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Optimal manipulations with qubits: Universal quantum entanglers
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We analyze various scenarios for entangling two initially unentangled qubits. In particular, we propose an
optimal universal entangler that entangles a qubit in unknown stateuC& with a qubit in a reference~known!
stateu0&. That is, our entangler generates the output state that is as close as possible to the pure~symmetrized!
state (uC&u0&1u0&uC&). The most attractive feature of this entangling machine, is that the fidelity of its
performance~i.e., the distance between the output and the ideally entangled—symmetrized state! does not
depend on the input and takes the constant valueF5(913A2)/14.0.946. We also analyze how to optimally
generate from a single qubit initially prepared in an unknown stateuC& a two qubit entangled system, which
is as close as possible to a Bell state (uC&uC'&1uC'&uC&), where^CuC'&50.

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

A pure quantum state of two systemsA andB is said to be
entangled if it is not a product of a state forA and a state for
B. Two systems in an entangled state are correlated,
these correlations are intrinsically quantum mechanical@1#.
For example, one must use entangled states in order to
duce violations of Bell inequalities or in the test of loc
realism proposed by Hardy@2,3#. Entangled states also play
key role in quantum information, in particular they are e
sential in quantum teleportation@4# and in superdense codin
@5#. In quantum computers entanglement is one of the f
tures of quantum mechanics that give these machines
power @6#.

Here we would like to consider the problem of how
produce entanglement. In particular, if we are given p
ticles, or systems,A andB in the pure statesuC&

A
anduF&

B
,

respectively, we would like to produce the state (uC&
A
uF&

B

1uF&
A
uC&

B
) ~up to normalization!. Formally, we are look-

ing for the symmetrization map

S:uC&uF&→~ uC&uF&1uF&uC&). ~1.1!

In what follows, where possible we omit explicit subscrip
A and B. The order in which the vectors are written in th
tensor products implicitly denotes to which system they
long ~i.e., the left vector corresponds to the systemA, while
the right vector corresponds to the systemB). We assume
that the two quantum systems~e.g., qubits! are physically
distinguishable. For instance they could be located in diff
ent regions of space. The task is to entangle their inte
degrees of freedom.

That the symmetrization cannot be done perfectly via
unitary transformation can be shown by the following arg
ment. We consider the case in whichuC& and uF& are both
qubits. A perfect transformation would have to transform
basis vectors as

u00&uv0&→u00&uv1&,
1050-2947/2000/62~2!/022303~11!/$15.00 62 0223
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u01&uv0&→
1

A2
~ u01&1u10&)uv2&,

u10&uv0&→
1

A2
~ u01&1u10&)uv3&,

u11&uv0&→u11&uv4&, ~1.2!

where theuv j&, for j 50,4, are normalized ‘‘machine’’ vec
tors, i.e., we assume that the entangler itself has its o
degrees of freedom. In addition, it is assumed that the en
gler is always initially in the same state,uv0&. Unitarity re-
quires that̂ v2uv3&50. Now let us consider the case whe
the input vectors areuC&5au0&1bu1& and uF&5u0& ~i.e.,
the state of the qubitA is unknown, while the qubitB is in a
known state!. The transformation~1.2! gives us

uC&u0&→au00&uv1&1
b

A2
~ u01&1u10&)uv3&, ~1.3!

whereas what it should produce is a vector proportiona
uC&u0&1u0&uC&, which in the basisu0&, u1& reads

uC&u0&→uC&u0&1u0&uC&52au00&1b~ u01&1u10&).
~1.4!

The vectors in the right-hand sides of Eqs.~1.3! and~1.4! are
clearly not the same, no matter what choice is made foruv1&
and uv3&. Therefore, we need to search for devices that w
produce approximate versions of the desired state or
produce this state but with a probability that is less than o

One way of creating a symmetrized state out of two ind
pendent systems is by means of a measurement—that is
two systems are optimally measured and their states are
timated. Based on this estimation a two-particle entang
state is prepared. If we begin with two qubits prepared
that one of the states is known (u0&) while the other is un-
known (uC&), we need only estimate the state of one of t
particles and this can be performed with a fidelity equal
©2000 The American Physical Society03-1
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VLADIMI´R BUŽEK AND MARK HILLERY PHYSICAL REVIEW A 62 022303
2/3 @7,8#. The information gained from the optimal measur
ment is then used in the preparation procedure. This is
cussed in Sec. II A.

We shall present quantum-mechanical entangling tra
formations that generate entangled states with much hig
fidelity than can be achieved by measuring the input p
ticles. In Sec. II B we briefly discuss aprobabilisticsymme-
trization ~entanglement! which can be realized via a
controlled-SWAP gate. The probability of success in this pr
cedure is input-state dependent. In Sec. III we present
optimal input-state independent quantum entangler and
also study the inseparabity of the outputs of this entangle
Sec. IV we show that the universal-NOT gate @9# can also
serve as a very interesting entangling device.

II. STATE-DEPENDENT SYMMETRIZATION

We shall first look at two examples of processes that p
duce entangled states, for which the quality of the out
depends on the input state. That is, these procedures
better for some states than for others. The first is perhaps
most obvious method, we simply measure the input state.
shall consider a more limited problem in this case, ent
gling an unknown with a known state. The output state
sulting from this procedure is only an approximation to t
desired one. The second is a probabilistic method; the ou
when it is produced is ideal, but the probability of succe
fully producing it is less than one. In this case we sh
consider the full problem of entangling two unknown stat

A. Entanglement via measurement

Our task is to entangle an input qubit in an unknown st
with a reference qubit in a known stateu0&. That is, we want
to realize the symmetrization mapu0&

A
uC&

B
→uC ( id)&

AB
with

the output parameterized as

uC ( id)&
AB

5

2 cos
q

2
u00&1A2eiw sin

q

2
u1&

A2~11 cos2 q/2!
. ~2.1!

