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Optimal manipulations with qubits: Universal quantum entanglers
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We analyze various scenarios for entangling two initially unentangled qubits. In particular, we propose an
optimal universal entangler that entangles a qubit in unknown Blétewith a qubit in a referencénown)
state|0). That is, our entangler generates the output state that is as close as possible to thgnpunetrized
state (¥)|0)+]0)|¥)). The most attractive feature of this entangling machine, is that the fidelity of its
performance(i.e., the distance between the output and the ideally entangled—symmetrizeddsidenot
depend on the input and takes the constant v&lﬁe(9+3\/§)/142 0.946. We also analyze how to optimally
generate from a single qubit initially prepared in an unknown gtiitea two qubit entangled system, which
is as close as possible to a Bell staf@ | W)+ |¥+)|W)), where(W|¥t)=0.

PACS numbds): 03.67—a, 03.65.Bz

I. INTRODUCTION 1
[0D)[vo)— —=

A pure quantum state of two systeri@ndB is said to be V2

entangled if it is not a product of a state férand a state for

B. Two systems in an entangled state are correlated, and 1

these correlations are intrinsically quantum mechar{ithl |10>|”0>_’E(|01>+|10>)|U3>'

For example, one must use entangled states in order to pro-

duce violations of Bell inequalities or in the test of local 11D |vo)—[1D)]v4), 1.2

realism proposed by Hardg,3]. Entangled states also play a

key role in quantum information, in particular they are es-where the|vj), for j=0,4, are normalized “machine” vec-

sential in quantum teleportatiga] and in superdense coding tors, i.e., we assume that the entangler itself has its own

[5]. In quantum computers entanglement is one of the feadegrees of freedom. In addition, it is assumed that the entan-

tures of quantum mechanics that give these machines theler is always initially in the same statl,o). Unitarity re-

power|[6]. quires thakv,|v3)=0. Now let us consider the case where
Here we would like to consider the problem of how t0 the input vectors aré¥)=a|0)+ 8|1) and |®)=]0) (i.e.,

produce entanglement. In particular, if we are given parthe state of the qubi is unknown, while the qubiB is in a

ticles, or systemsA andB in the pure stategV), and|®)_,  known statg The transformatiorf1.2) gives us

respectively, we would like to produce the statﬁ’){AkD)B

+|<I>)A|\II)B) (up to normalization Formally, we are look- 1W)|0)— o] 00)|v;) + £(|01>+|10>)|03>’ 1.3
ing for the symmetrization map V2

(10)+[10)v2),

S [W) | D) — (| W) D) +| D) W)). (1.1  Whereas what it should produce is a vector proportional to
|W)|0)+]0)| W), which in the basig0), |1) reads

In what follows, where possible we omit explicit subscripts _
A and B. The order in which the vectors are written in the 0} = )0y +[0)[¥) 2a|00>+ﬁ(|01>+|10>)'1
tensor products implicitly denotes to which system they be-
long (i.e., the left vector corresponds to the syst@nwhile  The vectors in the right-hand sides of E¢k.3) and(1.4) are
the right vector corresponds to the syst&n We assume clearly not the same, no matter what choice is madéufor
that the two quantum systente.g., qubit are physically —and|vs). Therefore, we need to search for devices that will
distinguishable. For instance they could be located in differ-produce approximate versions of the desired state or will
ent regions of space. The task is to entangle their interngbroduce this state but with a probability that is less than one.
degrees of freedom. One way of creating a symmetrized state out of two inde-
That the symmetrization cannot be done perfectly via gendent systems is by means of a measurement—that is, the
unitary transformation can be shown by the following argu-two systems are optimally measured and their states are es-
ment. We consider the case in whit) and|®) are both  timated. Based on this estimation a two-particle entangled
qubits. A perfect transformation would have to transform thestate is prepared. If we begin with two qubits prepared so
basis vectors as that one of the states is knowh0§) while the other is un-
known (¥)), we need only estimate the state of one of the
|00} |vg)—|00)|v 1), particles and this can be performed with a fidelity equal to
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2/3[7,8]. The information gained from the optimal measure- 9’ A
ment is then used in the preparation procedure. This is dis- |7)= cos7|0>+e"" sm7| 1), (2.2
cussed in Sec. Il A.

We shall present quantum-mechanical entangling transsng measuring) along it. If the result is positive, then the
formations that generate entangled states with much h'gh%rutput is taken to béd) , and if negative, the output is
fidelity than can be achieved by measuring the input par- AB

ticles. In Sec. Il B we briefly discussgrobabilisticsymme- ), ., where

trization (entanglement which can be realized via a

controlledswap gate. The probability of success in this pro- ) |0Y| )+ 7)|0)
cedure is input-state dependent. In Sec. Ill we present the = -

optimal input-state independent quantum entangler and we " \2[1+ cos(d'12)]

also study the inseparabity of the outputs of this entangler. In Y Ly
Sec. IV we show that the universabT gate[9] can also 2 cos?|00>+ J2de sin7|+)

serve as a very interesting entangling device. B 2] (2.3
co
Il. STATE-DEPENDENT SYMMETRIZATION and

