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Equally distant, partially entangled alphabet states for quantum channels
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Each Bell state has the property that by performing jasal operations on one qubit, the complete Bell
basis can be generated. That is, states generated by local operations are totally distinguishable. This remarkable
property is due to maximal quantum entanglement between the two particles. We present a set of local unitary
transformations that generate out of partially entangled two-qubit state a set of four maximally distinguishable
states that are mutually equally distant. We discuss quantum dense coding based on these alphabet states.

PACS numbd(s): 03.67—a, 89.70+c

I. INTRODUCTION

P 1
|W1)=S@1|¥)=—=[00)+[11));
Two parties(Alice & Bob) who share a pure two-qubit 2
state [W;)ag can generate three other statgB) g (]
=2,3,4) such that the four states form a basis in the Hilbert P 1 ]
space of two qubits. In general, the two parties have to per- (Vo) =S1[¥y)= E|1O>+ 0D));
form operations orboth qubits to generate the orthogonal 1.3
states|‘lfj>AB. Nevertheless, there is an exception—if the i '
original statd ¥ ,) A is one of the four Bell statdd] then by | W) =8,01|¥;)=—|01)—|10));
performing unitary transformations on jushe of the two V2
qubits(let us assume Alice is the operatigriise other three
Bell states that form the Bell basis of the two-qubit system R 1
can be generated. Specifically, let us assume the system is W) =S4@1| W)= E|00)—|11>)-

initially in the Bell state

We see that the four states given by Ef3) are indeed four
1 Bell stated 1]. This means that by performing julsical op-
|W1>AB:ﬁ(|O>A|O>B+|1>A| Ls), 1.1 erations, the two-qubit states are changed globally in such a
way that the four outcomes are perfectly distinguishaixe,
the four Bell states are mutually orthogonah fact, we can
say that the four outcomes are mutually equaétind maxi-
mally) distant, which can be expressed by their mutual over-

where|0)yx and|1)x (X=A,B) are basis vectors in the Hil-
bert spacéy of the qubitX (in what follows we will use the
shorthand notatio00)=|0)|0) and where clear we will

omit subscripts indicating the subsysteMow we introduce 1ap O,
four local (single-qubi} operations O= (W | ))|?= 8. (1.9
S, =1= (|00} +|1)(1]); This remarkable property of Bell states is due to the quantum

entanglement between the two quHifd. As suggested by
Bennett and WiesngR], this property can be utilized for the
quantum dense codingrhe idea is as follows: Alice can
(1.2 perform locally on her qubit four operations that result in
§3=&y=i(|0>(1| —[1)(0]); four orthogonal two-qubit states. So after she performs one
of the possible operations she sends her qubit to Bob. Then
Bob can perform a measurement on the two qubits and de-
termine with the fidelity equal to unity which of the four
R operations has been performed by Alice. In this way, Alice
where o, (u=X,y,z) are three Pauli operators. When the has transferred two bits of information via sending just a
operatorsS, act on the firstAlice’s) qubit of the Bell state single two-level particle. This theoretical scenario has been
(1.1 we find implemented experimentally by the Innsbruck grd@p us-
ing polarization entangled states of photons. One can con-
clude that the entanglement in the case of two qubits can
*On leave from the Institute of Physics, Slovak Academy of Sci-double a capacity of the quantum channel.
ences, Dbravskacesta 9, 842 28 Bratislava, Slovakia and Faculty —Recently, Barenco and Ekd#], Hausladeret al.[5], and
of Informatics, Masaryk University, Botanickd8a, 602 00 Brno, Boseet al. [6] have discussed how the channel capacity de-
Czech Republic. pends on the degree of entanglement between the two qubits.

