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Quantum entanglement cannot be unlimitedly shared among an arbitrary number of qubits. The degree of
bipartite entanglement decreases as the number of entangled pairsligudnit system increases. We analyze
a system oN qubits in which an arbitrary pair of particles is entangled. We show that the maximum degree of
entanglement{measured in the concurrencketween any pair of qubits is 2/ This tight bound can be
achieved when the qubits are prepared in a pure symmnietitls respect to permutatiopstate with just one
qubit in the basis stat®) and the others in the basis state.

PACS numbds): 03.67—a, 03.65.Bz, 89.76:.c

Schralinger [1] has identified quantum entanglement as The problem is formally posed as follows. Suppose Mat
the key ingredient in the paradigm of quantum mechanicsqpits, indexed by=1,2, . . . N, are in the statgy, and we

Throughout the whole history of modern quantum meChan'C%hoose a basig1),|0)} for each qubit. We require that the
the mystery of quantum entanglement has puzzled genera- '

tions of physicist§2]. On the other hand, in the past decadeMatrix form of the marginal density operatay. for a pair of
entanglement has been recognized as an important resour@gbits| andl’, represented in the chosen basis, be indepen-
for quantum information processing. In particular, quantumdent of the choice of andl’. Note that this requirement is
computation[3], quantum teleportatiofd], quantum dense satisfied ifpy, is invariant under any permutation of qubits.
coding [5], certain types of quantum key distributiof8],  the question is to find the maximum degree of entanglement
and quantum secret sharing protocpr3 are rooted in the between a pair of aubi
. pair of qubits.
existence of guantum entanglement It is convenient to suppose that each qubit is a spin-1/2
In spite of the progress in an understanding of the nature i ) PPOS q ) P
of quantum entanglement there are still open questions th&article with the spin operataf’(I1=1, ... N). The Hilbert
have to be answered. In particular, it is not clear yet how tspace of the subsystem composed of qubits 1 and 2 is a
guantify uniquely the degree of entanglemg812), or how  direct sum of the subspaces for the total spin 0 and 1, with
to specify the |n§eparabll|ty conditions for bipartite mulu— the projectorsP, and P, onto each subspace, respectively.
level systemgqudits [13]. A further problem that awaits a .- A A N
thorough illumination is that of multiparticle entanglement UNder the condition py;=pa(=p), we have PopP,
[14]. There are several aspects of quantum multiparticle cor=P1pPo=0, since these operators change their signs under
relations. For instance, it is the investigation of intrinsic the permutation of the two qubits. Let us define irreducible
n-party entanglement_ _(|.e., generalizations  of the tansorsT® of rank k=0,1,2 and componentg such that
Greenberger-Horne-Zeilinger stdie5]). Another aspect of ., Id ol aneei 2
multiparticle entanglement is that, in contrast to classicall j.q=>mm{K.al1m;1m" }(Z{_;8¢/) (2}, _,Sy°),  where
correlation, it cannot freely be shared among many objectss(!) =+ (s +is(’)/ 2, s'=s{’, and (k,q|Lm;1m’) is
In particular, Coffmaret al. [16] have studied a set of three {he Clebsh-Gordon coefficient for forming a total skistate

qubits A,B, andC. It has been shown that the sum of the s.0 two spin-1 particles. The spin-1 part of the densit
entanglementmeasured in terms of the tandlEl]) between - P P ' b b y

- . . T(K) P E
the particlesAB and the particleé\C is smaller or equal to OP€rator p can be expanded byTy; as PipPy
the entanglement between partiédleand the subsysteiBC. =Ek'qak,qT(2',2, and the coefficientsy , are obtained by the
Wootters[;?] has cons_idered amfinite number pf qubits  (elation @ qTr('T'(zqu'T(zk&):Tr(?(zquﬁ)=('i'(2k) q>, where we
arranged in an open line, such that every pair of neares& PP ' : -
neighbors is entangled. In this translationally invariant ~ denote Tr(--py) as(:--). From the symmetry opy, we
tangled chainthe maximal closest-neighbdbipartite en-  have(T{))=(N/2)(T5)) and (T, =[N(N—1)/2(TS).
tanglementmeasured in the concurrends bounded by the \wjth p,, given, it is convenient to choose they, andz axes
;%llge[ll%i (it is not known whether this bound is achiev- 55 the principal axes for the tensor of the second-order cor-

. ; el Nyl ;

