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Entangled webs: Tight bound for symmetric sharing of entanglement
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Quantum entanglement cannot be unlimitedly shared among an arbitrary number of qubits. The degree of
bipartite entanglement decreases as the number of entangled pairs in anN-qubit system increases. We analyze
a system ofN qubits in which an arbitrary pair of particles is entangled. We show that the maximum degree of
entanglement~measured in the concurrence! between any pair of qubits is 2/N. This tight bound can be
achieved when the qubits are prepared in a pure symmetric~with respect to permutations! state with just one
qubit in the basis stateu0& and the others in the basis stateu1&.

PACS number~s!: 03.67.2a, 03.65.Bz, 89.70.1c
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Schrödinger @1# has identified quantum entanglement
the key ingredient in the paradigm of quantum mechan
Throughout the whole history of modern quantum mechan
the mystery of quantum entanglement has puzzled gen
tions of physicists@2#. On the other hand, in the past deca
entanglement has been recognized as an important reso
for quantum information processing. In particular, quant
computation@3#, quantum teleportation@4#, quantum dense
coding @5#, certain types of quantum key distributions@6#,
and quantum secret sharing protocols@7# are rooted in the
existence of quantum entanglement.

In spite of the progress in an understanding of the na
of quantum entanglement there are still open questions
have to be answered. In particular, it is not clear yet how
quantify uniquely the degree of entanglement@8–12#, or how
to specify the inseparability conditions for bipartite mul
level systems~qudits! @13#. A further problem that awaits a
thorough illumination is that of multiparticle entangleme
@14#. There are several aspects of quantum multiparticle c
relations. For instance, it is the investigation of intrins
n-party entanglement ~i.e., generalizations of the
Greenberger-Horne-Zeilinger state@15#!. Another aspect of
multiparticle entanglement is that, in contrast to classi
correlation, it cannot freely be shared among many obje
In particular, Coffmanet al. @16# have studied a set of thre
qubits A,B, and C. It has been shown that the sum of th
entanglement~measured in terms of the tangle@11#! between
the particlesAB and the particlesAC is smaller or equal to
the entanglement between particleA and the subsystemBC.
Wootters @17# has considered aninfinite number of qubits
arranged in an open line, such that every pair of nea
neighbors is entangled. In this translationally invarianten-
tangled chainthe maximal closest-neighbor~bipartite! en-
tanglement~measured in the concurrence! is bounded by the
value 1/A2 ~it is not known whether this bound is achie
able! @17#.

In this Rapid Communication, we consider afinite system
of N qubits in which each pair out ofN(N21)/2 possible
pairs is entangled. We show that the maximal possible bip
tite concurrence in this case is equal to 2/N. The derivation
of this tight bound on the concurrence is the main result
our paper.
1050-2947/2000/62~5!/050302~4!/$15.00 62 0503
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The problem is formally posed as follows. Suppose thaN

qubits, indexed byl 51,2, . . . ,N, are in the stater̂N , and we
choose a basis$u1&,u0&% for each qubit. We require that th

matrix form of the marginal density operatorr̂ l l 8 for a pair of
qubits l and l 8, represented in the chosen basis, be indep
dent of the choice ofl and l 8. Note that this requirement is

satisfied if r̂N is invariant under any permutation of qubit
The question is to find the maximum degree of entanglem
between a pair of qubits.

It is convenient to suppose that each qubit is a spin-

particle with the spin operatorŝ( l )( l 51, . . . ,N). The Hilbert
space of the subsystem composed of qubits 1 and 2
direct sum of the subspaces for the total spin 0 and 1, w

the projectorsP̂0 and P̂1 onto each subspace, respective

Under the condition r̂125 r̂21([r̂), we have P̂0r̂ P̂1

5 P̂1r̂ P̂050, since these operators change their signs un
the permutation of the two qubits. Let us define irreducib

tensorsT̂j ,q
(k) of rank k50,1,2 and componentsq such that

T̂j ,q
(k)[(m,m8^k,qu1,m;1,m8&(( l 51

j ŝm
( l ))(( l 851

j ŝm8
( l 8)), where

ŝ61
( l ) [7( ŝx

( l )6 i ŝy
( l ))/A2, ŝ0

( l )[ ŝz
( l ) , and ^k,qu1,m;1,m8& is

the Clebsh-Gordon coefficient for forming a total spink state
from two spin-1 particles. The spin-1 part of the dens

