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Quantum disentanglers
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It is not possible to disentangle a qubit in anunknownstateuc& from a set ofN21 ancilla qubits prepared
in a specific reference stateu0&. That is, it is not possible toperfectly perform the transformation
(uc,0, . . . ,0&1u0,c, . . . ,0&1•••1u0,0, . . . ,c&)→u0, . . . ,0& ^ uc&. The question is then how well we can do?
We consider a number of different methods of extracting an unknown state from an entangled state formed
from that qubit and a set of ancilla qubits in a known state. Measuring the whole system is, as expected, the
least effective method. We present various quantum ‘‘devices’’ which disentangle the unknown qubit from the
set of ancilla qubits. In particular, we present theoptimal universaldisentangler which disentangles the
unknown qubit with a fidelity that does not depend on the state of the qubit, and a probabilistic disentangler
which performs the perfect disentangling transformation, but with a probability less than 1.

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Information encoded in qubits can be used for relia
quantum communication or efficient quantum comput
@1,2#. This information is encoded in a quantum sta
uc(q,w)& which in the case of a qubit can be parametriz
as

uc~q,w!&5cos
q

2
u0&1eiwsin

q

2
u1&, ~1.1!

whereu0& and u1& are basis vectors of the two-dimension
space of the qubit and 0<q<p; 0<w<2p.

Qubits are very fragile, that is the state of a qubit c
easily be changed by the influence of the environment o
random error. One~very inefficient! way to protect the quan
tum information encoded in a qubit is to measure it. With t
help of an optimal measurement one can estimate the sta
a qubit, with an average fidelity equal to 2/3~see below!. In
this way a quantum information is transformed into a clas
cal information which can be stored, copied, and proces
according the laws of classical physics with arbitrarily hi
precision. However, in order to utilize the full potential
quantum information processing we have to keep the in
mation in states of quantum systems, but then we are fo
to face the problem of decoherence. Recently it has b
proposed that quantum information and quantum informa
processing can be stabilized via symmetrization@3#. In par-
ticular, the qubit in an unknown state is entangled with a
of N21 ~ancilla! qubits in a specific reference state~let us
say u0&) so the symmetric stateuC& of N qubits

uC&.~ uc,0, . . . ,0&1u0,c, . . . ,0&1•••1u0,0, . . .c&),
~1.2!

*On leave from Institute of Physics, Slovak Academy of Scienc
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is generated. If we introduce a notation for completely sy
metric statesuN; l & of N qubits with l of them being in the
stateu1& and N2 l of them in the stateu0&, then the state
~1.2! can be expressed in the simple form

uC~q̄,w̄ !&5cos
q̄

2
uN;0&1ei w̄sin

q̄

2
uN;1&, ~1.3!

where the parametersq̄ and w̄ are specified by the relation

cos
q̄

2
5

AN cos~q/2!

Asin2~q/2!1N cos2~q/2!
~1.4!

and sinq̄/25A12cos2(q̄/2), while w̄5w. We see that sym-
metric N qubit stateuC(q̄,w̄)& is isomorphic to a single
qubit state, but in this case the information is spread am
N entangled qubits—the original quantum information
‘‘diluted.’’ Each of the qubits of theN-qubit state~1.3! is in
the state

r j5
N21

N
u0&^0u1

~12AN!

N
S cos2

q̄

2
u0&^0u1sin2

q̄

2
u1&^1u D

1
1

AN
uc~q̄,w̄ !&^c~q̄,w̄ !u.

