
Stim u lated em ission v ia qu an tu m in te rfe ren c e : scatterin g of
on e -photon pac ke ts on an atom in a grou nd state

G. DROBNYÂ {, M. HAVUKAINEN{ and V. BUZÏ EK{}

{ Institute of Physics, Slovak Academy of Sciences, DuÂ bravskaÂ cesta 9,
842 28 Bratislava, Slovakia
{ Helsinki Institute of Physics, PO Box 9, FIN-00014 University of
Helsinki, Finland
§ Faculty of Informatics, Masaryk University, BotanickaÂ 68a,
602 00 Brno, Czech Republic

(Received 27 September 1999 )

Abstrac t. Usually it is assumed that the stimulated emission appears as a
consequence of the Bose± Einstein statistics of photons and that to observe this
e� ect at least two excitations have to be initially present in the atom± ® eld
system. T hat is, both the atom and the electromagnetic ® eld have to be excited.
In this paper we show that stimulated emission can appear exclusively as a
consequence of quantum interference in a system with just a single excitation.
Speci® cally, we consider a single two-level atom which is initially in its lower
energy state and it interacts with a single-photon multi-mode wave packet. We
show that for a proper choice of the photon-wave packet the atom can exhibit
stimulated emission.

1. In trod uc tion
In this paper we study a simple microscopic model describing the interaction of

a single two-level atom with a multi-mode electromagnetic ® eld in a perfect cavity.
Our task is to study the time evolution of an atom which is initially prepared in a
ground state. T his atom interacts with a single-photon wave packet. We show that
within this one-excitation subspace one can observe stimulated emission. Usually
the stimulated emission is presented as a process when an incident light ® eld
stimulates the decay of an excited atom so that the e� ective decay rate is larger than
the vacuum-decay rate given by the Fermi golden rule [1, 2]. That is, the e� ect is
usually associated with dynamics of the atom± ® eld system with at least two
excitations.

We show that the e� ect of the stimulated emission can be observed also in the
case when the atom is not initially excited and the electromagnetic ® eld contains
just a `single’ photon. We show that the time evolution of the atom depends on the
initial shape of the one-photon wave packet. Speci® cally, we investigate the
situation when the one-photon wave packet has a t̀wo-peak’ structure. Intuitively
speaking, the ® rst peak of the photon-wave packet excites the atom while the
second peak via quantum interference can stimulate the emission of the excited
atom. We show that in the system with just a single excitation the e� ect of
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stimulated emission intrinsically depends on the phase between components
(peaks) of the two-peak single-photon wave packet.

2. Th e m od e l
We consider a single two-level atom in a one-dimensional (1D) cavity with

perfect mirrors. The interaction between the atom and the cavity ® eld is treated
within the dipole and the rotating- wave approximations neglecting all polarization
and mechanical e� ects (i.e. the atom is considered to be a point- like particle with
an in® nite mass).

The free Hamiltonian for the N cavity ® eld modes (this corresponds to the
introduction of a frequency cut-o� ) and the two-level atom can be expressed as [1]

Ĥ0 ˆ -h
XN

nˆ1
!nây

nân ‡
-h
2 !a ¼̂z : …1†

Here ân and ây
n are the annihilation and creation operators of the nth mode,

¼̂z ˆ jei hej ¡ jgihgj ; jei and jgi denote the upper and lower atomic states , respect-
ively. At the edges of the cavity, r ˆ 0 and r ˆ L , there are perfect mirrors, thus the
space-mode functions are gn…kn ; r† ˆ sin …knr†, where kn ˆ !n=c ˆ nº=L (the cut-o�
frequency is !N ; c is the velocity of light). The interaction Hamiltonian in the
dipole and the rotating- wave approximations (RWA) reads [1, 3]

Ĥint ˆ ¡ -h
XN

nˆ1
¶n ân¼̂‡ ‡ ây

n ¼̂¡ ; …2†

where the pseudo spin-¯ ip operators are ¼̂‡ ˆ jeihgj and ¼̂¡ ˆ jgihej. The position-
dependent coupling constant ¶n is given by the expression

¶n ˆ !n

-h°0L

¡ ¢
1=2

deg sin …knra†; …3†

where deg denotes the dipole matrix element of the atom at the position ra.
The amplitude of the electric and magnetic ® elds inside the cavity can be

expressed as (in the Coulomb gauge, neglecting polarization)

Ê…r† ˆ
X

n

-h!n

°0L

¡ ¢
1=2

ân ‡ ây
n

¡
sin …knr†; …4†

B̂…r† ˆ i
X

n

-h!n·0

L

¡ ¢
1=2

ân ¡ ây
n

¡
cos …knr†; …5†

where kn ˆ !n=c.
The total Hamiltonian Ĥtot ˆ Ĥ0 ‡ Ĥint describes the system of N cavity

modes interacting with one two-level atom. Because of the RWA the total number
of excitations in the system, R̂ ˆ 1

2 ¼̂z ‡ 1… † ‡
P N

nˆ1 ây
nân , is an integral of motion.