The approach we will discuss here is as follows: first,
unknown single-qubit stateuC& is measured, and then usin
the information gained thereby, an approximate version
the desired output is constructed. In order to specify t
procedure in more detail, we must describe what meas
ment is to be made and how its results will be used to c
struct the output state. The quality of the output will be d
termined by calculating the fidelity between the actual out
and the desired output. We shall first examine a spec
strategy and then find an upper bound on the fidelity fo
wide class of measurement-based procedures.

Our first measurement-based scenario can then be rea
in the following way. In the case of a single input qubit th
optimal way to estimate the state, is to measure it alon
randomly chosen direction in the two-dimensional Hilb
space@7,8#. Therefore, the first step in implementing th
measurement-based procedure is choosing a random v
uh&, where
02230
-
s-

s-
er
r-

e
e

In

-
t
rk

he
e
-
-

ut
-

ll
.

e

e

f
is
e-
-

-
t
c
a

ed

a
t

tor

uh&5 cos
q8

2
u0&1eiw8 sin

q8

2
u1&, ~2.2!

and measuringuC& along it. If the result is positive, then th
output is taken to beuF&

AB
, and if negative, the output is

uF̃&
AB

, where

uF&
AB

5
u0&uh&1uh&u0&

A2@11 cos2~q8/2!#

5

2 cos
q8

2
u00&1A2eiw8 sin

q8

2
u1&

A2@11 cos2~q8/2!#
~2.3!

and

uF̃&
AB

5
u0&uh'&1uh'&u0&

A2@11 sin2~q8/2!#

5

2e2 iw8 sin
q8

2
u00&2A2 cos

q8

2
u1&

A2@11 sin2~q8/2!#
, ~2.4!

where the stateuh'& is the state orthogonal touh&,

uh'&5e2 iw8 sin
q8

2
u0&2 cos

q8

2
u1&. ~2.5!

For a particular orientation of the measurement appara
i.e., for the particular choice of the stateuh&, this
measurement-based scenario gives the two-qubit output
sity matrix

r (out)~q,wuq8,w8!5u^Cuh&u2uF&^Fu1u^Cuh'&u2uF̃&^F̃u.
~2.6!

To get the final output density matrix one averages this o
all possible choices of the measurement~i.e., over all vectors
uh&)

r (out)~q,w!5
1

4pE0

2p

dw8E
0

p

dq8 sinq8

3r (out)~q,wuq8,w8!. ~2.7!

Finally, the fidelity can be found by computing the matr
element of this density matrix in the ideal output sta
uC ( id)&

AB
,

F~q,w!5^C ( id)ur (out)~q,w!uC ( id)&. ~2.8!

This fidelity depends on the input state, and this depende
can be eliminated if we average over all input states

F̄5E dVF~q,w!. ~2.9!
3-2
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This is the proper fidelity to use to judge how well our pr
posed strategy performs if we assume that all input states
equally probable. A more explicit expression for it is

F̄5
1

16p2E0

2p

dwE
0

2p

dw8E
0

p

sinqdq

3E
0

p

sinq8dq8@ u^huC&u2u^CuF&u2

1u^h'uC&u2u^CuF̃&u2#. ~2.10!

Explicitly evaluating this integral we find

F̄5541112~ ln 2!22154.5 ln 2.0.719, ~2.11!

which is a bit larger than 2/3, the fidelity of the estimation
a state of a single qubit.

Let us now generalize this procedure. We shall again
gin by choosing a random vectoruh&, but now according to
a distributionq(q8,w8), which we shall leave unspecifie
for now. The output density matrix is taken to be eith
r1(h) if the measurement result is positive orr0(h) if it is
negative, where

r j~h!5E dV9pj~q9,w9uq8,w8!uG~q9,w9!&^G~q9,w9!u,

~2.12!

with j 50,1, and

uG~q9,w9!&
AB

5 cos
q9

2
u00&AB1eif9 sin

q9

2
u1&AB .

~2.13!

The conditional probabilitiespj will also be left unspecified;
this allows us to consider a wide class of measurement-b
strategies. The output density matrix, for a particularuh& is
then

r~h!5u^huC&u2r1~h!1u^h'uC&u2r0~h!. ~2.14!

Averaging overuh& gives us the final output density matri

r (out)~q,w!5E dV8r~h!q~q8,w8!, ~2.15!

and the fidelities for a specific input state and averaged o
all input states are given by Eqs.~2.8! and~2.9!, respectively,
but with r (out) computed from Eq.~2.15! instead of Eq.
~2.7!. In particular we have that

F̄5E E dV8dV9(
j 50

1

f j~q9,w9;q8,w8!Pj~q9,w9;q8,w8!,

~2.16!

where

Pj~q9,w9;q8,w8!5pj~q9,w9uq8,w8!q~q8,w8!
~2.17!
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f 05E dV
1

2@11 cos2 ~q/2!#
u2 cos

q

2
cos

q9

2

1A2ei (w92w) sin
q

2
sin

q9

2
u2u^Cuh'&u2,

f 15E dV
1

2@11 cos2~q/2!#
u2 cos

q

2
cos

q9

2

1A2ei (w92w) sin
q

2
sin

q9

2
u2u^Cuh&u2. ~2.18!