We shall first look at two examples of processes that pro-

guce zntanglt(ra]d §tatets,tfc2[r W_Iljri]cr: yhetr?uality of tge outputk @) - |0Y] 7Y+ 77+)|0)
epends on the input state. That is, these procedures wor B . -
better for some states than for others. The first is perhaps the V2[1+ sinf(9'/2)]
most obvious method, we simply measure the input state. We Y 9’
shall consider a more limited problem in this case, entan- 2e’'¢ sin7|00)—\/§cos?|+>
gling an unknown with a known state. The output state re- = . (2.9
sulting from this procedure is only an approximation to the V2[1+ sir(9'/2)]
desired one. The second is a probabilistic method; the output
when it is produced is ideal, but the probability of successwhere the statén") is the state orthogonal tay),
fully producing it is less than one. In this case we shall
i he full I f li k ) L0 9’

consider the full problem of entangling two unknown states |ty =eie Sm7|0>_ cos?|1). 2.5

A. Entanglement via measurement . ] )
. . . For a particular orientation of the measurement apparatus,
Our task is to entangle an input qubit in an unknown state o tor the particular choice of the statky), this

with a reference qubit in a known std@). That Svewant - measurement-based scenario gives the two-qubit output den-
to realize the symmetrization ma@),[¥) —|W¥%) _with sity matrix

the output parameterized as

N o PO, 9, 0") = | (V||| @ YD+ (W] )| B)(B).
2 cos5|00) + \/§é¢sin§|+) (2.6
(id)y =
v >AB 2(1+ co€ 9/2) : 2.1 To get the final output density matrix one averages this over
all possible choices of the measuremér., over all vectors

The approach we will discuss here is as follows: first, the 7))
unknown single-qubit statel') is measured, and then using
the information gained thereby, an approximate ver_sion pf pOU(§ o) = ifzwdqgff”dﬁ, sind’
the desired output is constructed. In order to specify this A7 Jo 0
procedure in more detail, we must describe what measure- (out) .,
ment is to be made and how its results will be used to con- Xp( D, 0[9,0"). 2.7
struct the output state. The quality of the output will be de- o . .
termined by calculating the fidelity between the actual outpufinally, the fidelity can be found by computing the matrix
and the desired output. We shall first examine a specifi@'er.rc}ent of this density matrix in the ideal output state
strategy and then find an upper bound on the fidelity for é‘l’(' )>AB'
wide class of measurement-based procedures. , ‘

Our first measurement-based scenario can then be realized F(O,¢) = (WD pCud( 9 o) pidy, (2.9
in the following way. In the case of a single input qubit the
optimal way to estimate the state, is to measure it along a his fidelity depends on the input state, and this dependence
randomly chosen direction in the two-dimensional Hilbertcan be eliminated if we average over all input states
space([7,8]. Therefore, the first step in implementing the
measurement-based procedure is choosing a random vector
| ), where

;?=f dQF(9,¢). (2.9
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This is the proper fidelity to use to judge how well our pro- for j=0,1, and
posed strategy performs if we assume that all input states are
equally probable. A more explicit expression for it is

"

5 v
| COS5 COS -

fo= | dQ
0 fd 2[1+ co (9/2)]

_ 1 (2= 2m ™
F= f d(pf dgo’j sinddd "
2 H ”n 19 ﬁ
16m2Jo 0 0 +/2ei(¢"~¢) SiHESin7|Z|<‘I’| 7517,

x [ "singad lalw) v

,8 ”
_ f1=JdQ—|2 COS5 COS—-
+ (o7 [ )P D)), (2.10 2[1+ cod(9/2)] 2 2
Explicitly evaluating this integral we find i(¢"— ) i 1_9 ; '9_" 2 2
+2¢ sin- sin— [F(¥|np)2. (2.18

F=54+112In2)2-154.5In2=0.719, (2.1
What we can now do is to find an upper bound for the fidel-
which is a bit |arger than 2/3, the f|del|ty of the estimation of |ty ffor any distribution of the Vectdrn) and any prescrip_
a state of a single qubit. tion for using the result of the measurement aldmgy to

Let us now generalize this procedure. We shall again bemanufacture the entangled state. We note thaj fod,1:
gin by choosing a random vectpn), but now according to

a distributionq(d9',¢"), which we shall leave unspecified
for now. The output density matrix is taken to be either 1=J' dQ'f dQ"Pj(9",¢";9",¢"), (219
p1(7) if the measurement result is positive g§( ) if it is
negative, where which implies that
pi(m)= f dQ"p;(9",¢"| 9", @ )T (8", " )N (9", ¢")], F=supfo|+sugfy, (220

(212 where the supremums are taken over the rangej0,¥”
= ! 14
ith =01 and <7 andO&p ,(p.<277'. . .
Wil an Our first task is to find explicit expressions for the func-
. " e 9" tions fy andf;. We have that

ﬂl! 1(}! ﬁ// 13/
2.1 = siP—  cO2—
(2.13 fo=d; cog > sir? > +d, cog > cog >
The conditional probabilitiep; will also be left unspecified; 1 9" 9 1 9" 5
this allows us to consider a wide class of measurement-based Zd- sirP— sirf— + = d- sirf— co2—
’ : ) i ; + =d,si Si + =dssi co
strategies. The output density matrix, for a particylgy is 2 2 2 2 2 2
then

