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It is not possible to disentangle a qubit in anknownstate| ) from a set ofN—1 ancilla qubits prepared
in a specific reference statf). That is, it is not possible tgerfectly perform the transformation
(l,0,...,0+[0¢, ...,0+---+]|0,0, ... #))—]0,...,0®|). The question is then how well we can do?
We consider a number of different methods of extracting an unknown state from an entangled state formed
from that qubit and a set of ancilla qubits in a known state. Measuring the whole system is, as expected, the
least effective method. We present various quantum “devices” which disentangle the unknown qubit from the
set of ancilla qubits. In particular, we present tbptimal universaldisentangler which disentangles the
unknown qubit with a fidelity that does not depend on the state of the qubit, and a probabilistic disentangler
which performs the perfect disentangling transformation, but with a probability less than 1.

PACS numbegs): 03.67—a, 03.65.Bz

[. INTRODUCTION is generated. If we introduce a notation for completely sym-
metric stategN;l) of N qubits with| of them being in the
Information encoded in qubits can be used for reliablestate|1) and N—I of them in the state0), then the state
quantum communication or efficient quantum computing(1.2) can be expressed in the simple form
[1,2]. This information is encoded in a quantum state

| (9, ¢)) which in the case of a qubit can be parametrized S 0 = O
as |\If(19,go)>=cos§|N;0>+e"”sm§|N;1), 1.3
|¢(ﬁ’¢)>zcosg|0>+é¢sin§|l), L1 where the parameter$ and ¢ are specified by the relations
5 VN cog 972)
. . i CO0S; = — (1.9
where|0) and|1) are basis vectors of the two-dimensional 2 sir(9/2)+ N cog(9/2)

space of the qubit and99<m; 0<op<27. - _ o
Qubits are very fragile, that is the state of a qubit canand sind/2=\/1—co(9/2), while ¢=¢. We see that sym-
easily be changed by the influence of the environment or &,atric N qubit state|\I'(5,$)> is isomorphic to a single

random error. Onévery inefficieni way to protect the quan- it state, but in this case the information is spread among
tum information encoded in a qubit is to measure it. With they entangled qubits—the original quantum information is

help of an optimal measurement one can estimate the state @fjj,ted.” Each of the qubits of theN-qubit state(1.3) is in
a qubit, with an average fidelity equal to 2&ke below. In 6 state

this way a quantum information is transformed into a classi-

cal information which can be stored, copied, and processed  \_ 1 (1—N) Y Iy
according the laws of classical physics with arbitrarily high pj=T|0><0|+T co§§|0)<0|+sin25|1><1|
precision. However, in order to utilize the full potential of
guantum information processing we have to keep the infor-
mation in states of quantum systems, but then we are forced +_|,/,(§,;)><¢,(5,;)|,

to face the problem of decoherence. Recently it has been JN

proposed that quantum information and quantum information

processing can be stabilized via symmetrizafidh In par- We define the average fidelity between the single siate
ticular, the qubit in an unknown state is entangled with a se@ind the original qubity(9;¢)) as

of N—1 (ancilla) qubits in a specific reference stdtet us

say|0)) so the symmetric stateP') of N qubits f:f d Q((3;0)|pi(D,0) (9 0)), (1.5

|\If>2(|l//,0, e ,Q+|O,l//, e ,Q‘i‘ tee +|0,0, . lﬂ)),

(12 where dQ =sin 9 ddde/47 is the invariant measure on the

state space of the original qulite., we assume ngrior
knowledge about the pure stdi#(9;¢))]. For this fidelity

. . ) we find the expression
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We see that foN=1 the fidelity 7, is equal to unity(as it Il. MEASUREMENT SCENARIO

should be, because in this cgde)=|4)) while in the limit Here we first describe a measurement scenario utilizing a
N—o we find 7= 1/2. In fact in this limit density operators set of specific projection operators. Then we present the op-
of individual qubits are approximately equal [0)(0|. In  timal measurement-based approach to quantum disentangle-
other words, individually the qubits of the symmetric statement and we derive an upper bound on the fidelity of the
|W (9, ¢)) in the largeN limit do not carry any information Mmeéasurement-based disentangler. _

about the original single-qubit state). So how can we We utilize the fact that thél qubit system prepared in the
extract the information from thé\-qubit symmetric state State[¥(¥,¢)) is isomorphic to a single qubit. Therefore we
(1.3? The ideal possibility would be to have have a perfectﬁrst consider a strategy based on a projective measurement

universaldisentangler which would perform a unitary trans- Witﬁ , tvyo _ ?roj,ecto.rs [8'_9] Pi(9".¢")
formation =|E;(9",¢")){Ej(¥,¢")| (j=0,1) with