operator r̂ can be expanded byT̂2,q
(k) as P̂1r̂ P̂1

5(k,qak,qT̂2,q
(k) , and the coefficientsak,q are obtained by the

relationak,qTr(T̂2,2q
(k) T̂2,q

(k))5Tr(T̂2,2q
(k) r̂)5^T̂2,2q

(k) &, where we

denote Tr(̄ r̂N) as ^¯&. From the symmetry ofr̂N , we

have ^T̂N,q
(1) &5(N/2)^T̂2,q

(1)& and ^T̂N,q
(2) &5@N(N21)/2#^T̂2,q

(2)&.

With r̂N given, it is convenient to choose thex, y, andz axes
as the principal axes for the tensor of the second-order

relation for the total spinŜ[( l 51
N ŝ( l ) of the N qubits,

namely, ^ŜmŜn1ŜnŜm&52Sm
2 dmn with Sm

2 [^Ŝm
2 & ~here and

henceforth, the suffixesm and n representx,y,z). Matrix

elements forr̂ then take a simple form on the basis$u↑↑&
2u↓↓&,u↑↑&1u↓↓&,u↑↓&1u↓↑&,u↑↓&2u↓↑&% as follows:
©2000 The American Physical Society02-1
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MASATO KOASHI, VLADIMI´R BUŽEK, AND NOBUYUKI IMOTO PHYSICAL REVIEW A 62 050302~R!
r5
1

N S Ax ^Ŝz& i ^Ŝy& 0

^Ŝz& Ay ^Ŝx& 0

2 i ^Ŝy& ^Ŝx& Az 0

0 0 0 A0

D , ~1!

where we have introduced non-negative parameters

A0[
N~N12!24^Ŝ2&

4~N21!
, Am[

N224Sm
2

2~N21!
2A0 ~2!

that satisfyAx1Ay1Az1A05N.
As a measure of entanglement between the two qubits

use the ‘‘concurrence’’ introduced by Hill and Wootte
@11#. The concurrenceC can be calculated as follows. Letr̃
be the time reversal ofr, which is obtained by changing th
sign of spin^Ŝ& in the expression~1!. The eigenvalues ofrr̃
are all real and non-negative, and we let the square root
those bel 1 , l 2 , l 3, andl 4 in decreasing order. The concu
rence C is then given byC5max$l12l22l32l4,0%. In the
present case, one of the eigenvalues ofrr̃ is (A0 /N)2. Let
us denote the other three as (l1 /N)2, (l2 /N)2, and
(l3 /N)2 in decreasing order, and introduce parametersb
[l11l21l3 andg[l12l22l3. The concurrence is the
given byC5max$(g2A0)/N,(A02b)/N,0%, where allowances
are made for the possible order ofA0 andl1.

In the following, we first fix the parametersSm
2 ~henceAm

and A0), and maximize g with respect to (X,Y,Z)
[(^Ŝx&

2,^Ŝy&
2,^Ŝz&

2). We then moveSi
2 to obtain the global

maximum of (g2A0)/N, which turns out to be, as we sha
see, the maximum of the concurrence. For simplicity,
assume thatSz

2.Sy
2.Sx

2 ~hence Az,Ay,Ax). The states
with some parameters equal will be considered as the lim
ing cases.

There are two simple bounds for the allowed values
(X,Y,Z). One is a necessary condition forr to be physical.
The eigenvalues forr must be non-negative, and the boun
ary is given by the surface that satisfies det(r)50. Calculat-
ing from Eq.~1!, this surface turns out to be a plane, and
condition for (X,Y,Z) is

f A[AxAyAz2AxX2AyY2AzZ>0. ~3!