19,” ﬁ, ) ﬁ” ] 19,”
—/2d, cog ¢" — ¢’ )COS—= COS— Sin— Sin—,

p(n) =7l ®)%p1(m) + (7" [¥)|?po(m). (2.14 2 T2 272

Averaging ovell ) gives us the final output density matrix 3" 9’ 9" 9’
f,=d, 00527 c0§7 +d, co$— sin27

2
out — ! ’ ’
p( )(ﬂ!(P)_f dQ P( 77)Q(0 P )1 (215) 1 . 1(}// ’3/ . 19// . 13/
+ 54 S|n27 00527 + 50 S|n27 sm27
and the fidelities for a specific input state and averaged over
all input states are given by Eq2.8) and(2.9), respectively, A VA VA U
but with p(®“9 computed from Eq(2.15 instead of Eq. +4/2d, cog ¢" — ¢’)cos—-COS—-sin—-sin—-,
(2.7). In particular we have that
(2.2)

1
f:f fdQ'dQ"ZO fi(9",¢"9,¢")P|(8",¢";9",¢'),  where
=

(2.16 d;=21In2-1,

where
d,=3-41In2, (2.22

Pi(0",¢" 0", ¢")=pj(",¢"[ 9, ¢")a(d,¢")
(2.17 d;=81n2—5.
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From the above equations it is clear that in order to maxispecific state. The entanglement is achieved when a condi-
mize f, we need to choose” — ¢’ =7 and to maximizef;  tional measurement is performed on the ancilla. Exactly the
we need to choose”— ¢’ =0. Making these choices and same scenario can be used not only for qubits but for arbi-

simplifying the resulting expressions we find that trary quantum systems. To show this we briefly review the
. operation of the controlledwap gate.
fo(¥",;9",0)=z[1+c, cOs¥”—c, cosd” cosd’ This gate has three inputs. The first, the control bit, is a

qubit. The second and third are fBrdimensional systems.
The control bit is unaffected by the action of the gate. If the
control bit is|0), then the gate does nothing, i.e., the output
state is the same as the input state. If the control HiLjs

+c5sind” sind’ ],

f1(9”,0;9",0)=3[1+¢c, cosd”+ ¢, cosd” cosd’

+c5sind” sind’], (2.23  then the twoD-dimensional states are swapped. This can be
accomplished by the following explicit unitary transforma-
where tion:
c1=3-4In2, |0)|uj)uiy—[0)uj)|uy),
€;=12In2-8, (2.24 | 1) up ud— 1) [u|uj). (2.29
C3= V2(3-41n2). Summarizing, the action of our controlledvap gate is,
These functions can now be maximized. The maximurfyof [0)| W) |D)—|0)| W) D),
occurs atd’' = 7 and9”=0, and the maximum of; occurs
whend' =0 andd”=0. The maximum values of both func- [1)| )| D)—|1)|D)|W). (2.30

tions are the same and are approximately equal to 0.386. _ _
This implies that the fidelity for this kind of a measurement- We now define the qubit states
based strategy must satisfy
1 1
F<41In2-2=0.773. (2.25 |v+>=ﬁ(|0>+ll>), |v,>=ﬁ(|0>—|l)),

As we shall see, a method that maintains quantum coher- (239

ences at all stages of the process can do better than this. gnq take the input state of the controliegkar gate to be
lv)|W),[®),. Using the SWAP transformatiof2.30 we
B. Controlied-swap gate find that the output state is

We now begin with system& andB of the same physical
origin. Their pure states are described by vectors in the
D-dimensional Hilbert spacé{, so that both together are
described by{®H. Let{|u;)|j=1,... D} be an orthonor-
mal basis forH. SystemA is in the state

(oupy_ L
N4 >ﬁ(|0>|‘1'>|<1>>+|1>|¢>|‘1’>)

1
) = 5lv (W) @)+ @) ))
[¥),= 2, gilu), (2.26 1
o Falv(wle)-|e)w). (232

and systenB is in the state
b If we now measure the qubit in tHe ) basis we obtain the
_ states  (V)|®)=|P)|¥)) with probabilites (1
|(I)>B_]-Zl djfu;)- (2.27 +|(W¥|®)|?)/2, respectively. As we see the probability of
generation of a particular entangled state explicitly depends
Our objective is to produce théntangled symmetrized on the(unknowr states of the two systems. In particular, let
state[see Eq(1.1)] us assume we begin with two orthogonal qubjt®,) and
5 b |, Ihen fither of the maximally entangled states
+
|W>|¢>+|®>|W>:Zl kzl (60t 6l U ) (1|g.>|‘1' )Y+ | W) |W))/\2 can be prepared with probability
: (2.29 We stress that the probability of the success in this en-
tanglementsymmetrization procedure is input-state depen-
(here we omit the normalization facjor dent. In what follows our task will be to find a “machine”
Recently Barenccet al. [10] have shown that the en- that entangles the input with @nstant(i.e., input-state in-
tanglement(symmetrization of the form (1.1) can be per- dependentfidelity. This covariance property of the entangler
formed when the two input qubits interact via a controlled-with respect to unitary transformations performed on the in-
SWAP (Fredkin gate with an ancilla initially prepared in a put qubits makes the entangler universal.
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Ill. UNIVERSAL ENTANGLERS A. Entanglement via antisymmetrization