We define the average fidelity between the single stater j
and the original qubituc(q;w)& as

F̄5E d V^c~q;w!ur j~q̄,w̄ !uc~q;w!&, ~1.5!

wheredV5sinq dqdw/4p is the invariant measure on th
state space of the original qubit@i.e., we assume noprior
knowledge about the pure stateuc(q;w)&#. For this fidelity
we find the expression

F̄05
N22122 lnN

2~N21!2
. ~1.6!

s,
f
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VLADIMIR BUŽ EK AND MARK HILLERY PHYSICAL REVIEW A 62 052303
We see that forN51 the fidelity F̄0 is equal to unity~as it
should be, because in this caseuC&5uc&) while in the limit

N→` we find F̄51/2. In fact in this limit density operator
of individual qubits are approximately equal tou0&^0u. In
other words, individually the qubits of the symmetric sta

uC(q̄,w̄)& in the largeN limit do not carry any information
about the original single-qubit stateuc&. So how can we
extract the information from theN-qubit symmetric state
~1.3!? The ideal possibility would be to have have a perf
universaldisentangler which would perform a unitary tran
formation

uC~q̄,w̄ !&→uC ideal&[uN21;0& ^ uc~q,w!&. ~1.7!

But quantum mechanics does not allow this type of disen
gling transformation@4–7#.

While the perfect transformation is impossible, there ar
number of things we can do to concentrate the informat

from theN-qubit stateuC(q̄,w̄)& back into a single qubit. In
principle, we have the following possibilities:~i! We can
either optimally measure theN qubit state and based on th
information obtained prepare a single-qubit state.~ii ! We can
design a quantum disentangler which would perform a tra
formation as close as possible to the ideal disentang
~1.7!. In this quantum scenario we have several options—
process of disentanglement can be input-state depen
This means that states~1.3! for some values of the param
etersq̄ and w̄ will be disentangled better than for other va
ues of these parameters. Alternatively, we can constru
quantum device which disentangles all states with the s
fidelity. ~iii ! Finally, we propose a probabilistic disentangle
such that when a specific projective measurement ove
ancilla is performed at the output, the desired single-qu
state is generated. The probability of the outcome of
measurement in this case is state dependent. In what fol
we shall investigate all these possibilities.

Before proceeding we note that a different type of dis
tangler has been considered by Terno and Mor@5–7#. They
considered two different operations. The first would take
state of a bipartite quantum system and transform it int
state that is just the product of the reduced density matr
of the two subsystems. The second, which is a generaliza
of the first, would again start with a state of a bipartate qu
tum system, and map it into a separable state which has
same reduced density matrixes as the original state. T
showed that while both of these processes are impossib
general, they can be realized for particular sets of in
states. Approximate disentanglers have been considere
Bandyopadhyayet al. @10#. These authors have proposed
disentangler which maps a density operator of a bipar
quantum system into a separable state which has the red
density matrixesapproximatelyequal to the original state
The disentanglers we are considering extract, to some de
of approximation, an unknown state from an entangled s
formed from that state and a known state.
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II. MEASUREMENT SCENARIO

Here we first describe a measurement scenario utilizin
set of specific projection operators. Then we present the
timal measurement-based approach to quantum disenta
ment and we derive an upper bound on the fidelity of
measurement-based disentangler.

We utilize the fact that theN qubit system prepared in th
stateuC(q̄,w̄)& is isomorphic to a single qubit. Therefore w
first consider a strategy based on a projective measurem
with two projectors @8,9# Pj (q8,w8)
5uJ j (q8,w8)&^J j (q8,w8)u ( j 50,1) with

uJ0~q8,w8!&5cos
q8

2
uN;0&1eiw8sin

q8

2
uN;1&,

uJ1~q8,w8!&5e2 iw8sin
q8

2
uN;0&;2cos

q8

2
uN;1&,

~2.1!

such that̂ J j (q8,w8)uJk(q8,w8)&5d j ,k and ( j Pj (q8,w8)
51, where the anglesq8 andw8 are chosen randomly if no
prior information about the measuredN-qubit state is avail-
able.