The other one is a requirement necessary for the spin co
lations. From the inequalityŠ@( i^Ŝi&(Ŝi2^Ŝi&)/Si

2#2
‹>0,

we obtain

f S[12
X

Sx
2

2
Y

Sy
2

2
Z

Sz
2
>0. ~4!

Any physical state thus falls in the regionV, which is defined
by f A>0, f S>0, andX,Y,Z>0.

The relations that connect (X,Y,Z) andl i are obtained by
expanding det@N2rr̃2l2I #5) i(l i

22l2) and equating the
coefficients oflm. There are three independent equatio
and it is convenient to take the following set:
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f 0[Ax
21Ay

21Az
222X22Y22Z5l1

21l2
21l3

2 ,

f A5l1l2l3 ,

f B[2BxByBzS Bx1By1Bz2
4X

Bx
2

4Y

By
2

4Z

Bz
D

5l1
41l2

41l3
422~l1

2l2
21l2

2l3
21l3

2l1
2!, ~5!

where Bm[Ax1Ay1Az22Am . The relation Ax.Ay.Az
.0 implies thatBz.By.uBxu. Note that the sign off B is
the same as that ofg, since we can factorize asf B
5bg(l11l32l2)(l11l22l3).

Let W be the region defined byf A>0 and f B>0. As a
function of (X,Y,Z), g is continuous in the regionW in-
cluding the boundaries. The gradient “g
[(]g/]X,]g/]Y,]g/]Z) can formally be obtained by usin
the three relations~5!. The result is

]g

]X
5

~g1By!~g1Bz!

k
, ~6!

where k[2(l12l2)(l12l3)(l21l3)>0, and the other
two are obtained by the cyclic exchange. At the inner poi
of W, l1.l2, since g.0, and l3.0, since f A.0. The
parameterk is hence positive, and the gradient“g exists.
SinceBz.By.0, we have]g/]X.0 for the inner points of
W.

The geometry ofW and V is derived as follows. Let the
points on which the planesf B50, f A50, and f S50 inter-
sect theX axis bePBX , PAX , and PSX, respectively, and
denote the other six points on theY andZ axis similarly. The
relation AxAy2(Bx1By1Bz)Bz/45BxBy/4, and the ones
obtained by the cyclic exchange of$x,y,z%, tells us the fol-
lowing. WhenBx.0, the trianglepB[PBXPBYPBZ does not
intersect withpA[PAXPAYPAZ , and lies closer to the ori-
gin. W is the sandwiched region of the two triangles. T
triangle pS[PSXPSYPSZ may intersect withpA and pB or
not. WhenBx,0, f B.0 ~henceg.0) is satisfied by all the
points that satisfyf A>0. WhenBx50, g50 for the points
on theY-Z plane, andg.0 for X.0. Combining these ob-
servations with]g/]X.0, we conclude that, inV, g takes
its maximum on points on the boundariespA or pS , and
never on the inner points.

To determine the behavior ofg on the boundaries, we firs
derive the value ofg on the axes explicitly. For the points o
the Z axis and satisfying the relation~3!, the roots$l i% are

found to be$Az ,@A(Ax1Ay)
224^Ŝz&

26(Ax2Ay)#/2%. The
expression forg depends on which is the largest root. Th
roots for the points on the other two axes are similarly o
tained. Applying these to the vertices ofpA , we have
g(PAX)5By andg(PAY)5g(PAZ)5uBxu. On the vertices of
pS , g is well defined only when they are in the regionW.
WhenPSZ is in W,

0<4~AxAy2Sz
2!5~Az1A0!~Az1A022!2~Ax2Ay!2,

~7!

and henceAz.22A0. Theng is written as
2-2
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g~PSZ!5Az2A~Ax1Ay!224Sz
2

5Az2A~Az1A0!~Az1A022!. ~8!

This is a decreasing function ofAz , and notingSz
2.0, we

have 22A0.g(PSZ).N/(N21)2A0[gm . Similarly,
g(PSX).gm andg(PSY).gm if those points are inW.