Suppose we again consider the problem of constructing a Recently Alber[14] studied a quantum entangler that
device that will entangle a qubit in an arbitrary unknown takes as an input a quantum-mechanical system prepared in
state| W)= |0)+ B|1) with a qubit in a known, reference an unknownpure state'¥) and a referencéknown) state
state, which we shall take to be the basis state Before we  (let us say|0)A) and at the output generates a two-particle

proceed further we have to specify properties of the entanaptangled Stat@ioam) that is optimally entangled. Alber im-

?rlilznz?ti&a&e:; fact, we can consider two maps. The Symme'posed two constraints on the output of the universal quantum

entangler
8§:10) [ W) = [W(D) =Ny(|¥)|0)+]0)|¥)), (3. 1
Tr [pO0]=Tr [pO0]= = 3.7
. . AT AB B-"AB D
and the antisymmetrization map
A:0) [ ) = [W(D) =Ny(|W)[0)~0)|¥)), 3.2  and
whereN, s are corresponding normalization factors. As we S[p;‘;”‘)]ﬂminimum. (3.9

have shown in the introduction, perfect entanglers for arbi-

trary unknown states cannot be constructed. So the task . . . . :
the physically realizable symmetri@ntisymmetrig entan- %hereD is the dimensionality of the Hilbert space of the

gler is to produce outputs as close as possible to the ideal@itﬁ_r:]p'?‘n ;()?ss?)r::?atse dlf/vittr?z g\?\?gn y:r?sr?cznonpe?;g?ﬁi
(id) p(id) . L .
entangled statepl"®) _ (|W19), ). In what follows we st condition corresponds to the requirement that the sub-

will quantify the quality of the performance of the universal systems at the output are in the maximally mixed state while
entangler with the help of the fidelity the second condition guarantees that the whole system is as
) (out) s (id) close as _possible'to a pure two-particle state. Alber has fpund
Fe=(WID| pou|wliD), (33 the solution for this problem. It turns out that the two-particle

. . . .., .. State that is produced by the optim@lith respect to the
We shall impose the condition that the value of this f'del'tyabove conditign)s universgl entan%lg:(imdepenpdenof the

gqoes nrot dfetp;}end onrthe '\;‘Ift’ﬁtwlri ?r?el{?f)rﬁar gcr)og input statel W) and is equal to a maximally disordered mix-
easure ot the accuracy ch the entangler produces, o f 4| possible antisymmetric Bell states. In the case of

the desired output state, but we would also like to evaluatg - (D =2) there is only one possible antisymmetric Bell
the degree of entanglement of the actual output state. Her That is. Alber hi l h .
however, we have a problem that is due to the fact that it is.tateI —)- That is, Alber's machine realizes the antisymmet-
still not c'Iear how to quantify the entanglement of a uantum”c entangler. We see that the universality of Alber’s entan-
ar NOW 10 qui Y -ntotaq .gler means that all inputs are mapped to a single outpet
system which is in a mixed state. When a bipartite system is . . : )
. antisymmetric Bell stat¢—)), so the ideal output state &
in a pure state, then the von Neumann entropy of subsystems

. priori known, and one could instead build a device that just
can serve as a measure of entanglement. In the case of im-

pure states more sophisticated measures are redsgedfor prepares the knqwn .OprUt state. In the antisymmetric entan-
instance, Refg11-13). gler the information mma!ly gncoded in the quifitis com-
In terms of the basis vectors, the input stateai€©0) pletely _Iost. But our task is @fferent, we yvant to redistribute
' .the initial unknowninformation encoded in the state of the

+8|01), and the ideal output state in the case of Symmem'qubitA, into the entangled state of two qubits. Therefore we

zation is will analyze universal entanglement via symmetrization, be-
cause the ideal stat8.4) directly contains information about
| i)y = (2a|00) + \/§ﬂ|+>)’ 3.4y  the initial state of the qubi&. In other words, we consider
(4] al?+2|B]%)Y? the entangling procedure not only as the way to generate the
state with highest possible entanglement but also we require
while in the case of the antisymmetrization we have that this state contains as much information about the in-
_ put(s) as possible.
(WD) =]-), (3.5
where|+) are symmetric and antisymmetric Bell states in B. Entanglement via symmetrization
the given basis Let us now construct a machine that entangles an un-
known state with the known stat@). Taking into account
1 the basic features of the symmetrization transforma®m)
|=)= E(|Ol>i|1o>)' (3.6 we can assume that the basis vectors transform as

In what follows we will briefly discuss the antisymmetric |00} |00) —[00) o) +[+)[x0).

entangler and then we will concentrate on the symmetric
entangler. |02)|vo)— |00 | wWq) +]+)[Xy1), (3.9
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where|wg), |wy), [Xo), and|x,) are states of the entangler From Eq.(3.14 we see thafw,||? will be a maximum when
itself. The entangler is initially always prepared in the statecosu=1, which implies that|w,) and |x;) are parallel.

[vo)- When this condition is satisfied, we find that
We want to impose the condition that the fidelity between
the actual output state and the ideal output statantbepen- ) 9+3.2
dentof the state|¥), but before doing so let us state the F=wol "=~ (3.16
restrictions that unitarity places on the machine vectors.
These are

which gives 0.946 as the approximate value of the fidelity.
This means that the output stat€"? is indeed very close to
the ideal state, and it should be remembered that this fidelity
is the same for all input states.