S0l "¢ ))=cosy N;0) +€¥'sin [N;L)
|\P(ﬁu¢)>_’|q,ideaDE|N_1;0>®|l//(ﬂa‘P»- (1.7
IEl(ﬁ’,cp’))ze*i*”'sin%lN;O);—cos%|N;1),
But quantum mechanics does not allow this type of disentan- (2.1)
gling transformatiorf4—7].

While the perfect transformation is impossible, there are asuch tha(Z;(9',¢")|Ex(9,¢"))=6; « and Z;P;(9',¢")
number of things we can do to concentrate the information=1, where the angle®’ and ¢’ are chosen randomly if no
from the N-qubit state W (9, ¢)) back into a single qubit. In  Prior information about the measurédéqubit state is avail-
principle, we have the following possibilitiesi) We can ~ able.
either optimally measure the qubit state and based on the W€ can use the result of the measurement to manufacture
information obtained prepare a single-qubit stéte We can & smg.le-qub'lt' state. Specifically, |'f the resu]t .of the measure-
design a quantum disentangler which would perform a tranglent Is positive forPo then the single qubit is prepared in
formation as close as possible to the ideal disentangliné{qe state
(1.7). In this quantum scenario we have several options—the Y Y
process of disentanglement can be input-state dependent. |770(19’,<p’)>=cos7|0>+é‘9 sin?|1), (2.2
This means that statd4.3) for some values of the param-

eters and e will be disentangled better than for other val- while if the output is positive foP; then the single qubit is
ues of these parameters. Alternatively, we can construct grepared in the orthogonal state,(9',¢")) . For a particu-
quantum device which disentangles all states with the samgyr orientation of the measurement appardties, the angles
fidelity. (iii) Finally, we propose a probabilistic disentangler, 9’ ') this measurement-based scenario gives us a single

such that when a specific projective measurement over agubit prepared in the state described by the density operator
ancilla is performed at the output, the desired single-qubit

state is generated. The probability of the outcome of the (measy T — o 1 — 12
measurement in this case is state dependent. In what follows ™9, ¢;9",¢ )ZZO KPIEDI2 [ ) (| (2.3
we shall investigate all these possibilities. =

Before proceeding we note that a different type of disen-after we average over all possible orientations of the mea-

tangler has been considered by Terno and Mo#7]. They  gyrement apparatus we obtain on average a single qubit pre-
considered two different operations. The first would take theyared in the state

state of a bipartite quantum system and transform it into a

state that is just the product of the reduced density matrixes peSY 9, p)=1 |¢(5,;)><¢(5,;)| + i (2.9

of the two subsystems. The second, which is a generalization

of the first, would again start with a state of a bipartate quanTo find the average fidelity of this measurement-based dis-
tum system, and map it into a separable state which has thentangling procedure we have to evaluate the mean fidelity

same reduced density matrixes as the original state. The}f, that is the overlap between the sté2ed) and the origi-

showed that while both of these processes are impossible {fy| input statd (9, ¢)) averaged over all possible orienta-
general, they can be realized for particular sets of inputions of the input qubit:

states. Approximate disentanglers have been considered by

Bandyopadhyayet al. [10]. These authors have proposed a — -

disentangler which maps a density operator of a bipartate }—lzf dQ(p(9,0) |3, @) (0, 0)). (2.5
guantum system into a separable state which has the reduced

density matrixesapproximatelyequal to the original state. Taking into account the relatio(l.4) we perform the inte-
The disentanglers we are considering extract, to some degregation in Eq.(2.5) and we find

of approximation, an unknown state from an entangled state .

formed from that state and a known state. Fi=3(1+1y), (2.6

1
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here the functiorf read _ -
e e T TERE 7:fd9<¢(ﬂ,¢)|p(°”‘)(ﬁ.¢)l<ﬁ(ﬁ,<p)>. (2.10