We can use the result of the measurement to manufac
a single-qubit state. Specifically, if the result of the measu
ment is positive forP0 then the single qubit is prepared i
the state

uh0~q8,w8!&5cos
q8

2
u0&1eiw8sin

q8

2
u1&, ~2.2!

while if the output is positive forP1 then the single qubit is
prepared in the orthogonal stateuh1(q8,w8)& . For a particu-
lar orientation of the measurement apparatus~i.e., the angles
q8,w8) this measurement-based scenario gives us a si
qubit prepared in the state described by the density oper

r (meas)~q̄,w̄;q8,w8!5(
j 50

1

u^CuJ j&u2
•uh j&^h j u. ~2.3!

After we average over all possible orientations of the m
surement apparatus we obtain on average a single qubit
pared in the state

r (est)~q̄,w̄ !5 1
3 uc~q̄,w̄ !&^c~q̄,w̄ !u1 1

3 1. ~2.4!

To find the average fidelity of this measurement-based
entangling procedure we have to evaluate the mean fide
F̄1, that is the overlap between the state~2.4! and the origi-
nal input stateuc(q,w)& averaged over all possible orienta
tions of the input qubit:

F̄15E d V^c~q,w!ur (est)~q̄,w̄ !uc~q,w!&. ~2.5!

Taking into account the relation~1.4! we perform the inte-
gration in Eq.~2.5! and we find

F̄15 1
3 ~11 f N!, ~2.6!
3-2
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QUANTUM DISENTANGLERS PHYSICAL REVIEW A62 052303
where the functionf N reads

f N5
N214N3/224N1/22112N ln N

2~N21!~N1/211!2
. ~2.7!

For N51, F̄152/3 which is the optimal fidelity of estima
tion of the state of a single qubit. From Fig. 1 we see that
fidelity ~2.6! is a decreasing function ofN and in the limit
N→` we find F̄151/2, which is equal to the fidelity of a
randomguess associated with a binary system such as
two projectors under consideration. In other words, when
original qubit is diluted into an infinite qubit state of the for
~1.3! no relevant information can be gained from the me
surement. The estimated density operator~2.4! in this case is
simply equal to1/2, which is understandable, because as
have shown earlier in this limit theN-qubit state is approxi-
mately in the stateuN,0&, so information about the original i
‘‘almost’’ totally lost.

Optimal measurement scenario.We now want to find an
upper boundF̄max for the average fidelity which can b
achieved by a wide class of measurement-based disenta
ment procedures. We assume that it isa priori known that
our N qubit is prepared in the symmetric state~1.2! with
unknown parametersq andw associated with a single-qub
state~1.1!. The integration measure on the state space of
single qubit isdV5(1/4p)sinqdqdw and the corresponding
prior probability density distribution on this state space
constant.

Our strategy is to measure the input stateuC& along the
vector uJ0& @see Eq.~2.1!#, where the anglesq8 andw8 are
chosen according to the distributionq(q8,w8), which will
be left unspecified for the moment. If the answer is positi
we produce the output density matrixr0(q8,w8), and if it is
negative we producer1(q8,w8), where

r j~q8,w8!

5E dV9pj~q9,w9uq8,w8!uh~q9,w9!&^h~q9,w9!u

~2.8!

with j 50,1 anduh& given by Eq.~2.2!. We shall also leave
the conditional probabilities,pj unspecified, as this allows u
to consider a wide range of strategies. For a fixeduJ0&, the
probability of the output beingr0(q8,w8) is u^J0uC&u2 and
the probability of it beingr1(q8,w8) is u^J1uC&u2. Averag-
ing over all vectors,uJ& gives us

r (out)~q̄,w̄ !5E dV8@ u^J0uC&u2r0~q8,w8!

1u^J1uC&u2r1~q8,w8!#q~q8,w8!.

~2.9!