S,= oy =(|0)(1]+]1)(0]);

Sy=0,=(|0)(0]—[1)(1)),
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Specifically, these authors have analyzed the situation when [l. EQUALLY DISTANT STATES

initially Alice and Bob share a two-qubit system in a state It is well known that any pure bipartite state can be writ

ten in the Schmidt bas[§] as given by Eq(1.5). In order to

find the four transformationd), that fulfill the condition
L . _ (1.8, we remind ourselves that the most general unitary
Then Alice is performing locally one of the four unitary op- transformation on a two-dimensional Hilbert space is an el-

erationSASk giVen by Eq(12) As a result of these Operations ement from a four-parametric groUub(Z)
four possible statelsp,) can be generated:

|1h1)=|00) + B|11). (1.9

. 0, =e*cosyi+i sing(ng)], (2.2)
| 1) =S1@1]¢h1)=(|00)+ B|11));

whereﬁk: (sin G, cos¢y ,Sin b, Sin ¢y ,cos6,) is a normalized

|¢2):§2®}I| )= (a|10)+ B|01)); vector around which the rotation is performed by an angle
1.6 Y-
PO . ) From the condition(1.8) it follows that we have to solve
|p3)=Ss@1|¢p1) = —i(a|10)— B|01)); the following set of equations
|pay=S4@1|yh1) = (|00)— B|11)). Ow= (1| Wia| 1) 2= | | (0| Wi |0) + | B|2( 1| Wi | 1)]2
=O=minimum, (2.2

These states represent the “alphabet” that is used in the
given communication channel between Alice and Bob. Not . .

where we have introduced a notation
all of these alphabet states are mutually orthogonal. If we

evaluate the overla we find - npn
@kl Wk|:UEU| . (23)

1t k=1, Taking into account the relation between Pauli operators
Ou=l(dild)|?=1 A% if kI=12,21,34,43, (1.7) 6,6,=8,,1—ie,,.0, and the relation
0 else, . . A
(Ng-3)(n-3)=n-ni—i[nXxn]-a, (2.4
whereA =|a|?—|B|?. The fact that not all alphabet states are
mutually orthogonal leads to a decrease of the channel cgye can rewriteNk| as
pacity that in the present case is less than two. Nevertheless,
for at least partially entangled qubits, the channel capacity is W=
still larger than unity.
As seen from Eq(1.7), the four state$e,) are not mu-
tually equally distant. Some of them are mutually orthogo-
nal, but some of them have a nonzero overlap. The main goal —siny cosd/kﬁ|). (2.5

of this paper is to find a set décal unitary operationd),

that generate out of the stale,) given by Eq.(1.5, the  Due to the fact that quantum states are determined up to
alphabet| )= U,/ ;) with the elements that are equally global phase we can omit phase factggsin Eg. (2.5).

distant, that is the mutual overlaps of these four states are From Eq.(2.2) we see that only diagonal elements of the
equal, and simultaneously we require that they are as smatiperatorsW,, are relevant. Taking into account that ordty

as possible. In other words, the states are mutually as distifras nonvanishing diagonal elements, we obtain

guishable as possible. Formally, we are looking for transfor-

mationsU, such that (O|W|0)=ay —iby,

1(cosy, cosy; + Ny~ Nsin g sin )

—ig-[NX N 1SN, Sing, — i G(Sin g cosy Ny

. for k=1 1Wy|1)=ay +iby, (2.6)
Ou=KunlO0I*=} o () k) @9 (LWl =20y
where we use the notation

with O being as small as possible. In addition, the transfor- . . _

mations under consideration have to fulfill tBell limit, that &= COSY COSY + Ni- Ny SNy SNy,

is for A—0, when|¢,)—|¥,), they have to generate four

maximally entangled mutually orthogonal two-qubit states. by =siny, sin ¢,[ﬁk>< ﬁ,]z+ S cos¢|(ﬁk)z

We note that this set of states is not necesarily equal to

standard Bell states given by E@.3). In our case, the ex- —sinygy cosy(ny), 2.7
plicit form of these states is given by E@®.21) with o=

=1/\2. and
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Ny- N, = COSH COSH, + Sin B,Sin 6) cog b, — dby); cog ¢~ ¢p3)=—1/2,
(2.9 (2.16
[N X N, 1,= SN 6,8in 6,sin( b — ). COS po— py) = COL p3— by) = 112,
It follows from Eq. (2.2) that ) ) ) T
which can be obtained whegp,=¢,dp3=57+ ¢,¢4:§