In this Rapid Communication, we considefimite system ~ '€lation for the total spinS=3 ;51 of the N qubits,
of N qubits in which each pair out df(N—1)/2 possible namely,(S,S,+8S,5,)=2S"4,, with S.=(S’) (here and
pairs is entangled. We show that the maximal possible bipamenceforth, the suffixegs and v representx,y,z). Matrix
tite concurrence in this case is equal ttN2/The derivation lements for» then take a simple form on the bagis 1)
of this tight bound on the concurrence is the main result ofe P P
our paper. SILUL YLD+ LT = [11)} as follows:
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Ac (5) iK§) O fo=AZ+ A +AZ—2X—2Y—2Z=N[+N5+)\],
p= E <ASZ> Ay <é><> 0 (1) fA:)\l)\z)\g,
Nl —i¢(8) (8) A, o]
i
(S (59 Al B 4X 4Y 4z
0 0 0 A fg=—BByB,| Byx+ BV+BZ_B_X_B_y_B_Z
where we have introduced non-negative parameters :)\411+)\421+)\g_2()\§)\§+)\5)\%)\%)\%), (5)
_ N(N+2)-4(S?) _ N?-4s] A @ where B, =A,+A,+A,~2A,. The relationA,>A,>A,
0 4(N—1) ' “T2(N—1) 0 >0 implies thatB,> By>|BX|. Note that the sign ofy is
the same as that ofy, since we can factorize a$g
that satisfyA,+Ay+A,+Ag=N. =By(A+A3—A) (A 1+ No—\g).

As a measure of entanglement between the two qubits, we Let W be the region defined b§,=0 andfz=0. As a
use the “concurrence” introduced by Hill and Wootters function of (X,Y,Z), v is continuous in the regiolV in-

[11]. The concurrenc€ can be calculated as follows. Lpt ~ cluding  the ~ boundaries. ~ The  gradient Vy
be the time reversal qf, which is obtained by changing the =(3¥/dX,dv/dY,dyldZ) can formally be obtained by using

sign of spin(S) in the expressioil). The eigenvalues gip the three relations5). The result is
are all real and non-negative, and we let the square roots of
those bd, 15, I3, andl, in decreasing order. The concur-
renceC is then given byC=maxl;—1,—15—1,0}. In the

present case, one of the eigenvaluespgﬁs (AO/Ngz. Let  \where k=2(A1—N\5)(A;—\3)(Ao+A3)=0, and the other
us der;o_te the other three as\;(N)“, (A2/N)%, and o are obtained by the cyclic exchange. At the inner points
(A3/N)“ in decreasing order, and introduce parame;@rs of W, N\y>\,, since y>0, andA3>0, sincef,>0. The
=N+ Agandy=A;—\,—\g. The concurrence is then parameters is hence positive, and the gradieVity exists.
given byC=max(y—Ag)/N,(Ao—B)/IN,0}, where allowances  sjnceB,> B,>0, we have?y/dX>0 for the inner points of
are made for the possible order & andX ;. _

In the following, we first fix the paramete&, (henceA,, The geometry ofV andV is derived as follows. Let the
and Ag), and maximize y with respect to X,Y,Z)  points on which the planef;=0, f,=0, andfs=0 inter-
=((502.(5,)%,(5,)?). We then moves? to obtain the global sect theX axis bePgy, Pay, andPsy, respectively, and
maximum of (y— Ag)/N, which turns out to be, as we shall denote the other six points on tNeandZ axis similarly. The
see, the maximum of the concurrence. For simplicity, werelation A,A,—(B,+B,+B,)B,/4=B,B,/4, and the ones
assume thats>S{>S; (henceA,<A,<A,). The states obtained by the cyclic exchange ft,y,z}, tells us the fol-
with some parameters equal will be considered as the limitlowing. WhenB,>0, the trianglemrg= PgxPgyPg; does not
ing cases. intersect withma=PaxPayPaz, and lies closer to the ori-

There are two simple bounds for the allowed values ofgin. W is the sandwiched region of the two triangles. The
(X,Y,Z). One is a necessary condition farto be physical. triangle ms=PsxPsvPsz may intersect withm, and 7g or
The eigenvalues fgs must be non-negative, and the bound-not. WhenB, <0, fg>0 (hencey>0) is satisfied by all the
ary is given by the surface that satisfies g@¢té 0. Calculat-  points that satisfyf ,=0. WhenB,=0, y=0 for the points
ing from Eq.(1), this surface turns out to be a plane, and theon theY-Z plane, andy>0 for X>0. Combining these ob-

dy _ (y+By)(y+B,)

IX K ' ©)

condition for (X,Y,Z) is servations withdy/dX>0, we conclude that, iV, y takes
its maximum on points on the boundaries, or 75, and
fA=AAA,-AX-AY—-AZ=0. (3)  never on the inner points.