B N2+ 4N32—4NY2—14+2NInN
N 2(N—1)(NY24+1)2

(2.7 where 9 is a function of & [see Eqg.(1.4)]. This can be
expressed as

For N=1, F;=2/3 which is the optimal fidelity of estima- __ !
tion of the state of a single qubit. From Fig. 1 we see that the7"=f dﬂ'f dQ" Y Pi(9",¢" 8 o ) (9,079 ¢"),
fidelity (2.6) is a decreasing function dfl and in the limit 1=0 (2.1
N—oo we find F,=1/2, which is equal to the fidelity of a '
random guess associated with a binary system such as thehere
two projectors under consideration. In other words, when the
original qubit is diluted into an infinite qubit state of the form Pi(9",¢" 9", 0" ) =pj(9",¢"|9",0")a(d",¢"),
(1.3 no relevant information can be gained from the mea- (21
surement. The estimated density oper&®#) in this case is 5 3 normalized joint probability distribution, and
simply equal tol/2, which is understandable, because as we
have shown earlier in this limit the-qubit state is approxi- 2 5
mately in the statéN,0), so information about the original is fozf dQW[E) (el m)|*,
“almost” totally lost.

Optimal measurement scenardd/e now want to find an s )
upper boundZF™® for the average fidelity which can be fl:f dQICYED (g " (2.13
achieved by a wide class of measurement-based disentangle-
ment procedures. We assume that ifigpriori known that ~ We first note that
our N qubit is prepared in the symmetric state2) with
unknown parameter and ¢ associated with a single-qubit f dQp; (9", ¢"; 9", 0" (9",¢";9" 0" )<h,(§,¢"),
state(1.1). The integration measure on the state space of the

single qubit isdQ) = (1/47) sin 9ddde and the corresponding (2.14
prior probability density distribution on this state space is,,nare
constant.

Our strategy is to measure the input stpi®) along the hi(9',¢")=supf;(9",¢"; 9" ,¢"), (2.19
vector|E,) [see Eq(2.1)], where the angle®’ and¢’ are
chosen according to the distributia{d’,¢'), which will  and the supremum is taken over the variablése”. We

be left unspecified for the moment. If the answer is positivethen have that
we produce the output density matgiy(9',¢'), and if it is

negative we producg;(d',¢'), where fSJ:-maX:sup[ho(ﬂ’,cp’)Jrhl(t}’,cp’)], (2.1
pi(9,9") v<vhe,re the supremum is now taken ovec®'<w and 0
' <2m7.

_ ; Y o b - In order to calculate this upper bound we must find ex-
—j dQ"pi(9",¢"[0", ") (", ")) 7(I".€") pjicit expressions fof, andf,. After performing the neces-

(2.9  sary calculations we find faF™ the expression

with j=0,1 and| ») given by Eq.(2.2). We shall also leave fmale 1+ WN (N2=1—2NInN) 217

the conditional probabilitiegy; unspecified, as this allows us 2 (N—1)3 ' '

to consider a wide range of strategies. For a fikgg), the

probability of the output beingq(9',¢") is [(Eo|¥)|? and  This fidelity for N=1 is equal to 2/3 while in the limiN

the probability of it beingp,(9',¢') is [(E4|W¥)|%. Averag- — is Squal to 1/2. For any othe, it is larger than the

ing over all vectors|Z) gives us fidelity F; of the measurement given by E(R.6) as dis-
cussed in our previous example. Nevertheless, as we will

(ouy & = o ) . show later it is alway smaller than the fidelity of the univer-
p P P(9,0)= | dQ [|<:'O|qf>| po(¥' ") sal quantum device.
+(E1[W)[2p1(9", 0")]a(d ). IIl. QUANTUM SCENARIO
(2.9

In what follows we show that a quantum disentangler
In order to find the average fidelity of the output produced bywhich preserves quantum coherences can distill the informa-
this procedure, we compute the fidelity for a particular inputtion back to a single qubit more efficiently than can the
state and average over the input ensemble measurement-based method. As we have already said in the
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introduction quantum mechanics does not allow one to con-
struct a perfect disentangler which would perform transfor-
mation (1.7) for an arbitrary(unknown state|(9,¢)) di-
luted in theN qubit symmetric stat¢l.3). Nevertheless, we
can try to design optimal disentanglers which perform best
under given constraints.