What we can now do is to find an upper bound for the fid
ity F̄ for any distribution of the vectoruh& and any prescrip-
tion for using the result of the measurement alonguh& to
manufacture the entangled state. We note that forj 50,1:

15E dV8E dV9Pj~q9,w9;q8,w8!, ~2.19!

which implies that

F̄<supu f 0u1supu f 1u, ~2.20!

where the supremums are taken over the range 0<q8,q9
<p and 0<w8,w9,2p.

Our first task is to find explicit expressions for the fun
tions f 0 and f 1. We have that

f 05d1 cos2
q9

2
sin2

q8

2
1d2 cos2

q9

2
cos2

q8

2

1
1

2
d2 sin2

q9

2
sin2

q8

2
1

1

2
d3 sin2

q9

2
cos2

q8

2

2A2d2 cos~w92w8!cos
q9

2
cos

q8

2
sin

q9

2
sin

q9

2
,

f 15d1 cos2
q9

2
cos2

q8

2
1d2 cos2

q9

2
sin2

q8

2

1
1

2
d2 sin2

q9

2
cos2

q8

2
1

1

2
d3 sin2

q9

2
sin2

q8

2

1A2d2 cos~w92w8!cos
q9

2
cos

q8

2
sin

q9

2
sin

q9

2
,

~2.21!

where

d152 ln 221,

d25324 ln 2, ~2.22!

d358 ln 225.
3-3
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From the above equations it is clear that in order to ma
mize f 0 we need to choosew92w85p and to maximizef 1
we need to choosew92w850. Making these choices an
simplifying the resulting expressions we find that

f 0~q9,p;q8,0!5 1
4 @11c1 cosq92c2 cosq9 cosq8

1c3 sinq9 sinq8#,

f 1~q9,0;q8,0!5 1
4 @11c1 cosq91c2 cosq9 cosq8

1c3 sinq9 sinq8#, ~2.23!

where

c15324 ln 2,

c2512 ln 228, ~2.24!

c35A2~324 ln 2!.

These functions can now be maximized. The maximum of 0
occurs atq85p andq950, and the maximum off 1 occurs
whenq850 andq950. The maximum values of both func
tions are the same and are approximately equal to 0.3
This implies that the fidelity for this kind of a measureme
based strategy must satisfy

F̄<4 ln 222>0.773. ~2.25!

As we shall see, a method that maintains quantum co
ences at all stages of the process can do better than thi

B. Controlled-SWAP gate

We now begin with systemsA andB of the same physica
origin. Their pure states are described by vectors in
D-dimensional Hilbert spaceH, so that both together ar
described byH^ H. Let $uuj&u j 51, . . . ,D% be an orthonor-
mal basis forH. SystemA is in the state

uC&
A
5(

j 51

D

cj uuj&A
, ~2.26!

and systemB is in the state

uF&
B
5(

j 51

D

dj uuj&B
. ~2.27!

Our objective is to produce the~entangled! symmetrized
state@see Eq.~1.1!#

uC&uF&1uF&uC&5(
j 51

D

(
k51

D

~cjdk1ckdj !uuj&uuk&

~2.28!

~here we omit the normalization factor!.
Recently Barencoet al. @10# have shown that the en

tanglement~symmetrization! of the form ~1.1! can be per-
formed when the two input qubits interact via a controlle
SWAP ~Fredkin! gate with an ancilla initially prepared in
02230
i-

6.
-

r-

e

-

specific state. The entanglement is achieved when a co
tional measurement is performed on the ancilla. Exactly
same scenario can be used not only for qubits but for a
trary quantum systems. To show this we briefly review t
operation of the controlled-SWAP gate.

This gate has three inputs. The first, the control bit, is
qubit. The second and third are forD-dimensional systems
The control bit is unaffected by the action of the gate. If t
control bit is u0&, then the gate does nothing, i.e., the outp
state is the same as the input state. If the control bit isu1&,
then the twoD-dimensional states are swapped. This can
accomplished by the following explicit unitary transform
tion:

u0&uuj&uuk&→u0&uuj&uuk&,

u1&uuj&uuk&→u1&uuk&uuj&. ~2.29!

Summarizing, the action of our controlled-SWAP gate is,

u0&uC&uF&→u0&uC&uF&,

u1&uC&uF&→u1&uF&uC&. ~2.30!

We now define the qubit states

uv1&5
1

A2
~ u0&1u1&), uv2&5

1

A2
~ u0&2u1&),

~2.31!

and take the input state of the controlled-SWAP gate to be
uv1&uC&

A
uF&

B
. Using the SWAP transformation~2.30! we

find that the output state is

uC (out)&5
1

A2
~ u0&uC&uF&1u1&uF&uC&)

5
1

2
uv1&~ uC&uF&1uF&uC&)

1
1

2
uv2&~ uC&uF&2uF&uC&). ~2.32!

If we now measure the qubit in theuv6& basis we obtain the
states (uC&uF&6uF&uC&) with probabilities (1
6u^CuF&u2)/2, respectively. As we see the probability
generation of a particular entangled state explicitly depe
on the~unknown! states of the two systems. In particular, l
us assume we begin with two orthogonal qubits,uC& and
uC'&. Then either of the maximally entangled stat
(uC&uC'&6uC'&uC&)/A2 can be prepared with probabilit
1/2.