+ ¢. As we can see, there is still some freedom in a choice
of the phaseg. Just for convenience we takg=0. This
finishes our epr|C|t construction of a set ffcal unitary
transformatlonsU for which we have obtained the expres-
sions(here we have assumed that in E2.1) for the opera-

tors U, the phase factorg, are taken to be equal tp,=
|| 41)|%=co ¢+ AZsir? i,c0S 6, . (210 —7/2)

[yl )= Oy =af + b A2, 2.9

This overlap has to be minimized and made state-
independenti.e., O, ;= O=minimal).

In order to solve the problem, we choosg=1 and ex-
plicitly rewrite the condition(2.9) for k=1 andl=2,3,4:

From Egs.(2.9 and(2.10 it follows that in order to fulfill O.=1:
the Bell limit, whenO=0, two following conditions have to e 2.17
be valid: A~ oA ’
Ue=nc-o; k=234,
coS =0
(2.1)  where the unit vectorék are given by the expressions
nk n| Okl -
o . . - 2 1
Taking into account these constraints we rewrite Eg8<) nzz(_,o,_>;
and(2.10 as \/5 \/§
O=[nxn 242, . 1 1 1 18
(2.12 3=\ -——=,—7=—=|; .
O=cogh, A2, V6 V2’3
respectively. Because the overlépis supposed to be the R ( 1 1 1 )
same for all pairs of states, we can introduce a notafion - ==
=cog6, and we compare the right-hand sides of Hgs12 V8’2" V3
which gives us the following equation:
These vectors not only fulfill the cond|t|0nk n, Sy but
(1—F?)2sirf( ¢ — ) —F?=0, (2.13  also
where we have used the relati¢2.8). From the condition [NeXN]= = emlim, (2.19
ne-n;=0 for k#| [see Eq(2.11)] we write the constraint for
the parameteF: from which it follows that we can rewrite the operatd,
0O _
(1—F?)cod ¢ — by) = F2=0, (2.14 =U,U, for k,1=2,3,4 as

where * =sgn(cos,cos#). The two constraint$2.13 and W= 81+ eximUnm. (2.20
(2.14) are fulfilled whenF?=1/3.
Now we put our results together. We have found thatThe operatord), generate from the reference statg) via

transformatlonsuk are characterized by the following pa- local transformations the alphabet with most distant states.

rameters: We stress that for a chosen Schmidt basis the local operators
Uk do not depend on the states to be rotated. In this sense,
cos =0, these operators atmiversal The alphabet states in the basis
1 {|00y,|10),|01),|11)} read
cos ==, 2.1
<3 (219 |1)=(a,0,08); (2.2

FF2 1 1 2 \F 1
cog ¢~ i) = 1—F2 -T2 |¢2)=(ﬁa,\[§a. §ﬁ,—ﬁﬁ);

If we choose co#,=cosf;=1/y/3 then in order to have three
wwe choose c08,~c0s;~ L3 then : 1 -1-i\3 -1+i\3 1 )

distinct transformations we have to take @gs —1/,/3. Our S a S
result(2.15 also implies that [#s) ( J3 J6 J6 A \/§'B
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1 1-iV3 1+iy3 1 pacity of the quantum channel is given by the expresgdn

|¢4>= _an \/6 a, \/6 ,B,ﬁﬁ )
E K@k

By construction, the mutual overlap between these states is
minimal and equal to

-2 mSew|, (3D

C=ma>{8

wherep, are the alphabet states at the output of the channel

(i.e., at Bob's side of the communication chanraeid =, are

the probabilities with which the alphabet states are used by

Alice. In the right-hand side of E¢3.1), the functionSis the
Comment 1We note that the universal transformationsyon Neumann entrop$(o) = — Tr(olog, 0).

we have derived generate a set of four staigy for the Firstly, we analyze ideal channels and then we describe

state|#4). In fact, these transformations generate the sam@uantum capacity of noisy channels.