We can summarize our results for the machine vectors as
follows. From the above analysis we see that we can take the
machine state space to beeedimensional. Define

Iwoll?+ 1%l *= 1.
wal?+lIxa]1?=1, (3.10

(Wo|w1)+(Xo|X1)=0,

where||x|?=(x|x). We now calculate the output two-qubit 12 _ 12
density matrixp(®“? by using the transformation in E¢3.9) cosf= 9+342 ., sing= > 3\/5} , (3.17
to find the full output density matrix and then tracing out the 14 14

machine degrees of freedom. We then find the fidéBtp)

by taking the matrix element of this density matrix in the and let{[v;)[j=1,....3 be an orthonormal basis for the
ideal output state. Our task is to find the machine vedtqys ~ Machine vector space. We then have

and|wj) (j=0,1) such that the fidelity¥ does not depend on

the input staté¥) and simultaneously is as close as possible |wo) = cosb|v,),
to unity.
We find that if we choosx,) to be orthogonal to each of |wq)= sinf|v,),
the other machine vectors aha,) to be orthogonal tdx,)
and|w,), then the output fidelity will be independent of the [Xo) = siné|vs), (3.18

phases ofx and 8. Making these choices we find that

_ |x1)= cosbl|v,),
F=N"2|a||woll>+ | BI*Ixl|?+ | | BI2[ V2((wo|xy)

+ (X | Wo) + 2l wl|2+[|xol2T} (3.1  and our transformation in terms of basis vectors becomes
whereN=2|a|?+| 8|2 |00)|vg)— cos6|00)|v1)+ sind|+)[vs),
In order for this expression to be independent ®ff and _
| 8| it is necessary that the expression in the curly brackets be [01)|vg)— sin|00)|v,) + cosh| +)|vy).  (3.19

proportional to
By construction this is theptimal entangling transformation

2lal?+|B813) (| a|?+|8|?) =2|al*+ 3| a|?| B>+ ]| B]*. that entangles an unknown pure state with a known reference
(31 state.
. . , Alternatively, for | )= «|0)+ B|1) we can rewrite this
Comparing this expression to E(.11) we see that transformation in the form
woll =l G139 10)[W)[v)— cost(al00)+ B+ )) o)+ siné(al +)|vs)
3wl 2= V2({Xq|Wo) + (Wo|x1)) + 2l|w4|2+[|xo]|?. +B[00)[v5)). (3.20

If these conditions are satisfied, then the fidelity is simplywhen the trace over the entangler is performed we obtain the
equal to[lw|?, so that we want to make this quantity as density operatop 'Y describing the two qubité andB at
large as possible. If we now make use of the unitarity conyne gutput of the quantum entangler

ditions and the two equations above, we find that

pis"=(|a|? cos 0+ |B|?sir? )|00)(00)

2 _1—|lwgl? ,
1—§J§COSM—W, (3.14 +(|a|? sir? 6+ 8|2 co )|+ )+
0
+ cog O(aB*|00){ + |+ a* B|+)(00).
where
(3.22
cosu= {1 Wo) +(Wolxa) _ (3.15 Itis important to stress that the fidelit@.3) associated with
2||lwo|I? the output staté€3.20 is input-state independent.
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C. Remarks 0.7
Throughout this paper we have utilized the fideli8:3) 0.6
as the measure of the performance of the quantum entangler. 0.5
The universality(covariance of the entangler is expressed in 0.4
the fact that the value of the fidelit§ is equal for all input s 2
states. We note that this covariance constraint is equivalent 0.3
to the requirement that the Bures distaftB] defined as 0.2 1
~ ~ ~ 0.1
dg(p1.p2)=2(1=Tr V12019, (3.22 .
. 0 0.2 0.4 0.6 0.8 1
between the ideal state (D) and the output of the entan-
gler piOBUt) is constant. In our particular case we find the o2

Bures distance to be ) )
FIG. 1. The von Neumann entropy of the single-qubit siate

dg=2 sin( 6/2)=0.0541 (3.23  Wwhen the two-qubit system is in an ideally entangled sfite®)
(line 1) and when the output staé®"" is given by Eq(3.2)) (line
for all inputs. This distance is very small indeed. It is impor-2). In both cases we assuragand 3 to be real.
tant to note that the Hilbert-Schmidt norm
We need to check whether the two qubisandB at the

dus(pr,p2)=[Tr(p1—p2)?1*2 (3.24  output are indeed quantum mechanically entangled.
Quantum-mechanical entanglement of two qubits formally
which in our case can be expressed as means that the density operator of these two qubits is repre-
sented by an inseparable matiizee Ref.[1]). It follows
dns=[1-2F+Tr(p{O")?]*, (3.25  from the Peres-Horodecki theorem thiz6,17 the necessary

and sufficient condition of inseparability of the two-qubit
is not input-state independent becausep'fj;(“))2 depends density matrixp, , is that the corresponding partially trans-
on the initial state. This is closely related to the fact that theposed matrimlé has at least one negative eigenvalue.
von Neumann entropy of the sta’"! is state dependent  For instance, let us consider the stile)=a|0)+ 5|1)
(see below. with real amplitudesx and 8. The partially transposed ma-