We stress that the probability of the success in this
tanglement~symmetrization! procedure is input-state depen
dent. In what follows our task will be to find a ‘‘machine’
that entangles the input with aconstant~i.e., input-state in-
dependent! fidelity. This covariance property of the entangl
with respect to unitary transformations performed on the
put qubits makes the entangler universal.
3-4
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III. UNIVERSAL ENTANGLERS

Suppose we again consider the problem of constructin
device that will entangle a qubit in an arbitrary unknow
stateuC&5au0&1bu1& with a qubit in a known, reference
state, which we shall take to be the basis stateu0&. Before we
proceed further we have to specify properties of the en
gling map. In fact, we can consider two maps. The symm
trization map

S:u0&
A
uC&

B
→uC ( id)&

AB
5Ns~ uC&u0&1u0&uC&), ~3.1!

and the antisymmetrization map

A:u0&
A
uC&

B
→uC̄ ( id)&

AB
5Na~ uC&u0&2u0&uC&), ~3.2!

whereNa,s are corresponding normalization factors. As w
have shown in the introduction, perfect entanglers for a
trary unknown states cannot be constructed. So the tas
the physically realizable symmetric~antisymmetric! entan-
gler is to produce outputs as close as possible to the ide
entangled statesuC ( id)&

AB
(uC̄ ( id)&

AB
). In what follows we

will quantify the quality of the performance of the univers
entangler with the help of the fidelity

Fª^C ( id)ur (out)uC ( id)&. ~3.3!

We shall impose the condition that the value of this fidel
does not depend on the input. The fidelity~3.3! is a good
measure of the accuracy with which the entangler produ
the desired output state, but we would also like to evalu
the degree of entanglement of the actual output state. H
however, we have a problem that is due to the fact that
still not clear how to quantify the entanglement of a quant
system which is in a mixed state. When a bipartite system
in a pure state, then the von Neumann entropy of subsyst
can serve as a measure of entanglement. In the case o
pure states more sophisticated measures are required~see, for
instance, Refs.@11–13#!.

In terms of the basis vectors, the input state isau00&
1bu01&, and the ideal output state in the case of symme
zation is

uC ( id)&5
~2au00&1A2bu1&)

~4uau212ubu2!1/2
, ~3.4!

while in the case of the antisymmetrization we have

uC̄ ( id)&5u2&, ~3.5!

where u6& are symmetric and antisymmetric Bell states
the given basis

u6&5
1

A2
~ u01&6u10&). ~3.6!

In what follows we will briefly discuss the antisymmetr
entangler and then we will concentrate on the symme
entangler.
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A. Entanglement via antisymmetrization

Recently Alber @14# studied a quantum entangler th
takes as an input a quantum-mechanical system prepare
an unknownpure stateuC&

A
and a reference~known! state

~let us sayu0&
A
) and at the output generates a two-partic

entangled stater
AB

(out) that is optimally entangled. Alber im
posed two constraints on the output of the universal quan
entangler

Tr
A
@r

AB

(out)#5Tr
B
@r

AB

(out)#5
1
D

~3.7!

and

S@r
AB

(out)#→minimum. ~3.8!

Where D is the dimensionality of the Hilbert space of th
system A ~B! and S is the von Neumann entropyS
52Tr r ln r associated with a given density operatorr. The
first condition corresponds to the requirement that the s
systems at the output are in the maximally mixed state w
the second condition guarantees that the whole system
close as possible to a pure two-particle state. Alber has fo
the solution for this problem. It turns out that the two-partic
state that is produced by the optimal~with respect to the
above conditions!, universal entangler isindependentof the
input stateuC& and is equal to a maximally disordered mi
ture of all possible antisymmetric Bell states. In the case
qubits (D52) there is only one possible antisymmetric Be
stateu2&. That is, Alber’s machine realizes the antisymm
ric entangler. We see that the universality of Alber’s enta
gler means that all inputs are mapped to a single output~the
antisymmetric Bell stateu2&), so the ideal output state isa
priori known, and one could instead build a device that j
prepares the known output state. In the antisymmetric en
gler the information initially encoded in the qubitA is com-
pletely lost. But our task is different, we want to redistribu
the initial unknowninformation encoded in the state of th
qubit A, into the entangled state of two qubits. Therefore
will analyze universal entanglement via symmetrization, b
cause the ideal state~3.4! directly contains information abou
the initial state of the qubitA. In other words, we conside
the entangling procedure not only as the way to generate
state with highest possible entanglement but also we req
that this state contains as much information about the
put~s! as possible.

B. Entanglement via symmetrization

Let us now construct a machine that entangles an
known state with the known stateu0&. Taking into account
the basic features of the symmetrization transformation~3.1!
we can assume that the basis vectors transform as

u00&uv0&→u00&uw0&1u1&ux0&,

u01&uv0&→u00&uw1&1u1&ux1&, ~3.9!
3-5
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whereuw0&, uw1&, ux0&, and ux1& are states of the entangle
itself. The entangler is initially always prepared in the st
uv0&.

We want to impose the condition that the fidelity betwe
the actual output state and the ideal output state beindepen-
dent of the stateuC&, but before doing so let us state th
restrictions that unitarity places on the machine vecto
These are

iw0i21ix0i251,

iw1i21ix1i251, ~3.10!

^w0uw1&1^x0ux1&50,

where ixi2[^xux&. We now calculate the output two-qub
density matrixr (out) by using the transformation in Eq.~3.9!
to find the full output density matrix and then tracing out t
machine degrees of freedom. We then find the fidelity~3.3!
by taking the matrix element of this density matrix in th
ideal output state. Our task is to find the machine vectorsuxj&
anduwj& ( j 50,1) such that the fidelityF does not depend on
the input stateuC& and simultaneously is as close as possi
to unity.