set of states if generated from any state from thigtbett is,

we observe a specific permutation invariance in thg Jet

prove this property it is enough to observe that

1 2
O=3A% (2.22

A. Ideal channel

In the case of the ideal channel we evaluate the capacity

0,0,=601+egmUpm, (2.23  for two sets of alphabet states—the one used by Bbss.
given by Eq.(1.6) —and the other set we have derived ear-
which means that the stateé)=U,|4) is equal to one of lier in the papefsee Eq.(2.2)]. We denote the reference
the state$¢m>=Um|z,//1> given by Egs(2.21). pure strilte from which the elements of alphabets are gener-
Comment 2We have derived our transformations underated asoag=|#1){#1|, where|y,) is given by Eq.(1.5).

the assumption that the reference state from which the other Interestingly enough, for both cases we find the capacity
three alphabet states are generated is a pure state. When @f¢he quantum channel to be the same:
reference statp; is a statistical mixture of two qubits, which
in general is characterized by 15 parameters, our transforma-

I v e " p ) T i ~ ~
tIOI’]AS generate an alphabgt=Uyp;Uy such that in gengrgl where o =Trgoag. Obviously, in the Bell limit, when the
Tr(pyp)) # const Nevertheless, for a large class of stat|stlcal|¢l> is equal to a Bell state and Alice’s qubit is in a maxi-

mixtures of two qubits the transformatiorld, generate mgajly mixed state withS(04)=1, the capacity of the quan-
equally distant alphabets. A simple example would be tq,y channel is equal to 2.

consider the reference state to be a mixture of the fpfm But the question is: Why for the two alphabets discussed
=s| 1) (41| +(1—s)/41. In this case the overlap between above is the quantum capacity mutuaéigual for an arbi-
alphabet states is constant and equal @-=Tr(p,p|) trary reference statpy,)? To illuminate this problem, we
=5?A2/3+(1—s?)/4. Another example is when the refer- remind ourselves that the two sets of the operators that gen-

. - N N erate two alphabetd .6) and(2.21), respectively, fullfill the
ence state is taken to hg =3 AU #1)(44|0] and the P .6 (2.21 P Y

~ Bell's limit, i.e., n,-n;= & [see Eq.(2.11)]. Therefore we
th_ree aIphabeF states are generated by the OPe"a‘Q”F‘ concentrate our attention on those transformati@ok/) that
this case we find that the overlap between the states is co

Wave this property
_1A2v4 ’ . . .
stant and equal t= 3542 n— 1 Amhn - Because of the unitarity of these transformations the sec-
ond term in Eq(3.1) is equal to zero. The input probability
. CHANNEL CAPACITY that maximizes the expression for capacity is equatrfo

Let us assume that Alice and Bob are using alphabet 1/4. In this case the density operator3,0,/4 in the
states described above for quantum communication. The canatrix form (in the basig{|00),|10),|01),|11)}) reads

C=1+S(0n), (3.2

|al?

1+Zk n§~n§) |a|2; nZ(n—iny) a,B*Ek nZ(nk+inY) aﬂ*(l—}k‘, nﬁ-nﬁ)

|a|2§k: ne(ni+iny) |a|2§k: (nY-nY+n§-ny) aﬂ*}k: (ni+inY)(n¥+in}) aﬁ*}k: ne(ni—iny)

(<)
Il
ENY

a* B2 (m=ind)  @* B2 (mi=inp(m—ing) AP (nfnfnien)  [BIPX ni(nc+ing)

wp1-F | @AYk |BRY mniind  (BR{1e e

(3.3
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wheren!. denotes th¢th component of the vectar,. These In this case the second term in the expresgi@d) for
three-dimensional vectors create a complete system in threghannel capacity does not vanish. Our transformations are
dimensional real vector space, i.e., unitary. Therefore the entropy for stagg is the same and
equals
4
nini= 48", 3.4 .
gz Kk 349 S(QAB)z—EJ_‘, Ajlogh,; . (3.9

for j,I=x,y,z. Using this property, we evaluate the operator . . .
J y 9 property P To evaluate the final expression for the channel capacity