In order to find the average fidelity of the output produced
this procedure, we compute the fidelity for a particular inp
state and average over the input ensemble
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F̄5E dV^c~q,w!ur (out)~q̄,w̄ !uc~q,w!&, ~2.10!

where q̄ is a function of q @see Eq.~1.4!#. This can be
expressed as

F̄5E dV8E dV9(
j 50

1

Pj~q9,w9;q8,w8! f j~q9,w9;q8,w8!,

~2.11!

where

Pj~q9,w9;q8,w8!5pj~q9,w9uq8,w8!q~q8,w8!,
~2.12!

is a normalized joint probability distribution, and

f 05E dVu^CuJ0&u2u^cuh&u2,

f 15E dVu^CuJ1&u2u^cuh&u2. ~2.13!

We first note that

E dV9pj~q9,w9;q8,w8! f j~q9,w9;q8,w8!<hj~q8,w8!,

~2.14!

where

hj~q8,w8!5supf j~q9,w9;q8,w8!, ~2.15!

and the supremum is taken over the variablesq9,w9. We
then have that

F̄<F̄max5sup@h0~q8,w8!1h1~q8,w8!#, ~2.16!

where the supremum is now taken over 0<q8<p and 0
<w8,2p.

In order to calculate this upper bound we must find e
plicit expressions forf 0 and f 1. After performing the neces
sary calculations we find forF̄max the expression

F̄max5
1

2 F11
AN

~N21!3
~N22122N ln N!G . ~2.17!

This fidelity for N51 is equal to 2/3 while in the limitN
→` is equal to 1/2. For any otherN, it is larger than the
fidelity F̄1 of the measurement given by Eq.~2.6! as dis-
cussed in our previous example. Nevertheless, as we
show later it is alway smaller than the fidelity of the unive
sal quantum device.

III. QUANTUM SCENARIO

In what follows we show that a quantum disentang
which preserves quantum coherences can distill the infor
tion back to a single qubit more efficiently than can t
measurement-based method. As we have already said in
3-3
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VLADIMIR BUŽ EK AND MARK HILLERY PHYSICAL REVIEW A 62 052303
introduction quantum mechanics does not allow one to c
struct a perfect disentangler which would perform transf
mation ~1.7! for an arbitrary~unknown! stateuc(q,w)& di-
luted in theN qubit symmetric state~1.3!. Nevertheless, we
can try to design optimal disentanglers which perform b
under given constraints.

A. State-independent devices

So let us assume our quantum disentanglerD is a quan-
tum system with aK-dimensional Hilbert space spanned
basis vectorsudk& (k51, . . . ,K). The disentangler is alway
initially prepared in the stateud0&, and then it interacts with
the N-qubit system in the state~1.3!. At the output we want
to disentangle theN21 ancilla qubits from the original qu
bit, so we expect to have

uC~q̄,w̄ !&ud0&→uN21;0& ^ (
k51

K

(
j 50

1

cj~q̄,w̄ !u j &udk&.

~3.1!

As seen from Eq.~3.1! during the disentanglement proce
the entanglement between theN21 ancilla qubits and the
original qubit is transferred~swapped! into the entanglemen
between the original qubit and the disentangler itself.
tracing over the disentangler we then expect to obtain
best possible disentangled qubit in the stater (out)(q̄,w̄).
Now we impose several constraints which would spec
what we mean by the optimal covariant~universal! disentan-
gler.

~1! The fidelity between the output of the disentangler a
the original stateuc(q,w)& has to be invariant with respec
to rotations of the original qubit, so the fidelity has to
input-state independent. This universality of the disentan
would then guarantee that the information from the symm
ric state~1.3! is extracted for all states equally well.

~2! We are looking for theoptimal disentangler which
would disentangle the information with the highest fidelit

Imposing these two conditions we have found the unit
transformation which realizes theoptimal covariantdisen-
tangler, i.e., which disentangle the qubit stateuc& from the
N-qubit stateuC& in the optimal and theuc&-state indepen-
dent way~see the Appendix!. This disentangler is describe
by the transformation

uN;0&ud0&→uN21;0& ^ @gNu0&ud1&1dNu1&ud2&],

uN;1&ud0&→uN21;0& ^ @dNu0&ud3&1gNu1&ud1&],
~3.2!

whereudj& are three orthonormal basis vectors of the dis
tangler. The amplitudesgN anddN given by the relation

gN5S N11

2~N112AN!
D 1/2

, dN5A12gN
2 . ~3.3!