We find that if we chooseux0& to be orthogonal to each o
the other machine vectors anduw1& to be orthogonal toux0&
and uw0&, then the output fidelity will be independent of th
phases ofa andb. Making these choices we find that

F5N21$2uau4iw0i21ubu4ix1i21uau2ubu2@A2~^w0ux1&

1^x1uw0&!12iw1i21ix0i2#%, ~3.11!

whereN52uau21ubu2.
In order for this expression to be independent ofuau and

ubu it is necessary that the expression in the curly bracket
proportional to

~2uau21ubu2!~ uau21ubu2!52uau413uau2ubu21ubu4.
~3.12!

Comparing this expression to Eq.~3.11! we see that

iw0i5ix1i , ~3.13!

3iw0i25A2~^x1uw0&1^w0ux1&!12iw1i21ix0i2.

If these conditions are satisfied, then the fidelity is sim
equal to iw0i2, so that we want to make this quantity a
large as possible. If we now make use of the unitarity c
ditions and the two equations above, we find that

12
2

3
A2 cosm5

12iw0i2

iw0i2
, ~3.14!

where

cosm5
^x1uw0&1^w0ux1&

2iw0i2
. ~3.15!
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From Eq.~3.14! we see thatiw0i2 will be a maximum when
cosm51, which implies thatuw0& and ux1& are parallel.
When this condition is satisfied, we find that

F5iw0i25
913A2

14
, ~3.16!

which gives 0.946 as the approximate value of the fidel
This means that the output stater (out) is indeed very close to
the ideal state, and it should be remembered that this fide
is the same for all input states.

We can summarize our results for the machine vectors
follows. From the above analysis we see that we can take
machine state space to bethreedimensional. Define

cosu5F913A2

14 G1/2

, sinu5F523A2

14 G1/2

, ~3.17!

and let $uv j&u j 51, . . . ,3% be an orthonormal basis for th
machine vector space. We then have

uw0&5 cosuuv1&,

uw1&5 sinuuv2&,

ux0&5 sinuuv3&, ~3.18!

ux1&5 cosuuv1&,

and our transformation in terms of basis vectors become

u00&uv0&→ cosuu00&uv1&1 sinuu1&uv3&,

u01&uv0&→ sinuu00&uv2&1 cosuu1&uv1&. ~3.19!

By construction this is theoptimalentangling transformation
that entangles an unknown pure state with a known refere
state.

Alternatively, for uC&5au0&1bu1& we can rewrite this
transformation in the form

u0&uC&uv0&→ cosu~au00&1bu1&)uv1&1 sinu~au1&uv3&

1bu00&uv2&). ~3.20!

When the trace over the entangler is performed we obtain
density operatorr

AB

(out) describing the two qubitsA andB at
the output of the quantum entangler

rAB
(out)5~ uau2 cos2 u1ubu2 sin2 u!u00&^00u

1~ uau2 sin2 u1ubu2 cos2 u!u1&^1u

1 cos2 u~ab* u00&^1u1a* bu1&^00u!.

~3.21!

It is important to stress that the fidelity~3.3! associated with
the output state~3.20! is input-state independent.
3-6
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C. Remarks

Throughout this paper we have utilized the fidelity~3.3!
as the measure of the performance of the quantum entan
The universality~covariance! of the entangler is expressed
the fact that the value of the fidelityF is equal for all input
states. We note that this covariance constraint is equiva
to the requirement that the Bures distance@15# defined as

dB~r1 ,r2!5A2~12TrAr̂1
1/2r̂2r̂1

1/2!1/2, ~3.22!

between the ideal stateuC ( id)& and the output of the entan
gler r

AB

(out) is constant. In our particular case we find t
Bures distance to be

dB52 sin~u/2!.0.0541 ~3.23!

for all inputs. This distance is very small indeed. It is impo
tant to note that the Hilbert-Schmidt norm

dHS~r1 ,r2!5@Tr~r12r2!2#1/2, ~3.24!

which in our case can be expressed as

dHS5@122F1Tr~r
AB

(out)!2#1/2, ~3.25!

is not input-state independent because Tr(r
AB

(out))2 depends
on the initial state. This is closely related to the fact that
von Neumann entropy of the stater

AB

(out) is state dependen
~see below!.

D. Inseparability of the output qubits

We note that the entanglement between the two qu
prepared in the stateuC ( id)& depends on the particular form
of the stateuC&5au0&1bu1&. BecauseuC ( id)& is a pure
state we can quantify the degree of entanglement via the
Neumann entropyS of one of the two qubits under consid
eration, i.e.,SA52Tr@rA ln rA# ~obviously SA5SB). For a
51 the entropy is equal to zero, which corresponds t
completely disentangled state~we note that in this case
uC ( id)&5u0&u0&). The entropy takes the maximal valueS
5 ln 2 for a50 when uC ( id)&5(u0&u1&1u1&u0&)/A2. We
plot this entropy in Fig. 1~see line 1!. The entropy of the
individual particle~qubit! at the output of the entangler, i.e
r

A

(out)5Trr
AB

(out) is always larger than in the ideal case~see

line 2 in Fig. 1!. Nevertheless, for the casea50, we have in
this caseS(a50)50.998 ln 2, i.e., this entropy is very clos
to the entropy of a qubit in the ideal case. Unfortunately, t
entropy in the case of an impure two-particle state canno
used as a measure of entanglement.