¢ for which we find we have to find the entropy of the state

|22 182

3=T(|oo><oo| +110)(10) +—-(|01)(01 +[11)(11)). 4

4

- o A A 1 “ A
0= k§=:1 UkQABUl:jzl Nig 1Uk|Xj><Xj|Ul'
(3.9 (3.10

The corresponding quantum capacity of the ideal chann
with pure signal states then reads

P

®he termi=¢_,Ulx;)(x;| O} is for all j=1,2,3,4, diagonal

as in Eq.(3.5. It means thatE is diagonal in the given
C=1-|al?loga?~|B|%log| B>=1+S(0,). (3.6)  Schmidt basis

. . . " — X y
?;(i];s equal forall alphabets which satisfy the condition Q=§(|00><00|+|10><10|)+§(|01><01|+|11><11|),

Comment 3 The capacity(3.6) is the biggest possible (3.11)
capacity of the quantum channel for alphabets that are gen-
erated by local operations from the reference stat§. To ~ Where
see this, we can imagine for a while that there exist four local 2 2 5 >
unitary transformations that generate the alphabet for which X=[al N1+ |BIN2+ 71 Na+ 6N, (312
the capacity is bigger than E¢3.6). In the case of a maxi- 2 2 2 2 :
mally entangled state they must fulfill the Bell limit, i.e., the y=lalNa+ BN H [y hat 015,
alphabet is an orthogonal basis. On the other hand, we ha§na|ly, taking into account that the reduced density operator
shown that all transformations that satisfy the Bell limit have ~ has the form
to fulfill the condition (2.11). Consequently, they have to on
belong to the set of our equivalent transformations, with the x 0
channel capacity3.6). This contradicts the original assump- éA:TrB(éAB):( ) , (3.13
tion, which proves our statement. 0

1. Mixed reference state we can express the capacity of the ideal channel as

Let us assume that the reference sﬁaj;g shared by Alice

and Bob is a statistical mixture that is parametrized as C:; Ajlogh;+1-xlogx—ylogy

4

~ =1+S(0,)—S(0ap). 3.1
QAB:jZl )\j|Xj><Xj|- 3.7 (en) —S(QaB) (3.19

B. Pauli channel
In this spectral decomposition the orthogonal stmq}s can

be written in the same Schmidt basis for i 1,2,3.4: From above, it follows alphabets that fulfill the condition

(2.1)) lead to the same capacity of tideal quantum chan-
. nel. Let us assume that the channel is noisy. We will model
= + B|1)All . . .
[x1)=20)al0)a+ Bl 1)al Le: an imperfect channel as a Pauli chanfridicharacterized by
the parameterg,,py,p, and p=p,+p,+p,. In this case,
the alphabet states that are used for coding at the output can
be expressed as

|x2)=B*10)al0)g— @*|1)al1)g;
|x3)=7/0)al1)g+ 8|1)l0)g;

[xa)=5*|0)al1)s = ¥*[1)al0)s. P=(=plilnd+ 2 Pl (i,

(3.9

(note that|x1)=|¢1)). (3.15

A W!\th}\thls}\ reference state the alphabet is the set of Stat%ere we |mp||C|t|y assume that Bob's qub|t is left |nthct
o= UkQABUl generated by the set of four local transforma- Taking into account the explicit expression for the operators

tions{U,;=1,0,=n,- &}, as before. Uy, we find
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FIG. 2. We plot the difference between the capacity using the

FI_G' 1. We plot the capacity gf the depolariz_ing channel as &tandard alphabdtl.6) and the equally distant alphabet. This dif-
function of the parameteigand|«|* that characterize the alphabet ference is plotted as a function pf|2 andp, that characterizes the

used. x-Pauli channel.