We can directly verify, that the fidelity F2

5^c(q,w)urd
(out)(q̄,w̄)uc(q,w)& is input-state independen

and equal toF25gN
2 . Moreover, it can be shown that th
05230
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transformation~3.3! is optimal, i.e., among all unitary trans
formations satisfying the given conditions the transformat
~3.3! has the largest fidelity. We see that forN51 the fidelity
F251, which is obvious, because the original qubit has
been entangled with ancilla qubits. We plotF2 in Fig. 1. We
see, that it isalways larger than the fidelity of the disen
tanglement via measurement. In the limitN→` even the
quantum disentangler gives us a totally random outcome
in this limit, even optimal quantum entangler on which w
impose the universality condition, is not able to extract
formation from the state~1.3!.

This is one of the main results of our paper—the optim
covariant quantum disentangler operates better than if
information is extracted~disentangled, distilled! from the
symmetrized state~1.3! with the help of the optimal mea
surement. This is due to the fact thatF̄max<F2.

One can also ask the opposite question, how can we g
erate out of a qubit in an unknown stateuc& the symmetric
state of the form~1.3!. It can be shown that within quantum
mechanics perfect universal entanglers, which would rea
the inverse of the relation~1.7! do not exist. If one wants to
create a state~1.3! from a qubit in an unknown state andN
21 ancilla qubits in the known stateu0& again two scenarios
are possible, the measurement-based and quantum scen
It is not surprising that the quantum scenario works bet
We have found the optimal universal~covariant with respect
to rotations of the input qubit! quantum entangler given b
the transformations

u0&uN21;0&ue0&→@gNuN;0&ue1&1dNuN;1&ue2&],

u1&uN21;0&ue0&→@dNuN;0&ue3&1gNuN;1&ue1&],
~3.4!

whereuek& are three orthonormal basis states of the quan
entangler,ue0& is its initial state and the parametersgn and
dN are given by Eq.~3.3!. One can check that the fidelit
between the output of this entangler described by the den
operatorre

(out)(q,w) and the ideally entangled state~1.3! is

FIG. 1. Fidelities of various disentanglers as described in

text. Line 1 describes the fidelityF̄1 of the measurement-base
disentangler given by Eq.~2.6!, line 2 is for the fidelityF25gN

2 of
the universal optimal disentangler given by Eq.~3.3!, and, finally
line 3 is for the mean fidelity of the state-dependent disentangler

swappingF̄35 f N given by Eq.~2.7!.
3-4
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QUANTUM DISENTANGLERS PHYSICAL REVIEW A62 052303
input-state independent~i.e., does not depend on the param
eters q,w) and is equal togN

2 . This is the best possible
universal~covariant! entangler.

B. State-dependent devices

The universal disentangler gives a higher fidelity th
does the best measurement-based procedure, but it is
obvious that this is the best that one can do. In the cas
quantum cloning, the universal cloners are the ones wh
maximize the average fidelity@11,12#. As we shall see, how
ever, in the case of disentanglers this is no longer the c
there are state-dependent devices which are better.

Consider the general disentangler transformation

uN;0&ud0&→uN21;0&~ u0&uD1&1u1&uD2&),

uN;1&ud0&→uN21;0&~ u0&uD3&1u1&uD4&), ~3.5!

where the vectorsuD j&, are states of the disentangler itse
and need not be orthogonal. They must, however, satisfy
constraints imposed by the unitarity of the above transform
tion. The input state for the device is assumed to
uC(q̄,w̄)&, and the ideal output state, to which the actu
output should be compared, is uC ideal&5uN
21;0&uc(q,w)&. The output state is calculated by startin
with the input state, using the above transformation, and t
tracing over the disentangler to obtain an output density
trix r (out). One then finds the average fidelity for this pr
cess, which we shall callF̄3, from

F̄35E dV^C idealur (out)uC ideal&. ~3.6!