It is interesting to find the entropy of the two-particle sta
r

AB

(out) at the output of the entangler as a function of the init
state~in the ideal case the two-particle system is always c
sidered to be in a pure state withS50). We plot this entropy
in Fig. 2. We see that the total entropy of the output
state-dependent and it takes the minimal value fora251/2.
Therefore the entropy of the subsystems does not indi
whether they are entangled.
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We need to check whether the two qubitsA andB at the
output are indeed quantum mechanically entangl
Quantum-mechanical entanglement of two qubits forma
means that the density operator of these two qubits is re
sented by an inseparable matrix~see Ref.@1#!. It follows
from the Peres-Horodecki theorem that@16,17# the necessary
and sufficient condition of inseparability of the two-qub
density matrixr

AB
, is that the corresponding partially tran

posed matrixr
AB

T2 has at least one negative eigenvalue.

For instance, let us consider the stateuC&5au0&1bu1&
with real amplitudesa andb. The partially transposed ma
trix corresponding to the stateuC ( id)& given by Eq.~3.4! has
one negative eigenvalue

E~a!5
a221

2~a211!
. ~3.26!

We plot this eigenvalue in Fig. 3~see line 1!. We see that the
eigenvalue is negative for all values ofa excepta51 when
uC ( id)&5u0&u0&. The minimal value of the eigenvalue i
achieved fora50 when the two qubits are in the maximal
entangled state (u01&1u10&)/A2.

FIG. 1. The von Neumann entropy of the single-qubit stater
A

when the two-qubit system is in an ideally entangled stateuC ( id)&
~line 1! and when the output stater

AB

(out) is given by Eq.~3.21! ~line
2!. In both cases we assumea andb to be real.

FIG. 2. The von Neumann entropy of the two-qubit stater
AB

(out)

at the output of the entangler@see Eq.~3.21!# as a function ofa2.
We assumea andb to be real.
3-7
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Now we utilize the Peres-Horodecki theorem to che
whether the stater

AB

(out) given by Eq. ~3.21! describes an
entangled state of two qubits. First, we find that the partia
transposed matrix corresponding to the density oper
~3.21! has one eigenvalue that is negative for all values oa
~here we assumea and b to be real!. In particular, this
eigenvalue fora50 is

E~a50!5 1
2 @cos2 u2~cos4 u1 sin4 u!1/2#, ~3.27!

which is the minimal value (.20.447) of the negative ei
genvalue. On the other hand the maximal va
(.20.001) is attained fora51,

E~a51!5 1
2 @sin2 u2~cos4 u1 sin4 u!1/2#. ~3.28!

The complete dependence ofE(a) is shown in Fig. 3. From
this figure we clearly see that the output density operato
inseparable for an arbitrary input considered in this sect
We note, that if the entanglement is measured in terms of
tangle as introduced by Hill and Wootters@13# then the nega-
tive eigenvaluesE of the partially transposed density oper
tors perfectly reflect the degree of entanglement between
two qubits in our cases.

By construction the fidelity of the entangler in this case
constant but the actual degree of entanglement is state
pendent. This suggests that it would be interesting to find
entangler whose output states have the same degree o
tanglement irrespective of the input, yet still carry inform
tion about the input.

IV. ENTANGLEMENT VIA UNIVERSAL NOT GATE

Even though the negative eigenvalue of the partia
transposed density matrix cannot be directly used as the m
sure of entanglement, we see that the degree of entangle
between two qubits generated in the entangler~3.19! depends
on the input state. In what follows we describe a differe
type of the entangler, which out of a single qubituC& gen-
erates a two-qubit state as close as possible to the state

FIG. 3. Here we plot the negative eigenvalue@Eq. ~3.26!# of the
partially transposed matrix of the density operatorr

AB

( ideal) when the
stateuC& has real amplitudesa and b ~see line 1!. The negative
eigenvalue of the partially transposed matrix associated with
density operatorr

AB

(out) given by Eq. ~3.21! as functions ofa is
presented by line 2.~We assumea andb to be real.!
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uC&→u$C,C'%&[~ uC&uC'&1uC'&uC&)/A2. ~4.1!

We will present an entangler that not only produces the s
that is as close as possible to the ideal stateu$C,C'%& but
also has the property that the fidelity does not depend on
input state. In addition, the degree of entanglement also d
not depend on the input. This type of the entangler implici
assumes creation of the stateuC'& from the inputuC&. That
is, we face the problem of creating an orthogonal state fr
unknown input.

It is not a problem to complement a classical bit, i.e.,
change the value of a bit, a 0 to a 1 and vice versa. Thi
accomplished by aNOT gate. Complementing a qubit, how
ever, is another matter. The complement of a qubituC& is the
qubit uC'& that is orthogonal to it. But it is not possible t
build a device that will take anarbitrary ~unknown! qubit
and transform it into the qubit orthogonal to it. As shown
Ref. @9# the ideal universal-NOT ~U-NOT! operation corre-
sponds to theinversion of the Bloch (Poincare´) sphere. This
inversion preserves angles~related in a simple way to the
scalar productu^FuC&u of rays!, so by Wigner’s theorem the
ideal U-NOT must be implemented either by a unitary or b
an antiunitary operation. Unitary operations correspond
proper rotations of the Poincare´ sphere, whereas antiunitar
operations correspond to orthogonal transformations with
terminant21. Clearly, theU-NOT operation is of the latter
kind, and an antiunitary operatorQ ~unique up to a phase!
implementing it is

Q~au0&1bu1&)5b* u0&2a* u1&. ~4.2!