~ - _ 2. _ 2.
5,0= 3 s, 0-ie b0 (316 m=2q|al%  7,=20q|B|%

v=X,Y,Z

1
— 2 2 2 .
With the help of the last expression, we rewrite the density 773_5(1_2‘” V(1-29)*-16q]al?| |*(1- 3));
operator(3.15 as (3.19

3
- ~ 1
Qk=(1-p) 2 &,005,nfny n4=>(1-29—(1-20)°— 169’ B*(1—3q),
B v=

3 -~ ~
BN25 AR e E s 5 so that the capacity can be expressedCasS(p) —S(py).
+,Z‘1 P (M) Qo+ inil(n, X1y - 7,0l We plot this capacity in Fig. 1. We clearly see that the larger
R R the degree of entanglement, the greater is the capacity of the
+[(ﬁM>< ﬁk)-&]éo[(ﬁux Ny - o} (3.1 quantum channel, irrespectively, on the value of the param-
eterq.
where @, denotes the reference state from which the alpha. oM above it follows that for the depolarizing channel

. . . -~ both alphabets provide us with the same capacity.
bet is generated, and, is the vector defined by ,-o

=0, for u=x,y,z. So this specifies the alphabet used. Now 2. x-Pauli channel
we want to evaluate the capacity of the chanfgl). We

assume the input probability,= 1/4 and in this case Now our task is to present an example that illustrates that

with the equally distant alphab€®.11), Alice can perform

better(i.e., the channel capacity is high¢han with the stan-

00+ >, aﬂéoaM), (3.18  dard alphabe(l.6). Let us assume the channel such that
© =p,=0 with 0=p,=1. In this case we find two nonzero

L . eigenvalues of the output sta&é (3.17
which is the same as E3.5)! So only the second term in

Eqg. (3.1 can be different for a different choice of Alice 1

transformations. 7:=5(1=4p(1-p,) %), (3.20
Let us assume that Alice and Bob are using for commu-

nication two alphabet$2.21) and (1.6), respectively. We 2 . 2 S .

want to find which alphabet gives us a higher capacity of anfvheredi=1- [{nd &l )] ® [9) = U@ 1] tho) with

imperefect Pauli channel. A
P (o )y =20 a?— B2). (320

_ o _ For the standard alphabt.6) we find 5,=1 for all k, while
First, let us assume a depolarizing channel, for whigh  for the equally distant alphabet2.1) &,=1,65=1

-~ 1
=2

1. Depolarizing channel

=p,=p,=q with 0<q=<1/3. In this case the operatopg ~ —8A%9,65=55=1—2A%9.
given by Eq.(3.195 have the same eigenvalues for both al- Using these results, we directly evaluate the two capaci-
phabets that read ties of our interest. We note that for both alphabets the op-

052301-6



EQUALLY DISTANT, PARTIALLY ENTANGLED . .. PHYSICAL REVIEW A 62 052301

channels using this alphabet. We have shown that in some

erator? is the samdsee Eq.(3.18]. Consequently, the en- ’ :

-— ) L cases our alphabet leads to a higher channel capacity than the
tropy S(@) in the expression for the channel capacity is thestandard alphabet used by Baseal. [6]
same. Therefore, the only difference can arise from the terms We conclude that in order to va{Iida.te the capacity of our

S(ey). This entropy is determined by the eigenvalugs.  quantum channel Alice has to use a block coding scheme for
Obviously, the closer the eigenvalues are to 1/2, the larger isending a message. Bob on his end has to perform a collec-
the entropyS(e;) and the smaller is the capacity. We seetive measurement on the whole message rather than indi-
that in the case of the standard alphabet the eigenvalues aviglual letters(alphabet statgs The explicit expression for
closer to 1/2 than in the case of the equally distant alphabethis collective decision rule is given in R¢8]. As shown by
Therefore we conclude that the second alphabet leads toHolevo [8] and Hausladert al. [5], in this case the infor-
higher channel capacity for the given x-Pauli channel. Wemation transmitted per letter can be made arbitrarily close to
plot the difference between the standard and the equally dighe channel capacit{8.1).

tant alphabet capacities in Fig. 2.
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