To determine the behavior af on the boundaries, we first
The other one is a requirement necessary for the spin correterive the value ofy on the axes explicitly. For the points on

lations. From the inequalit[2(S)(5—(S))/S?1?)=0, theZ axis and satisfying the relatiof3), the roots{\;} are

we obtain found to be{AZ,[\/(Ax+Ay)2—4(Sz)2i(AX—Ay)]IZ}. The
expression fory depends on which is the largest root. The
X Y Z roots for the points on the other two axes are similarly ob-
fs=1- g_ < ?20_ 4 tained. Applying these to the vertices af,, we have
S S ¥(Pax) =By andy(Pay) = y(Paz) =|By|. On the vertices of
Any physical state thus falls in the regidywhich is defined 7S’ 7 IS vyel_l defined only when they are in the regivy
by fo=0, fs=0, andX,Y,Z=0. WhenPs;zis in W,

The relanonszthgt co;mecX(Y,f) ar;d)\I are obtal_ned by 0$4(AxAy_Sg):(A2+AO)(A2+AO_2)_(Ax_Ay)zv
expanding déN“pp—A“I]=1II;(\{ —\“) and equating the 7)
coefficients ofA™. There are three independent equations,
and it is convenient to take the following set: and henced,>2—A,. Theny is written as
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PAYPAZ and Popr. On Popr, qZX' V’}/ZO, SO that'y is
constant.

Similarly, define directions on wg as pY=
(-$£.80,0) pP*=(0,-5},S) and p"=(-S,0S)). Let
gy be the intersection ofrg and W. On wgy,, we
have pY-Vy=(y+B)(y—ym)(S—SD/x, P=Vy=(y
+By) (v~ ym)(S;= Sk, and P Vy=(y+B) (y= )
X(S;—S)/k. When B,<0, y(Pay)=¥(Paz)=|B,| and
Eq. (6) implies thaty=|B,| on theY-Z plane, andy+ B,
>0 for X>0. Since we have seen that v, on the vertices
on wgy, P%Vy>0 andp®-Vy>0 everywhere onrgy,
andp¥?- Vy>0 on mwgy except for the segmers\Psy.

Now we are in a position to find the maximum of We
must consider the following four cases separatse Fig.
1).

(i) AA,=S; andA /A, >SS, In this caseA,>2—A, is
necessary:y takes its maximum orPg; and the value is
given by Eq.(8) andy<2—A,. 7y approaches 2 only in the
limit of Ap—0, A,—2, B,—2, andB,—2. This limit can
be taken only ifN=6, sinceA,=A, must hold in the limit.
WhenN>6, Pgzis the only point that attaing=2 since
p’*-Vy>0 andp*?*- Vy>0 still hold in the limit. WhenN
=6, y=2 everywhere onr,, but these states are equiva-
lent in the sense that they are related by the rotation of the
whole system.

shaded surfaces are boundaries for the physically allowed states. (jj) AxAy<S§ andAyAZssf. In this case, from the rela-

The arrows show the directions in which the concurrence increaseﬁOn

Y(Ps)=A~V(A+A)?-4S]

=A,— \/(AZ+AO)(AZ+AO_ 2).

8

This is a decreasing function &,, and notingS§>0, we
have 2-Ay>vy(Psp)>N/(N—1)—Ay=vy,. Similarly,
Y(Psx) > ¥m and y(Psy) > vy, if those points are inW.

Next, we will evaluate the gradient on the boundaries. O
the boundarym,, « is not always positive, buik=0 is
possible only for the following two case&@) \;=\,. This
occurs only whenf,=fgz=0, or equivalently, on the seg-
ment P,yPaz whenB,=0. (b) A,=\3=0. This occurs if
and only iff,=0 and (o)?>—fg=0. The intersection of ,
=0 and (y)?>—fg=0 is a parabola. The poirfPO(Ai(Ax
—A)/(Ac—A) 0AL(A,—A)I(A—A,) is on this pa-
rabola. AtPy, u=(A,,A,,A,) is normal tof,=0, andv
=(—ABy ., AB,~2AA,,—A,B,) is normal to ,)°—fg
=0. SinceuXwv has a vanishiny component, the parabola
is tangent to theX-Z plane atP,. Another point(AZ(A,
—A)I(Ac—A)), —AZ(A—A)I(A—A,),0, on which Y
<0, is also on the parabola. We thus conclude that the gr
dient exists onmr, except for the segmemayP,z and Py,

