.
pletely classical device. Indeed, one can verify that in this In the present paper we have concentrated en2l
limit there is no entanglement between systems 1 and 2 ajuantum-information distributors. Using the ideas presented
the outgoing particles. This is not true in any finite- in Ref. [40] it is possible to design a network for the 1
dimensional case. Taking this classical distribution as a hint.=M QID in any dimension. In spite of the fact that some
we can see that this type of continuous cloner is easily genavork on N—M cloning in the continuous limit has been
eralized to the case of an arbitrary number of ingd{sand  done(e.g., cloning of coherent states has been considered in
an arbitrary number of outputd ,, with M ,=Mi,. In this  Ref.[14]) it is still an open question how to construct quan-
case the fidelity of cloning is jus¥l;,/M,,, which agrees tum logic networks for aN—M QID.

Universal continuous cloner
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