Next, we will evaluate the gradient on the boundaries.
the boundarypA , k is not always positive, butk50 is
possible only for the following two cases.~a! l15l2. This
occurs only whenf A5 f B50, or equivalently, on the seg
ment PAYPAZ when Bx50. ~b! l25l350. This occurs if
and only if f A50 and (f 0)22 f B50. The intersection off A

50 and (f 0)22 f B50 is a parabola. The pointP0„Az
2(Ax

2Ay)/(Ax2Az),0,Ax
2(Ay2Az)/(Ax2Az)… is on this pa-

rabola. At P0 , u5(Ax ,Ay ,Az) is normal to f A50, andv
5(2AxBy ,AyBy22AxAz ,2AzBy) is normal to (f 0)22 f B
50. Sinceu3v has a vanishingY component, the parabol
is tangent to theX-Z plane atP0. Another point„Ay

2(Ax

2Az)/(Ax2Ay),2Ax
2(Ay2Az)/(Ax2Ay),0…, on which Y

,0, is also on the parabola. We thus conclude that the
dient exists onpA except for the segmentPAYPAZ andP0.

Let us define three particular directions onpA as qyx

[(AyAz ,2AzAx,0), qzx[(AyAz,0,2AxAy), and qyz[(0,
2AzAx ,AxAy). The differential coefficients ofg for these
directions are calculated to beqyx

•“g5Az(Bz
22g2)(Ax

2Ay)/k, qzx
•“g5Ay(By

22g2)(Ax2Az)/k, and qyz
•“g

5Ax(g
22Bx

2)(Ay2Az)/k. Noting that g(PAX)5By and
g(PAY)5g(PAZ)5uBxu, we conclude thatqyx

•“g.0,
qzx

•“g.0 andqyz
•“g.0 onpA except for on the segmen

FIG. 1. Allowed regions for the parameters$X,Y,Z%. The
shaded surfaces are boundaries for the physically allowed st
The arrows show the directions in which the concurrence increa
05030
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PAYPAZ and P0PAX . On P0PAX , qzx
•“g50, so thatg is

constant.
Similarly, define directions on pS as pxy[

(2Sx
2 ,Sy

2,0) pyz[(0,2Sy
2 ,Sz

2) and pxz[(2Sx
2,0,Sz

2). Let
pSV be the intersection ofpS and W. On pSV, we
have pxy

•“g5(g1Bz)(g2gm)(Sy
22Sx

2)/k, pxz
•“g5(g

1By)(g2gm)(Sz
22Sx

2)/k, and pyz
•“g5(g1Bx)(g2gm)

3(Sz
22Sy

2)/k. When Bx,0, g(PAY)5g(PAZ)5uBxu and
Eq. ~6! implies thatg5uBxu on theY-Z plane, andg1Bx
.0 for X.0. Since we have seen thatg.gm on the vertices
on pSV, pxz

•“g.0 andpxy
•“g.0 everywhere onpSV,

andpyz
•“g.0 on pSV except for the segmentPSYPSZ.

Now we are in a position to find the maximum ofg. We
must consider the following four cases separately~see Fig.
1!.

~i! AxAy>Sz
2 and AyAz.Sx

2 . In this case,Az.22A0 is
necessary.g takes its maximum onPSZ and the value is
given by Eq.~8! andg,22A0 . g approaches 2 only in the
limit of A0→0, Az→2, Bx→2, andBy→2. This limit can
be taken only ifN>6, sinceAy>Az must hold in the limit.
When N.6, PSZ is the only point that attainsg52 since
pyz

•“g.0 andpxz
•“g.0 still hold in the limit. WhenN

56, g52 everywhere onpA , but these states are equiv
lent in the sense that they are related by the rotation of
whole system.

~ii ! AxAy,Sz
2 andAyAz<Sx

2 . In this case, from the rela
tion 0<4(Sx

22AyAz)52(By1A022)(By1A0)2(Bz
2By)(By1A021), By,22A0 is necessary.g takes its
maximum onP0PAX and the value isg5By,22A0 . g
approaches 2 only in the limit ofA0→0, Ax→2, By→2,
andBz→2. This limit can be taken only ifN<6, sinceAx
>Ay must hold in the limit. WhenN,6, P0 coincides with
PAX in the limit andPAX is thus the only point that attain
g52. WhenN56, the limit is the same as in case~i!.