Note that we are assuming a specific ensemble of in
states; the probability of the one-qubit stateuc(q,w)& is as-
sumed to be constant on the Bloch sphere. Our result for
average fidelity for a state-dependent device depends on
choice of input ensemble, while for a state-independent
vice the average fidelity is independent of this ensemble

The calculation of the average fidelity is given in the A
pendix. We find thatiD2i25iD3i250 and uD1&5uD4&.
This implies that the final state is just a product of the st
of the N particles and the entangler state, which means
the entangler states can be dropped from the problem. Th
fore, the transformation which maximizes the average fid
ity is just

uN;0&→uN21;0&u0&,

uN;1&→uN21;0&u1&, ~3.7!

and we have that

uC~q̄,w̄ !& ^ u0&→uN,0& ^ uc~q̄,w̄ !&, ~3.8!

which is a kind of state swapping transformation. The av
age fidelity itself is given byF̄35 f N , where the coefficient
f N is given by Eq.~2.7!. This average fidelity is larger tha
the fidelity of the optimaluniversaldisentangler~see Fig. 1!.
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In this case, the fact that the universality condition forces
to use an additional quantum device, the disentangler, w
which the qubit at the output becomes partially entangl
results in a net loss of information. As a result the fidelity
the universal~covariant! entangler is smaller.

Analogously, we find that quantum state-dependent
tanglement can also be performed by a kind of state sw
ping transformation, i.e.,

uc~q,w!& ^ uN;0&→u0& ^ uC~q,w!&, ~3.9!

with input-state dependent fidelityu^C(q,w)uC(q̄,w̄)&u2.
Nevertheless, when averaged over all values ofq,w we find
the mean fidelity of this state-dependent entangler to
equal tof N which on average is larger than the fidelity of th
state-independent entangler.

IV. PROBABILISTIC DISENTANGLER

Let us examine a simple quantum network which takes
an input theN-qubit state~1.3!. The network is composed o
a sequence ofN21 controlled-NOT ~C-NOT! gates PN

5Pk51
N21CkN , whereCkl is the C-NOT gate withk being the

control bit andl being the target bit. This sequence of th
C-NOT gates acts on the two vectorsuN;0& and uN;1& as

PNuN;0&→uN21;0&u0&, ~4.1!

PNuN;1&→
1

AN
~AN21uN21;1&1uN21;0&)u1&

from which it follows that the input vector~1.3! is trans-
formed as

uC~q̄,w̄ !&→
AN

N ~ uv1&uc~q,w!&1AN21 cos
q

2
uv2&u0&),

~4.2!

whereN5AN2cos2(q/2)01N sin2(q/2) is the normalization
constant. In Eq.~4.2! we have introduced two orthogona
vectors ofN21 qubitsuv6&.

uv1&5
1

AN
$AN21uN21,1&1uN21,0&%,

uv2&5
1

AN
$AN21uN21,0&2uN21,1&%. ~4.3!

At the output of the network a projective measurement
the first N21 qubits is performed in order to determin
whether they are in the stateuv1& or uv2&. If the resultuv1&
is obtained, then theNth qubit is in the desired stat
uc(q,w)&. The probability of this outcome is given by

Puv1&5
1

N cos2~q/2!1sin2~q/2!
. ~4.4!
3-5
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This probability is input-state dependent, and it decrea
with N.

There is a difference between this probabilistic proc
and those considered previously, such as probabilistic c
ing @13#. Those only work for set of input states which
finite. The process considered above, however, works f
continuous, and hence infinite, set of input states. It, in fa
works for all input states of the type we are considerin
Therefore, we can conclude that the range of applicability
probabilistic devices depends on the process being con
ered.