The difficulty with antiunitarily implemented symmetries
that they are not completely positive, i.e., they cannot
applied to a small system, leaving the rest of the world alo

Because we cannot design a perfect universal-NOT gate,
we have introduced in Ref.@9# an approximateoptimal
U-NOT gate ~an analogous spin-flip operation has recen
been introduced by Gisin and Popescu@18#!. This device
takes as an input the qubitA in the stateuC& and generates a
the output a qubit in a mixed state as close as possible to
orthogonal stateuC'&. The role of theU-NOT gate is played
by two additional~ancilla! qubits B and C. So, all together
the transformation involves three qubits and it can be exp
itly written as

uC&
A
uX&

BC
→g0uC,C&

AB
uC'&

C
1g1u$C,C'%&

AB
uC&

C
,

~4.3!

whereuX&
BC

is the initial state of theU-NOT gate;g05A2/3

andg152A1/3. In this particular transformation the qubitC
at the output is in the state that is as orthogonal as possib
the input state. The fidelity of this transformation is inpu
state independent and is equal toF52/3.

A. U-NOT gate as the entangler

It is interesting to note that the two-qubit stater
AB

(out) at the
output of the U-NOT gate~4.3! has the form

e

3-8
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r
AB

(out)5g1
2u$C,C'%&^$C,C'%u1g0

2uCC&^CCu.
~4.4!

The mean fidelity between the stater
AB

(out) and the ideal out-

put ~4.1! is input-state independent and takes the valueF
51/3. This again corresponds to the fact that the Bures
tance between the actual output of the entangler and the
output is input-state independent and equal todB5(2
22/A3)1/2. We can easily check that the partially transpos
matrix corresponding to the density operator~4.4! has one
negative eigenvalueE5(22A5)/6 that is constant and doe
not depend on the initial input stateuC&.

We note that the universalNOT gate~4.3! acts also a quan
tum cloner, i.e., the two qubitsA and B are the optimal
clones of the input~for details see Refs.@19# and@20#!. It is
the optimality of the transformation~4.3! with respect to
cloning and the generation of the optimally orthogonal st
~i.e., the universalNOT gate! which indicates that the trans
formation ~4.3! also serves as the optimal universal enta
gler.

B. Proof of optimality

Our proof of the optimality of the entangler~4.1! via the
U-NOT gate is based on the recent idea of Gisin@21,22# that
the impossibility of instantaneous signaling generates up
bounds on the fidelity of particular quantum-mechanical p
cesses. To be more specific, we have shown earlier tha
impossibility of the ideal~perfect! entangler is due to the
linearity of quantum mechanics. On the other hand, ano
consequence of the linearity of quantum mechanics is
fact that the entangled quantum-mechanical states cann
used for super-luminal communication. Gisin@21# has shown
that this no-signaling constraint implies bounds on the fid
ity of universal cloning and the universalU-NOT gate. In the
case of cloning the bound on fidelity isF55/6, while in the
case of theU-NOT gate the bound isF52/3. We note that the
transformation~4.3! achieves both these bounds when us
as the cloner or theU-NOT gate, respectively. Recently Albe
@14# used this idea of Gisin to prove that the upper bound
the fidelity of the antisymmetric entangling is equal to uni
The no-signaling constraint can also be used to derive
upper bound on the fidelity of the entangling operation giv
in Eq. ~4.1! @22#. We will present a proof, which is based o
the methods developed in Ref.@21#, that this upper bound is
F51/3, which means that theU-NOT gate~4.3! serves as the
optimal universal entangler in the sense of Eq.~4.1!.

We consider a process in which a single-particle in
state is mapped into a two-particle output state. The in
state can be represented as

r ( in)~mW !5 1
2 ~11mW •sW !, ~4.5!

wheremW is a real vector whose length is less than or equa
unity. The most general two-particle output state, which
Hermitian and has a trace equal to one, can be expresse
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r (out)~mW !5
1

4 F 11aW •sW ^ 111^ bW •sW 1 (
j ,k5x,y,z

t jks j ^ skG ,
~4.6!

whereaW , bW , andt jk are functions ofmW . The requirement tha
the reduced density matrixes of the two output particles
the same, that we shall impose, implies thataW 5bW .

We now want to impose the requirement of covarian
This means that ifr ( in)(mW ) is mapped ontor (out)(mW ), and if
u is a matrix inSU(2), then the input stateur ( in)(mW )u21

will be mapped onto the output stateu^ ur (out)(mW )u21

^ u21. Another way of stating this condition is obtained b
noting that if we expressu as

u5 exp~2 iuê•sW /2!, ~4.7!

where ê is a unit vector corresponding to the rotation ax
andu is the rotation angle, then

u~mW •sW !u215mW 8•sW , ~4.8!

wheremW 85R(ê,u)mW . The rotation matrix,R(ê,u), is the 3
33 matrix that rotates a vector about the axisê by an angle
u, and it is given explicitly by

R~ ê,u!5 exp~uê•KW !, ~4.9!

where

Kx5S 0 0 0

0 0 21

0 1 0
D ,

Ky5S 0 0 1

0 0 0

21 0 0
D ,

Kz5S 0 21 0

1 0 0

0 0 0
D . ~4.10!

We have that

ur ( in)~mW !u215r ( in)~RmW !, ~4.11!

which will be mapped tor (out)(RmW ), so that the covariance
condition can now be expressed as

r (out)~RmW !5u^ ur (out)~mW !u21
^ u21. ~4.12!