~iii ! AxAy>Sz
2 andAyAz<Sx

2 . The maximum is the large
of g(PAX) and g(PSZ). Depending onN, one of them or
both can approach 2. The limit is the same as describe
cases~i! and ~ii !.

~iv! AxAy,Sz
2 andAyAz.Sx

2 . In this case, from the rela
tion C(PAX).C(PSX), we haveBy.gm . We also have
A0,2 since (22A0)(By1A012Az)54(Sz

22AxAy)12Az

1By(N2214Sx
2)/(N21).0. g takes its maximum atP1,

that is, the intersection ofPAZPAX and PSZPSX. Sincel3
50 at P1 , g5l12l2 and b5l11l2. Then we haveb2

1g252 f 0 and b2g25 f B . This implies that g2 is the
smaller of the two rootst5ta ,tb of the equationt222 f 0t
1 f B50. The coordinates ofP1 can explicitly be obtained
by solving f A50 and f S50 with Y50. Substituting the re-
sult into f 0 and f B in the equation oft, we finally obtainta

5By
2 and

tb5
4AxAz

~By2gm!~N21!
1A0~A022!

5~22A0!212A0

By1A022

By2gm

2
2~By1A022!~By1N!1~Bz2By!~By2Bx!

~N21!~By2gm!
. ~9!

es.
s.
2-3
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WhenBy>22A0, we havetb,42A0(22A0),4. We thus
conclude thatg,2 for all values ofBy . When N,6, g
approaches 2 only in the limit ofA0→0, By→2, Bz→2,
andAx→2. P1 approachesPAX in this limit, so the limit is
the same as in case~ii !. WhenN.6, g→2 only in the limit
of A0→0, By→2, Bx→2, Az→2, andP1→PSZ. This is
the same limit as in case~i!. WhenN56, g→2 in the limit
of A0→0 and allAm approaching 2.

Finally, we show thatA02b is smaller than 2. InW, f 0
takes its minimum onPAZ , and its value is (Ax2Ay)

2

1Az
2 . We thus haveA02b<A02Af 0<A02Az5(N22Sx

2

22Sy
2)/(N21),N/(N21),2 for N>3.

Combining all cases, we reach a conclusion that the m
mum value of the concurrence is 2/N, and this value is
reached only by the state satisfying the constraints^Ŝz

2&
5(N/221)2, ^Ŝz&5N/221, ^Ŝx

2&5^Ŝy
2&5(3N22)/4, and

^Ŝx&5^Ŝy&50, if the z axis is suitably chosen. Such a sta
exists — it is the eigenstate ofŜz with eigenvalueN/221
with total spin N/2. This state is the equally weighted in
phase superposition of any one qubit that is in the stateu0&
and the otherN21 qubits in the stateu1&. This is a permu-
tationally invariant pure state that highly~in the order ofN)
breaks the symmetry between the basis statesu0& and u1&.
ds

n

05030
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It is worth noting that the optimal state for our proble
was found to be a pure state. This is not trivial because
symmetry is required for density operators. Obviously, p
sible mixed states span a larger Hilbert space than
spanned by possible pure states. For infinite entang
chains, the best state so far is given as amixed state@17#. It
will be interesting to investigate entangled chains~loops!
composed of afinite number of qubits and to see whether t
optimum value is attained by mixed states or pure states~or
by both!. O’Connor and Wootters have found@18# a series of
purestates inN-qubit finite entangled loops and showed th
the limiting value of the nearest-neighbor concurrence inN
→` is the same as the one obtained for the infinite chain
@17#. It is still an open question whether these states
optimum or not.

Note added. Recently we became aware that Du¨r @19# has
independently conjectured the upper bound on the con
rence in entangled webs to be 2/N.

We thank W. K. Wootters for helpful discussions. Th
work was supported by a Grant-in-Aid for Encouragement
Young Scientists~Grant No. 12740243! by the Japan Society
of the Promotion of Science, and by the IST Project EQU
under Contract No. IST-1999-11053.
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