A. State-independent devices

So let us assume our quantum disentanglés a quan-
tum system with &-dimensional Hilbert space spanned by
basis vectorsd,) (k=1, ... K). The disentangler is always
initially prepared in the statg,), and then it interacts with
the N-qubit system in the statgl.3). At the output we want
to disentangle th& —1 ancilla qubits from the original qu- FIG. 1. Fidelities of various disentanglers as described in the
bit, so we expect to have text. Line 1 describes the fidelity?; of the measurement-based
disentangler given by Ed2.6), line 2 is for the fidelityF,= yZ of

— —_ . the universal optimal disentangler given by E§.3), and, finall
W (9, ¢))|do)—[N— 1;0)@21 JZO ci(¥,@)[j)]di)- line 3 is for the &ean fidelity of Et;]he s%ate-degengent disentangI{er via

(3.1)  swappingFs=fy given by Eq.(2.7).

K 1

As seen from Eq(3.1) during the disentanglement process transformation(3.3) is optimal, i.e., among all unitary trans-
the entanglement between the-1 ancilla qubits and the formations satisfying the given conditions the transformation
original qubit is transferre¢swapped into the entanglement (3.3) has the largest fidelity. We see that for= 1 the fidelity
between the original qubit and the disentangler itself. ByF,=1, which is obvious, because the original qubit has not
tracing over the disentangler we then expect to obtain théeen entangled with ancilla qubits. We plBf in Fig. 1. We

best possible disentangled qubit in the staf®d(9,p).  See, that it isalwayslarger than the fidelity of the disen-
Now we impose several constraints which would specifytanglement via measurement. In the lifNt—< even the
what we mean by the optimal covariguiiversa) disentan- ~ quantum disentangler gives us a totally random outcome. So
gler. in this limit, even optimal quantum entangler on which we
(1) The fidelity between the output of the disentangler andmpose the universality condition, is not able to extract in-
the original state (9, ¢)) has to be invariant with respect formation from the statel.3). .
to rotations of the original qubit, so the fidelity has to be This is one of the main results of our paper—the optimal
input-state independent. This universality of the disentanglefovariant quantum disentangler operates better than if the
would then guarantee that the information from the symmetinformation is extracteddisentangled, distilledfrom the
ric state(1.3) is extracted for all states equally well. symmetrized statél.3) with the help of the optimal mea-
(2) We are looking for theoptimal disentangler which surement. This is due to the fact that¥<F,.
would disentangle the information with the highest fidelity. = One can also ask the opposite question, how can we gen-
Imposing these two conditions we have found the unitaryerate out of a qubit in an unknown stdig) the symmetric
transformation which realizes theptimal covariantdisen-  state of the form(1.3). It can be shown that within quantum
tangler, i.e., which disentangle the qubit stafe from the  mechanics perfect universal entanglers, which would realize
N-qubit state| W) in the optimal and thé¢y)-state indepen- the inverse of the relatiof.7) do not exist. If one wants to
dent way(see the Appendijx This disentangler is described create a stat€l.3) from a qubit in an unknown state aml

by the transformation —1 ancilla qubits in the known stat8) again two scenarios
are possible, the measurement-based and quantum scenarios.
IN;0)[do)—[N—=1;0)® [ yn|0)|d1)+ 6n[1)|d2)], It is not surprising that the quantum scenario works better.

We have found the optimal univers@ovariant with respect
IN;1)[do)—[N—1;0)®[ 8\|0)[d3) + yn[1)|d)], to rotations of the input qubitquantum entangler given by
3.2 the transformations

where|d;) are three orthonormal basis vectors of the disen-  |0)|N—1;0)|ey)—[ yn|N;0)|e;) + 6n|N;1)|e,)],
tangler. The amplitudesy and &y given by the relation
” |1)IN=1;0)[eq)—[ 34IN;0)[e5)+ yuIN;: 1) ey)],

N+1 5
v ON= VI (3.3

N a(NF1- VN

where|e,) are three orthonormal basis states of the quantum
) ) o entangler,|ey) is its initial state and the parameteys and