Now let us examine the consequences of this relation.
shall first consider the terms linear insW and letR be a rota-
tion aboutmW by a very small angleu. We have that

aW ~RmW !5RaW ~mW !, ~4.13!
3-9
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which for our choice of rotation becomes

aW ~mW !5~11um̂•KW !aW ~mW !, ~4.14!

or

m̂•KW aW ~mW !50W , ~4.15!

wherem̂ is a unit vector in the direction ofmW . This implies
thatm̂3aW (mW )50W , so thataW (mW ) is parallel tomW , and we can
write aW (mW )5a(mW )mW . If we now substitute this result bac
into Eq. ~4.13! and consider a general rotationR, we have
that

a~RmW !5a~mW !. ~4.16!

This implies thata(mW ) is a constant, which, following, Ref
@21#, we shall denote byh.

Now let us see what covariance implies about the te
quadratic insW . Application of the covariance condition, Eq
~4.12!, to these terms gives

t jk~RmW !5 (
j 8,k8

Rj j 8Rkk8t j 8k8~mW !. ~4.17!

If we again chooseR to be a rotation aboutmW by a small
angleu, we find the condition

05(
j 8

~m̂•KW ! j j 8t j 8k~mW !1(
k8

~m̂•KW !kk8t jk8~mW !.

~4.18!

If we choosemW to be in thez direction, in particularmW 5 ẑ,
we find, as did Gisin, thattxx5tyy , txy52tyx , andtxz5tzx

5tyz5tzy50, where all of these are evaluated atmW 5 ẑ. We
now want to impose the no-signaling condition

r (out)~ ẑ!1r (out)~2 ẑ!5r (out)~ x̂!1r (out)~2 x̂!,
~4.19!

and to do so we need to find all of the density matrices in
above equation in terms oft jk( ẑ). This can be done by ap
plying the covariance condition, Eq.~4.12!, to r (out)( ẑ) and
making the proper choice ofR. When these results are su
stituted into Eq.~4.19! we find thattxx( ẑ)5tyy( ẑ)5tzz( ẑ),
and we shall designate this common value byt( ẑ). We then
have that

r (out)~ ẑ!

5
1

4 S 112h1t 0 0 0

0 12t 2~ t1 i t xy! 0

0 2~ t2 i t xy! 12t 0

0 0 0 122h1t

D.

~4.20!
02230
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The basis in which the matrix is expressed is$u1 ẑ,1 ẑ&,u
1 ẑ,2 ẑ&,u2 ẑ,1 ẑ&,u2 ẑ,2 ẑ&%, where szu6 ẑ&56uẑ&. This
matrix must be positive, which implies that the eigenvalu

1
4 ~162h1t ! and 1

4 ~12t62At21txy
2 ! ~4.21!

must be non-negative.
For an input stater ( in)( ẑ) our desired output state i

(u1 ẑ,2 ẑ&1u2 ẑ,1 ẑ&)/A2, and this implies that the fidelity
of r (out) is

F5
11t

4
. ~4.22!

This is clearly maximized whent is as large as possible, an
examining the eigenvalues ofr (out), this happens whentxy
50 andt51/3. Substituting this into the expression for th
fidelity, we see that the maximum fidelity is 1/3. This mea
that the no-signaling constraint specifies the upper bound
the fidelity of the symmetric entangling that is exactly t
same one as achieved by theU-NOT gate. This proves that the
entangling via theNOT gate is optimal.

C. Remark

We note that using the universalNOT gate one can also
produce an entangled state of the form~3.1!. Specifically, the
U-NOT gate allows Charlie to produce an entangled sta
consisting ofuC& and one of two known states, which
shared by Alice and Bob. In order to see how this can
accomplished it is useful to express the state on the rig
hand side of Eq.~4.3! as

A 1
3 ~ uC&

A
uF2&

BC
1uC&

B
uF2&

AC
), ~4.23!

where

uF2&5
~ uC&uC'&2uC'&uC&)

A2
5

~ u0&u1&2u1&u0&)

A2
~4.24!

is the singlet state. Charlie now measures his particle al
the axis corresponding to the statesu0& and u1&. Whatever
result he obtains for his particle, the other two particles w
be in an entangled state shared by Alice and Bob. For
ample, if Charlie finds his particle in the stateu1&, Alice and
Bob share the state in Eq.~3.1!. Note that Charlie can choos
the states with which the stateuC& will be entangled by
choosing the axis along which to measure his particle.

This implies that if we want to produce either the e
tangled state ofuC& with u0& or the entangled state ofuC&
with u1&, and we don’t care which one we get, this can
done with perfect fidelity. Perhaps a better way of stating t
is that if we want to entangleuC& with one of two orthogonal
states, this can be done perfectly, and we will know w
which state it is entangled.
3-10
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V. CONCLUSIONS

In this paper we have studied various possibilities for
tangling two qubits so the initial information about the
preparation is preserved. We have studied a specific situa
when the state of one of the qubits is known while the s
ond state is arbitrary. We have shown that entanglemen
symmetrization in this case can be performed with a v
high fidelity ~much higher than the fidelity of estimation!.
This type of entanglement can be very useful for stabilizat
of the storage of an~unknown! quantum state of one qub
against environmental interaction and a random imprecis
d

sa

.
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@10#. We have shown that theU-NOT gateoptimally imple-
ments the entanglement transformationuC&→uC&uC'&
1uC'&uC&. This means that the transformation~4.3! is very
special indeed—it describes the optimal cloning, the optim
U-NOT transformation, as well as the optimal entangler.
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