trix corresponding to the statd (%) given by Eq.(3.4) has

D. Inseparability of the output qubits one negative eigenvalue

We note that the entanglement between the two qubits a’?—1
prepared in the statgl () depends on the particular form E(a)=———.
of the state|¥)=«|0)+ B|1). Because W) is a pure 2(a"+1)
state we can quantify the degree of entanglement via the von
Neumann entropy of one of the two qubits under consid- We plot this eigenvalue in Fig. Gee line 1. We see that the
eration, i.e..Sy=—Tt[ paIn pa] (Obviously Sy=Sg). For a eigenvalue is negative for all values @fexcepta=1 when
—1 the entropy is equal to zero, which corresponds to 4¥(®)=]0)|0). The minimal value of the eigenvalue is
completely disentangled statgve note that in this case achieved fora=0 when the two qubits are in the maximally
|w()y=]0)|0)). The entropy takes the maximal valg entangled state|Q1)+|10))/+/2.
=In2 for =0 when |¥(D)y=(]0)|1)+]1)|0))/y2. We
plot this entropy in Fig. 1(see line 1. The entropy of the
individual particle(qubit) at the output of the entangler, i.e., 0.2
plCW=Trpl°" is always larger than in the ideal cateee

line 2 in Fig. ). Nevertheless, for the cage=0, we have in 0.18

this caseS(a=0)=0.9981n 2, i.e., this entropy is very close S

to the entropy of a qubit in the ideal case. Unfortunately, this 0.16

entropy in the case of an impure two-particle state cannot be

used as a measure of entanglement. 0.14
It is interesting to find the entropy of the two-particle state

p{°"Y at the output of the entangler as a function of the initial 5 P S R 5

state(in the ideal case the two-particle system is always con-

sidered to be in a pure state wil*=0). We plot this entropy 2

in Fig. 2. We see that the total entropy of the output is

state-dependent and it takes the minimal valued®« 1/2. FIG. 2. The von Neumann entropy of the two-qubit sta"”
Therefore the entropy of the subsystems does not indicatg the output of the entanglgsee Eq.(3.21)] as a function ofa?.
whether they are entangled. We assumer and 8 to be real.

(3.2
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° W)= {0, W =W W)+ W H[W)V2. 4.0
-0 We will present an entangler that not only produces the state
0.2 1 that is as close as possible to the ideal stéfe, ¥+}) but
E also has the property that the fidelity does not depend on the
-0.3 2 input state. In addition, the degree of entanglement also does
not depend on the input. This type of the entangler implicitly
-0.4 assumes creation of the statie") from the input| ). That
is, we face the problem of creating an orthogonal state from
-0.5 unknown input.
0 0.2 0.4 0.6 0.8 1

It is not a problem to complement a classical bit, i.e., to
ol change the value of a bit, a 0 to a 1 and vice versa. This is
accomplished by aioT gate. Complementing a qubit, how-
FIG. 3. Here we plot the negative eigenvalé®). (3.26] of the  eyer, is another matter. The complement of a qiibit is the
partially transposed matrix of the density operatff*) when the it | W) that is orthogonal to it. But it is not possible to
state| V) has real amplitudes and 8 (see line 1. The negative pyld a device that will take amrbitrary (unknown qubit
eigenvalue of the partially transposed matrix associated with th%md transform it into the qubit orthogonal to it. As shown in
density operatop(?"” given by Eq.(3.21) as functions ofa is  Ref, [9] the ideal universakoT (U-NOT) operation corre-
presented by line 2We assumer and 3 to be real sponds to thénversion of the Bloch (Poincayesphere This
. , inversion preserves angléeelated in a simple way to the
Now we utilize (torl?) P_eres-Horodeckl theorem_ to checkg.giar produck®| )| of rays, so by Wigner's theorem the
whether the state ™ given by Eq.(3.21) describes an jyeq| ynot must be implemented either by a unitary or by
entangled state of two qubits. First, we find that the partiallyan antiunitary operation. Unitary operations correspond to
transposed matrix corresponding to the density operatgsroper rotations of the Poincasphere, whereas antiunitary
(3.21 has one eigenvalue that is negative for all valuea of operations correspond to orthogonal transformations with de-
(here we assume and B to be real. In particular, this terminant—1. Clearly, theu-NOT operation is of the latter
eigenvalue fore=0 is kind, and an antiunitary operat@® (unique up to a phage
E(a=0)=1[cog 9—(cod o+ sirf p)¥2], (3.2 'mPementingitis
which is the minimal value % —0.447) of the negative ei- 0(al0)+B[1))=B*|0)—a*|1). 4.2

genvalue. On the other hand the maximal value n _ o o
(=—0.001) is attained for=1, The difficulty with antiunitarily implemented symmetries is

that they are not completely positive, i.e., they cannot be
E(a=1)=3[sir? 6—(cos 6+ sin* 9)*?]. (3.289  applied to a small system, leaving the rest of the world alone.
Because we cannot design a perfect univexsal-gate,