We can directly verify, that the fidelity 72 s are given by Eq(3.3. One can check that the fidelity
=(h(9,0) | pL(9,0)|¥(9,¢)) is input-state independent between the output of this entangler described by the density

and equal taF,= yﬁ. Moreover, it can be shown that the operatorpg"”‘)(z‘},cp) and the ideally entangled stat&.3) is
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input-state independefite., does not depend on the param-In this case, the fact that the universality condition forces us
eters 9,¢) and is equal toy. This is the best possible to use an additional quantum device, the disentangler, with

universal(covariani entangler. which the qubit at the output becomes partially entangled,
results in a net loss of information. As a result the fidelity of
B. State-dependent devices the universalcovarianj entangler is smaller.

Analogously, we find that quantum state-dependent en-

The universal disentangler gives a higher fidelity thantanglement can also be performed by a kind of state swap-
does the best measurement-based procedure, but it is ”ﬂhg transformation. i.e.

obvious that this is the best that one can do. In the case of
guantum cloning, the universal cloners are the ones which |(9,0))©|N;0)—|0)@ | ¥ (3, 0)), (3.9
maximize the average fidelif1,12. As we shall see, how-

ever, in the case of disentanglers this is no longer the casg;ii, input-state dependent fidelity( ¥ (9 @)W(E;)Hz-
there are state-dependent devices which are better. Nevertheless, when averaged over all values @f we find
Consider the general disentangler transformation the mean fidelity of this state-dependent entangler to be
N:0Y|d N=1:0)(|0)|D;)+[1)|D,)), equal tof, which on average is larger than the fidelity of the
IN;0)[do)—| )(10)Py) +[1)ID2)) state-independent entangler.
IN;1)[do)—[N—1;0)(|0)|D3)+[1)|Ds)), (3.5
IV. PROBABILISTIC DISENTANGLER
where the vector$D;), are states of the disentangler itself
and need not be orthogonal. They must, however, satisfy the | et ys examine a simple quantum network which takes as
constraints imposed by the unitarity of the above transformagn, input theN-qubit state(1.3). The network is composed of
tion. The input state for the device is assumed to bey sequence ofN—1 controlledNoT (C-NOT) gates Py
|W(9,¢)), and the ideal output state, to which the actual=TI}'"]!C,, whereC,, is the CNOT gate withk being the
output  should be compared, is [¥igea)=|N  control bit andl being the target bit. This sequence of the
—1;0)[4(9,¢)). The output state is calculated by starting C-NoT gates acts on the two vectdid;0) and|N;1) as
with the input state, using the above transformation, and then
tracing over the disentangler to obtain an output density ma- PnIN;0)—|N—1;0)|0), 4.7
trix p(®®. One then finds the average fidelity for this pro-
cess, which we shall calFs, from

1
PN|N;1>—>\/—N(\/N—1|N—1;1)+|N—1;O))|1)

?3:J’ AV igeal P W igea) - (3.6
from which it follows that the input vectofl.3) is trans-

Note that we are assuming a specific ensemble of inpdermed as

states; the probability of the one-qubit stag&3,¢)) is as- N 9

sumed to be constant on the Bloch sphere. Our result for th 5oy v N

average fidelity for a state-dependent device depends on ou V()= N (Jo)|g(9,¢))+VN-1 cosilv,>|0>),

choice of input ensemble, while for a state-independent de- (4.2

vice the average fidelity is independent of this ensemble.
The calculation of the average fidelity is given in the Ap- whereN’=N“cos(#/2)0+ N sir?(9/2) is the normalization

pendix. We find that|D,|?=||D4|?=0 and |D;)=|D,). constant. In Eq(4.2 we have introduced two orthogonal

This implies that the final state is just a product of the statevectors ofN—1 qubits|v_.).