V. CONCLUSION

We have considered a number of different methods
extracting an unknown state from an entangled state form
from that state and a known state. Measuring the state is
expected, the least effective method. In the case of quan
devices, the universal device was not best one, at lea
average fidelity is used as the criterion. Probabilistic qu
tum devices were seen to work very well for this operation
that they can be used for the entire set of input states.
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APPENDIX: PROOF OF OPTIMALITY

Let us consider the optimal quantum disentangler wh
acts as close as possible to the ideal transformation~1.7!. The
disentangler maps the space spanned by the vectorsuN;0&
and uN;1&, into the space spanned byuN21;0&u1& and
uN21,0&u1&. This suggests that we consider a transformat
of the following form:

uN;0&ud0&→uN21;0&~ u0&uD1&1u1&uD2&),

uN;1&ud0&→uN21;0&~ u0&uD3&1u1&uD4&), ~A1!

where ud0& is the initial state of the disentangler which
supposed to be the same for all inputs anduD j& ( j
51, . . . ,4) aresome unnormalized disentangler state v
tors. Our task is to determine these vectors.

Unitarity immediately implies that

iD1i21iD2i251,

iD3i21iD4i251, ~A2!

^D1uD3&1^D2uD3&50.

We shall now use our disentangler transformations~A1! to
calculate the fidelity of the actual output to the ideal outp
~1.7! The input of the disentangler is given by Eq.~1.3!. If
we introduce a notationā5cos(q̄/2) andb̄5eiwsin(q̄/2) we
can write the result of the transformation~A1!
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uCout&5uN21;0& ^ @ā~ u0&uD1&1u1&uD2&)1b̄~ u0&uD3&

1u1&uD4&)]. ~A3!

We now use this expression to find the output density ma
and trace out the disentangler itself. We define theN-qubit
output density matrix to be

rout5Trdisentangler~ uCout&^Coutu!. ~A4!

The output fidelity is given by

F5^C idealuroutuC ideal&, ~A5!

where uC ideal& is given by Eq. ~1.7!. If we denote a
5cos(q/2) andb5eiwsin(q/2) we can express this fidelity
as

F5
1

~Nuau21ubu2!
$Nuau4iD1i21ubu4iD4i2

1uau2ubu2@ iD3i21NiD2i21AN~^D4uD1&

1^D1uD4&!#1a* buau2~AN^D1uD3&1N^D2uD1&!

1ab* uau2~AN^D3uD1&1N^D1uD2&!

1a* bubu2~AN^D2uD4&1^D4uD3&!

1ab* ubu2~AN^D4uD2&1^D3uD4&!

1~a* !2b2AN^D2uD3&1a2~b* !2AN^D3uD2&%.

~A6!

From this point on we will study two separate cases. Fi
we will prove optimality of the universal disentangler an
then the optimality of the state-dependent disentangler.

1. Universal disentangler

Demanding that the fidelity be independent of phases oa
andb we find that

AN^D1uD3&1N^D2uD1&50,

^D3uD2&50, ~A7!

AN^D2uD4&1N^D4uD3&50.

Assuming these conditions to be satisfied the fidelity
comes

F5
1

~Nuau21ubu2!
$Nuau4iD1i21ubu4iD4i2

1uau2ubu2@ iD3i21NiD2i21AN~^D4uD1&

1^D1uD4&!#%. ~A8!

In order for this to be independent ofa andb, the term in
brackets must be proportional to
3-6



ita

by

ha

e
e

s

en-

n
l
e

it

QUANTUM DISENTANGLERS PHYSICAL REVIEW A62 052303
~Nuau21ubu2!5Nuau41~N11!uau2ubu21ubu4. ~A9!