The complete dependenceBf«) is shown in Fig. 3. From we have introduced in Refl9] an approximateoptimal
this figure we clearly see that the output density operator ig)-NoT gate (an analogous spin-flip operation has recently
inseparable for an arbitrary input considered in this sectionpeen introduced by Gisin and Popedgds]). This device
We note, that if the entanglement is measured in terms of theakes as an input the quiditin the statg¢W') and generates at
tangle as introduced by Hill and Woottgds3] then the nega-  the output a qubit in a mixed state as close as possible to the
tive eigenvalue& of the partially transposed density opera- orthogonal stat¢¥+). The role of theu-NOT gate is played
tors perfectly reflect the degree of entanglement between thgy two additional(ancilla) qubits B and C. So, all together

two qubits in our cases. the transformation involves three qubits and it can be explic-
By construction the fidelity of the entangler in this case ismy written as

constant but the actual degree of entanglement is state de-

pendent. This suggests that it would be interesting to find an W) |X) . =yl W, W) W) 4y (T, W) W)

entangler whose output states have the same degree of en- A "BC AB ¢ AB %4 3

tanglement irrespective of the input, yet still carry informa- '

tion about the input. Where|X>BC is the initial state of theJ-NOT gate;yy= J2/3

IV. ENTANGLEMENT VIA UNIVERSAL  NoT GATE andy;=— \/1_/3._ In this particula_r transformation the qut
at the output is in the state that is as orthogonal as possible to

Even though the negative eigenvalue of the partiallythe input state. The fidelity of this transformation is input-
transposed density matrix cannot be directly used as the mesatate independent and is equale- 2/3.
sure of entanglement, we see that the degree of entanglement
between two qubits generated in the entan@et9 depends
on the input state. In what follows we describe a different . .
type of the entang|er, which out of a Sing|e qub];[> gen- Itis Interesting to note that the tWO-QUbIt St@tA((%Ut) at the
erates a two-qubit state as close as possible to the state output of the U-NOT gaté4.3) has the form

A. U-NOT gate as the entangler
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(out) — 2 1 L 2 1
p oV =y {W, U H W, W+ yg PP N -
4.2 pO(m)=Z/1+a ol+leb U+;,k§,y,z tjo® oy,
(4.6)

The mean fidelity between the statf?") and the ideal out- wherea, b, andt;, are functions ofm. The requirement that
put (4.1) is input-state independent and takes the value the reduced density matrixes of the two output particles be
=1/3. This again corresponds to the fact that the Bures disthe same, that we shall impose, implies thath.
tance between the actual output of the entangler and the ideal We now want to impose the requirement of covariance.
output 1IZ input-state .independent and equal d9=(2  This means that ib(in)(rﬁ) is mapped Ont@(out)(rﬁ)’ and if
—2/\/§) . We can easily check thgt the partially transposqu is a matrix inSU(2), then the input statep(i”)(rﬁ)u*
matrix corresponding to the density operafdrd) has one will be mapped onto the output statesu (°“t)(rﬁ)u*
negative eigenvalue=(2-5)/6 that is constant and does . ; 5P .

g g ( \/_) ®u~ 1. Another way of stating this condition is obtained by

not depend on the initial input staf@). ting that if
We note that the universabT gate(4.3) acts also a quan- noting that It we express as

tum cloner, i.e., the two qubité and B are the optimal
clones of the inputfor details see Ref$19] and[20]). It is
the optimality of the transformatio4.3) with respect to . . ) , ,
cloning and the generation of the optimally orthogonal statdVheree is a unit vector corresponding to the rotation axis
(i.e., the universaNoT gate which indicates that the trans- and 6 is the rotation angle, then

formation (4.3) also serves as the optimal universal entan- - -
gler. u(m-o)u

1

u= exp(—ibe- a/2), 4.7

-1 .o, (4.9

wherem’ =R(e, §)m. The rotation matrixR(e, §), is the 3

B. Proof of optimality X 3 matrix that rotates a vector about the a&iby an angle

Our proof of the optimality of the entanglé#.1) via the ¢ and itis given explicitly by
U-NOT gate is based on the recent idea of Gig,22 that A ~
the impossibility of instantaneous signaling generates upper R(e, 6)= exp(fe-K), (4.9
bounds on the fidelity of particular quantum-mechanical pro- h
cesses. To be more specific, we have shown earlier that tHEhere
impossibility of the ideal(perfec} entangler is due to the

: . . 0 0 O
linearity of quantum mechanics. On the other hand, another

consequence of the linearity of quantum mechanics is the K=l 0 0 -1/,
fact that the entangled quantum-mechanical states cannot be 01 0

used for super-luminal communication. Gi$#tl] has shown
that this no-signaling constraint implies bounds on the fidel- 0O 0 1
ity of universal cloning and the universaiNoT gate. In the

case of cloning the bound on fidelity /5= 5/6, while in the Ky= 0 0 ,
case of thes-NOT gate the bound ig=2/3. We note that the -1 0 O
transformation(4.3) achieves both these bounds when used
as the cloner or the-NOT gate, respectively. Recently Alber 0O -1 0
[14] used this idea of Gisin to prove that the upper bound in K=|l1 0 o 4.10
the fidelity of the antisymmetric entangling is equal to unity. z ' '
The no-signaling constraint can also be used to derive an 0 0 O
upper bound on the fidelity of the entangling operation given
in Eq. (4.1) [22]. We will present a proof, which is based on /& have that
the methods developed in R¢R1], that this upper bound is L ‘ -
P e21] PP upM(myu—t=pM(Rm), (4.10)