of the N particles and the entangler state, which means that

the entangler states can be dropped from the problem. There- 1
fore, the transformation which maximizes the average fidel- lvi)= \/_N{ VN—1N=1.D+[N-1,0},
ity is just
N;0)—|N—1;0)|0), 1
IN:0)— )10} |v_>:\/—N{M|N—1,o>—|N—1,1>}. 4.3
IN;1)—|N—1;0)|1), (3.7
q h that At the output of the network a projective measurement on
and we have tha the first N—1 qubits is performed in order to determine
—— —— whether they are in the stae, ) or [v_). If the result|v ;)
[W(9,¢))®]|0)— N0y ®|#(F,¢)), (38 s obtained, then theNth qubit is in the desired state

which is a kind of state sweEping transformation. The averJ ¥(9,¢)). The probability of this outcome is given by

age fidelity itself is given byF;=fy, where the coefficient 1
fn is given by Eq.(2.7). This average fidelity is larger than Pl,.y= ]
the fidelity of the optimalniversaldisentanglefsee Fig. 1 "7 N co(9/2) + sirk(912)

(4.9
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\-/rv?tll’? I\;l).robabmty is input-state dependent, and it decreases 1V ,,0=|N—1:0)®[a(|0)|D;)+|1)|D)) + B(|0)| D)
There is a difference between this probabilistic process +[1)|DN]. (A3)

and those considered previously, such as probabilistic clon-

ing [13]. Those only work for set of input states which is We now use this expression to find the output density matrix

finite. The process considered above, however, works for and trace out the disentangler itself. We define Khqubit

continuous, and hence infinite, set of input states. It, in factputput density matrix to be

works for all input states of the type we are considering.

Therefore, we can conclude that the range of applicability of Pour= Traisentangich| ¥ oud (W ouf) - (A4)
probabilistic devices depends on the process being consid- o
ered. The output fidelity is given by

‘7::<\Pideaipoutj\lfidea>- (A5)

V. CONCLUSION

We have considered a number of different methods ofVNere [Wigea) is given by Eq.(1.7. If we denote a
extracting an unknown state from an entangled state formed c0S(/2) and B=¢€*sin(9/2) we can express this fidelity
from that state and a known state. Measuring the state is, &
expected, the least effective method. In the case of quantum

devices, the universal device was not best one, at least if . 1 4 2 a 2
average fidelity is used as the criterion. Probabilistic quan- 7= (N|a|2+|,8|2){N|a| [D]I*+ 81D
tum devices were seen to work very well for this operation in
that they can be used for the entire set of input states. +]a)? Bl |D3]2+ N[ D2+ VN((D,4 D)
ACKNOWLEDGMENTS +<D1|D4>)]+a*ﬁ|a|2(\/N<D1|D3>+N<D2|Dl>)
2
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APPENDIX: PROOF OF OPTIMALITY +(a*)2B2IN(D,|Dg) + a?(5*)?N(D3| D)}

Let us consider the optimal quantum disentangler which (AB)

acts as close as possible to the ideal transformatioh. The From this point on we will study two separate cases. First,

disentangler maps the space spanned by the veth® ;e will prove optimality of the universal disentangler and

and [N;1), into the space spanned BW—1:0)[1) and  ihen the optimality of the state-dependent disentangler.
IN—1,0)|1). This suggests that we consider a transformation

of the following form: 1. Universal disentangler

IN;0)|do)—|N—1;0)(|0)[D1)+[1)|D5)), Demanding that the fidelity be independent of phases of
and B8 we find that

IN;1)|do)—|N—1;0)(|0)|Dg)+|1)[Dy)), (A1)
YN(D1|D3)+N(D;|D;)=0,

where |dg) is the initial state of the disentangler which is

supposed to be the same for all inputs ahhlj) (j (D3|D,)=0, (A7)
=1,...,4) aresome unnormalized disentangler state vec-
tors. Our task is to determine these vectors. YN(D,|D4)+N(D4D3)=0.

Unitarity immediately implies that
Assuming these conditions to be satisfied the fidelity be-

ID4)|2+]IDof?=1, comes
ID32+[ID4]?=1, (A2) D 8D
.7:=—{Na' D4+ |B|7IID4
(D4|D3g)+(D,|D3)=0. (N|a|*+[B]%)