Let us define three particular directions o) as ¢*
=(AVA;,—AAL0), I7=(A/A0-AA), and ¢*=(0,
—AAGAA)). The differential coefficients ofy for these
directions are calculated to bg'*-Vy=A,(BZ—y?)(A,
—A)k, F*Vy=Ay(Bi— ) (A—A)k, and ¢*Vy
=A(Y*—B)(A,—A))/x. Noting that y(Pax)=B, and
v(Pav)=7vY(Paz)=|By|, we conclude thatq*-Vy>0,
g**- Vy>0 andg’*- V y>0 onm, except for on the segment

a_

0=4(S;~AjA) = —(By+Ag—2) (B, +Ag) — (B,
- By)(By+ Ap—1), By<2—-Aq is necessary.y takes its
maximum onPyP,x and the value isy=By<2—A,. y
approaches 2 only in the limit &,—0, A,—2, B,—2,
andB,—2. This limit can be taken only IN<6, sinceA,
=A, must hold in the limit. WhemN<6, P, coincides with
Pax in the limit and P,y is thus the only point that attains
v=2. WhenN=6, the limit is the same as in cafe.

(iii ) ALA, =S andA A, =S . The maximum is the larger
of y(Pax) and y(Psz). Depending onN, one of them or

"hoth can approach 2. The limit is the same as described in

caseqi) and(ii).

(iv) AXAy<S§ andAyAZ>S)2(. In this case, from the rela-
tion C(Pax)>C(Psy, we haveB,>1y,. We also have
Ap<2 since (2—Ao)(By+A0+2AZ)=4(S§—AxAy)+2AZ
+By(N-2+48))/(N-1)>0. y takes its maximum &,
that is, the intersection odP,zPax and PgPsx. Sincels
=0 atP;, y=\;—\, and B=\;+\,. Then we haves?
+v?=2f, and B2y?>=fg. This implies thaty? is the
smaller of the two roots=t,,tz of the equationt?— 2f ot
+fg=0. The coordinates oP; can explicitly be obtained
by solvingf,=0 andfs=0 with Y=0. Substituting the re-
sult into fy and fg in the equation of, we finally obtaint,
BJ and

4AA,

tym L Ay(Ag—2
878,y (N-1) o2
B +AO_2
=(2—Ag)%+2A,———
0 0 By_'}’m

_ 2(By+Ao—2)(B,+N)+(B,~B,)(B,~B,)
(N=1)(By=¥m) '

(€)
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WhenB,=2—-A,, we havet;<4—Aq(2—A)<4. We thus It is worth noting that the optimal state for our problem
conclude thaty<2 for all values ofB,. WhenN<6, y  was found to be a pure state. This is not trivial because the
approaches 2 only in the limit o&,—0, B,—2, B,—2, symmetry is required for density operators. Obviously, pos-
andA,—2. P, approache® ,y in this limit, so the limitis  sible mixed states span a larger Hilbert space than that
the same as in cag). WhenN>6, y—2 only inthe limit  spanned by possible pure states. For infinite entangled
of Ap—0, By—2, By—2, A,—2, andP;—Ps;. Thisis  chains, the best state so far is given asiged statd17]. It
the same limit as in cag@). WhenN=6, y—2 inthelimit  will be interesting to investigate entangled chaifsops
of Ap—0 and allA,, approaching 2. composed of dinite number of qubits and to see whether the
Finally, we show that\,— 3 is smaller than 2. I'W, o optimum value is attained by mixed states or pure states
takes its minimum onP,z, and its value is A<—A))’> by both. O'Connor and Wootters have foufilg] a series of
+AZ. We thus haveA,— B=<Ag—fo<A;—A,=(N-2S;  pyrestates irN-qubit finite entangled loops and showed that
—28))/(N—1)<N/(N—1)<2 for N=3. the limiting value of the nearest-neighbor concurrencélin
Combining all cases, we reach a conclusion that the maxi-., « js the same as the one obtained for the infinite chain in
mum value of the concurrence isN2/ and this Va'“? IS [17]. It is still an open question whether these states are
reached only by the state satisfying the constra(rS%) optimum or not.
=(N/2-1)2, (§,)=N/2—1, (§)=(55)=(3N-2)/4, and Note addedRecently we became aware thatrpui9] has
(é)<>=<§y)=o, if the z axis is suitably chosen. Such a state independently conjectured the upper bound on the concur-

exists — it is the eigenstate &, with eigenvalueN/2—1 rence in entangled webs to beha/

with total spinN/2. This state is the equally weighted in-  We thank W. K. Wootters for helpful discussions. This
phase superposition of any one qubit that is in the §@te work was supported by a Grant-in-Aid for Encouragement of
and the otheN—1 qubits in the statgl). This is a permu-  Young Scientist§Grant No. 12740243y the Japan Society
tationally invariant pure state that highlin the order ofN) of the Promotion of Science, and by the IST Project EQUIP

breaks the symmetry between the basis stdtpsand|1). under Contract No. IST-1999-11053.
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