F=1/3, which means that theNOT gate(4.3) serves as the

optimal universal entangler in the sense of E4.1). ) ) (U)o .
We consider a process in which a single-particle inputvhich will be mapped t@™“”(Rm), so that the covariance

state is mapped into a two-particle output state. The inpugondition can now be expressed as

state can be represented as - R
pCYOYRM=uxupCWmu teul. (412

piM(m)=3(1+m-o), (4.5 _ _ _
Now let us examine the consequences of this relation. We

shall first consider the terms linear inand letR be a rota-

wherem is a real vector whose length is less than or equal tdion aboutm by a very small angle). We have that
unity. The most general two-particle output state, which is o o
Hermitian and has a trace equal to one, can be expressed as a(Rm)=Ra(m), (4.13

022303-9
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which for our choice of rotation becomes
a(m)=(1+ 6m-K)a(m), (4.14
or
m-Ka(m)=0, (4.15

wherem is a unit vector in the direction ah. This implies
thatmx 5(rﬁ)=6, o) thatﬁ(rﬁ) is parallel tom, and we can

write a(m)=a(m)m. If we now substitute this result back
into Eq. (4.13 and consider a general rotatié) we have
that

a(Rm)=a(m). (4.16

This implies thala(rﬁ) is a constant, which, following, Ref.
[21], we shall denote by;.

PHYSICAL REVIEW A 62022303

The basis in which the matrix is expressed{jis-z,+2),|
+2,-2),|-2,+2),|]—-2,—2)}, where g,|*2)=+|z). This
matrix must be positive, which implies that the eigenvalues

#(1+2p+t) and %(1—tt2\/t2+tzy) (4.2

must be non-negative.

For an input statep("(Z) our desired output state is
(| +2,—2)+|—2,+2))/\2, and this implies that the fidelity
of p®W is

F="—. (4.22

This is clearly maximized whenis as large as possible, and
examining the eigenvalues pf°"9, this happens whety,
=0 andt=1/3. Substituting this into the expression for the

Now let us see what covariance implies about the termsidelity, we see that the maximum fidelity is 1/3. This means

quadratic inc. Application of the covariance condition, Eq.
(4.12), to these terms gives

th(Rﬁ']): z R”rRkkytj,k,(rF]). (417)
j,,k/

If we again chooseR to be a rotation aboum by a small
angle d, we find the condition

0=2, (m- IZ)jj M)+ (M- IZ)kk'tjk'(rﬁ)-
= =
' 4.18

If we choosem to be in thez direction, in particulam=z,
we find, as did Gisin, that,,=ty,, t,,=—ty, andt,,=t,,
=t,,=t,,=0, where all of these are evaluatednat z. We

that the no-signaling constraint specifies the upper bound on
the fidelity of the symmetric entangling that is exactly the
same one as achieved by theloT gate. This proves that the
entangling via thevoT gate is optimal.

C. Remark

We note that using the universabTt gate one can also
produce an entangled state of the fai3rl). Specifically, the
U-NOT gate allows Charlie to produce an entangled state,
consisting of| ') and one of two known states, which is
shared by Alice and Bob. In order to see how this can be
accomplished it is useful to express the state on the right-
hand side of Eq(4.3) as

VE(w) (@) +w) o) ), (423

now want to impose the no-signaling condition where
(outy /5 (out), _ 5\ (out) g (out), _ g
P+ (== p R+ ), (W)W = [wH[¥)  (0)1)-[1)]0))
(4.19 | _)= % = %
and to do so we need to find all of the density matrices in the (4.249

above equation in terms m]‘k(i). This can be done by ap-
plying the covariance condition, E@.12), to p°“9(z) and
making the proper choice d® When these results are sub-
stituted into Eq.(4.19 we find thatt,(2) =t,,(2) =t,42),
and we shall designate this common valuet{g). We then
have that

pu9(2)
1427+t 0 0 0
1 0 1-t  2(t+ityy) 0
"4 0 2At—it,y)  1-t 0
0 0 0 1- 27+t
(4.20

is the singlet state. Charlie now measures his particle along
the axis corresponding to the sta{€@ and|1). Whatever
result he obtains for his particle, the other two particles will
be in an entangled state shared by Alice and Bob. For ex-
ample, if Charlie finds his particle in the stafie, Alice and
Bob share the state in E(.1). Note that Charlie can choose
the states with which the stafe’) will be entangled by
choosing the axis along which to measure his particle.

This implies that if we want to produce either the en-
tangled state of¥) with |0) or the entangled state ¢¥)
with |1), and we don't care which one we get, this can be
done with perfect fidelity. Perhaps a better way of stating this
is that if we want to entanglel’) with one of two orthogonal
states, this can be done perfectly, and we will know with
which state it is entangled.
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V. CONCLUSIONS [10]. We have shown that the-NOT gate optimally imple-
ments the entanglement transformati¢f’)—|¥)|¥+)
+|W+)|W). This means that the transformatioh3) is very

o yosaesd e e s s o e et descres e opmal coning, h opina
brep b ; b U-NOT transformation, as well as the optimal entangler.

when the state of one of the qubits is known while the sec-
ond state is arbitrary. We have shown that entanglement via
symmetrization in this case can be performed with a very
high fidelity (much higher than the fidelity of estimatipn We thank Nicolas Gisin and Christoph Simon for helpful
This type of entanglement can be very useful for stabilizatiordiscussions. This work was supported by the National Sci-
of the storage of arfiunknown quantum state of one qubit ence Foundation under Grant No. PHY-9970507 and by the
against environmental interaction and a random imprecisiohST project EQUIP under Contract No. IST-1999-11053.

In this paper we have studied various possibilities for en
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