Comparing Eqs.~A8! and ~A9! we find that

iD1i5iD4i ,

~N11!iD4i25iD3i21NiD2i21AN~^D4uD1&1^D1uD4&!.
~A10!

Combining these requirements with those imposed by un
ity we conclude that

iD3i25iD2i2512iD4i2, ~A11!

andF5iD4i2. This means that in order to maximizeF, we
must maximizeiD4i2.

Our first step in accomplishing this is to note that
combining the results of Eqs.~A10! and~A11! we have that

~N11!12ANxiD4i252~N11!iD4i2, ~A12!

where

x5
^D4uD1&1^D1uD4&

2iD4i2
, ~A13!

and21<x<1. Solving foriD4i2 we find that

iD4i25
N11

2~N2A2x!
, ~A14!

which, assumingN>2, is greatest whenx51. This implies
that uD1&5uD4& and that

iD4i25
N11

2~N112AN!
,

iD3i25iD2i25
N1122AN

2~N112AN!
. ~A15!

Imposing now the conditions on inner products we find t

^D3uD4&5^D2uD4&50. ~A16!

We can summarize our results in the following way. L
$dj u j 51,2,3% be a set of three orthonormal vectors and d
fine two parametersgN and dN given by Eq.~3.3! we then
have that

uD4&5uD1&5gNud1&,

uD2&5dNud2&,

uD3&5dNud3&, ~A17!

and the universaloptimal disentangler transformation i
given explicitly by Eq.~3.2!.
05230
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2. Input-state dependent disentanglers

In order to find the optimal input-state dependent dis
tangler we find the explicit form of the transformation~A1!

such that theaveragedfidelity F̄5*dVF @with F given by
Eq. ~A6!# is maximized. Here, as usually, the integratio
measure isdV5sinqdq dw/4p. Therefore after the integra
over the phasew is performed we can write the averag
fidelity as

F̄5
1

2
$j1NiD1i21j2iD4i21j3@ iD3i21NiD2i2

1AN~^D1uD4&1^D4uD1&!#% ~A18!

with

j15E
0

p sinqdq

N cos2~q/2!1sin2 ~q/2!
cos4

q

2
,

j25E
0

p sinqdq

N cos2~q/2!1sin2 ~q/2!
sin4

q

2
, ~A19!

j35E
0

p sinqdq

N cos2~q/2!1sin2~q/2!
sin2

q

2
cos2

q

2
.

After the integration over the parameterq we find

j15
324N1N212 lnN

~N21!3
,

j25
2114N23N212N2ln N

~N21!3
, ~A20!

j35
211N222N ln N

~N21!3
.

From the unitarity of the disentangling transformation
follows thatiD2i2512iD1i2 andiD3i2512iD4i2. When
we introduce the notation

u5
^D4uD1&1^D1uD4&

2iD1i iD4i , ~A21!

where 21<u<1, andh15iD1i2; h45iD4i2 we can re-
write the average fidelity~A18! as

F5
1

2
@h1N~j12j3!1h4~j22j3!12ANj3uAh1h4

1j3~11N!#. ~A22!

Taking into account thatj1.j3 and j2.j3 we easily find
that the maximum of the mean fidelity~A22! is achieved for
u51 andh15h451. In this case we rewrite Eq.~A22! as
3-7
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F5
1

2
@j1N1j212ANj3#. ~A23!

When we substitute into Eq.~A23! the explicit expression
for the parametersj j given by Eq.~A20! we find that the
mean fidelity is equal to the functionf N given by Eq.~2.7!.
This exactly is equal to the mean fidelity of the input-sta
sa

m

05230
disentanglement performed via the state swapping trans
mation described by Eq.~3.7!. In fact, from our conditions
h15h451 it directly follows thatiD2i25iD3i250 while
iD1i25iD4i251. In addition, fromu51 it follows that
uD1&5uD4&, so that the optimal state-dependent disent
gling transformation is indeed equal to Eq.~3.7!, which we
wanted to prove.
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