2| |2 2 2
We shall now use our disentangler transformatioh$) to +|al*[ BIT[Ds]*+N[D|*+ ‘/N(<D4|D1>
calculate the fidelity of the actual output to the ideal output +(D1|D )T} (A8)
(1.7 The input of the disentangler is given by E4.3). If

we introduce a notatior = cos(¥/2) andg=€¢sin(¥/2) we  In order for this to be independent ef and 8, the term in
can write the result of the transformati¢Al) brackets must be proportional to
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(N|a|?+|B8|%)=Nl|al*+(N+1)|a|?B?+|B|*. (A9) 2. Input-state dependent disentanglers
) ) In order to find the optimal input-state dependent disen-
Comparing Egs(A8) and(A9) we find that tangler we find the explicit form of the transformatiofl)

such that theaveragedfidelity 7= fdQF [with F given by
Eq. (A6)] is maximized. Here, as usually, the integration
measure iglQ) =sinddd dg/4s. Therefore after the integral
over the phasep is performed we can write the average

ID4[=Dal,

(N+1)[D4f*=[D3|>+N[D*+ VN({D4|D1)+(D1|Dy)).

(A10) fidelity as
Combining these requirements with those imposed by unitar- 4
ity we conclude that F= §{§1N||D1||2+ &|D4ll?+ &5[[D 4] >+ N[ D42
ID4l?=[1D42=1- D7, (A1D) + N((D4|D)+ (D4l DT} (A18)

and F=||D4||%. This means that in order to maximize we
must maximize|D 4.
Our first step in accomplishing this is to note that by

with

combining the results of Eq$§A10) and(A11l) we have that = j” sinddd Coglﬁ
0 N co(9/2)+sir?(9/2) 2
(N+1)+2JNx|D,P=2(N+D)|ID,J?,  (A12)
™ sinvdd 0
where Z:J _ siff—,  (A19)
o N co(9/2) +sir? (9/2) 2
(D4|D1)+(D1|Dy)
= oo (A13) - sin9dd 9 0
B - j  siPecode.
0 Ncog(9/2)+sirk(9/2) 2 2
and —1<x=1. Solving for|D,||?> we find that
After the integration over the paramet&rwe find
D= (A14)
M aN= V2% 3—4N+N2+2InN
&1= (N—l)3
which, assumindN=2, is greatest wher=1. This implies
that|D,)=|D,) and that 5 5
—1+4N—-3N“+2N“InN
)= , (A20)
5 N+1 (N—1)3
ID4)*= =,
2(N+1—+N)
: ~ —1+N*-2NInN
N+1-2N T (N—1)3
ID4ll*=[|D2l|*= (A15)

2(N+1—yN)
( W) From the unitarity of the disentangling transformation it

Imposing now the conditions on inner products we find thaffollows that||D,[|?=1—|D4||* and||D4|*= 1—[|D,||*. When
we introduce the notation

(D3|D4)=(D2|D4)=0. (AL6) _ (Dy4|D1)+(D4|Dy)

u_ 1
2Dyl D4

We can summarize our results in the following way. Let (A21)

{d;|j=1,2,3 be a set of three orthonormal vectors and de-
fine two parameteryy and 6N given by Eq(33) we then where —1<u<1, and 771:||D1||2; 7’4:||D4||2 we can re-

have that write the average fidelityA18) as
|D4>=|D1>=7N|d1>: 1
F= E[ MN(EL— E3) + na( £2— £3)+ 2\ NEgu i my
|D2>: 5N|d2>1
+&3(1+N)]. (A22)
|D3)=6\|d3), (A17)

Taking into account thaf;> &5 and &,> &5 we easily find
and the universaloptimal disentangler transformation is that the maximum of the mean fideli¢pA22) is achieved for
given explicitly by Eq.(3.2). u=1 andn,;=n,=1. In this case we rewrite EgA22) as
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1 disentanglement performed via the state swapping transfor-
F=5leN+ &+ 2\N&;]. (A23)  mation described by Eq3.7). In fact, from our conditions
7 =mn4=1 it directly follows that|D,||?=|D||?=0 while
When we substitute into EqA23) the explicit expression |[D4]|?=||D4|?=1. In addition, fromu=1 it follows that
for the parameterg; given by Eq.(A20) we find that the |ID.)=|Dy), so that the optimal state-dependent disentan-
mean fidelity is equal to the functiofy, given by Eq.(2.7). gling transformation is indeed equal to E&.7), which we
This exactly is equal to the mean fidelity of the input-statewanted to prove.
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