T he dynamics restricted to the one excitation in the system is described by the
state vector (an eigenstate of R̂)

jC…t†i ˆ a…t†jeiAj0iF ‡
X

n

bn…t†jgiAj1niF: …6†
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Here jeiAj0iF denotes the state vector with the atom excited, and the ® eld modes in
the vacuum ; jgiAj1niF denotes the state vector with the atom in the lower state, and
the nth ® eld mode in a one-photon Fock state and the other modes in the vacuum.

In the following we will study the time evolution of two observables, the
excitation of the atom and the mean value of the energy density I…r; t† of the cavity
® eld. When the state vector of the atom± ® eld system is given by expression (6) then
I…r; t† reads

I…r; t† ˆ h: °0Ê2…r† :i ˆ
X

n

-h!n

L

¡ ¢
1=2

bn sin …knr†
2

; …7†

where the colons denote the normal ordering, which is introduced in order to
eliminate contributions of the vacuum.

Even though there exists the integral of motion R̂ in our model, it is di� cult to
solve the model analytically in a closed form. T herefore we will study the dynamics
of our system numerically. We utilize the straightforward diagonalization of the
total Hamiltonian. We assume the Hilbert space of the cavity modes can be
truncated (i.e. we e� ectively apply the frequency cut-o� ) so that the Hamiltonian
under consideration can be represented as a ® nite matrix. Then we ® nd eigen-
values Ej and eigenvectors jFji of Ĥtot . The state vector jC…t†i can then be written
as

jC…t†i ˆ
X

j

exp ‰¡iEj…t ¡ t0†ŠjFjihFjjC…t0†i: …8†

T his method is conceptually very simple, and in our simulations works ® ne.

2.1. Master equation for the atom
The atom and the ® eld modes in an ideal cavity represent a closed system. The

unitary dynamics of this system is governed by the SchroÈ dinger equation. On the
other hand, the atom represents just a subsystem of the whole atom± ® eld system.
T he non-unitary time evolution of the atom is governed by the master equation for
the atomic density operator in the form (for the details of how to derive this master
equation see [4])

@

@t «̂ ˆ i ¯…t†
2 «̂ ; ¼̂‡ ¼̂¡‰ Š ‡

G…t†
2

2¼̂¡«̂¼̂‡ ¡ ¼̂‡ ¼̂¡«̂ ¡ «̂¼̂‡ ¼̂¡‰ Š ; …9†

where the time-dependent parameter G…t† and the time-dependent dynamical
energy shift ¯…t† can be expressed through the probability amplitude a…t† de® ned
in equation (6) as

G…t† ˆ Re ²…t†‰ Š ; ¯…t† ˆ Im ²…t†‰ Š ;

²…t† ˆ ¡ 2
a…t†

da…t†
dt :

…10†

In general, the parameter ²…t† can only be evaluated numerically, although
analytical approximations can be derived e� ectively as well (see [1] and references
therein). When the time-dependent parameter G…t† is negative then it is related to
the absorption rate of the atom in the electromagnetic ® eld. On the other hand, if
G…t† > 0 then it is related to the decay rate of the atom. In our work we will
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consider mainly the situation when G…t† is positive and therefore we will call this
parameter the decay rate. From the Weisskopf ± Wigner theory [5] it follows that
the initially excited atom coupled to a continuum of the vacuum ® eld modes in 1D
free space decays exponentially to its ground state. T he population of the excited
atomic level Pe decays exponentially with a constant decay rate Ga given by the
Fermi golden rule [1, 5]

Ga ˆ !ajdegj2

°0 -hc ; Pe…t† ˆ exp …¡Gat†: …11†

It can be shown (see [3]) that when in our model the atom is initially excited, then,
with appropriate limits, the decay rate G…t† given by equation (10) takes the value
given by the Fermi golden rule.

3. Scatte ring of a Gaussian one -ph oton w ave packe t on an atom
In this section we will simulate propagation of a one-photon wave packet in the

1D cavity and its scattering on the two-level atom. We will show that during the
process of scattering the atom acts as a semi-transparent mirror (or a beam
splitter).

We consider the one-photon wave packet to be composed of one-photon
number states of various cavity modes:

jC…0†iF ˆ
XN

n 1̂

exp …¡iknr0†f …kn†j1niF: …12†

T he weight function f …kn† in equation (12) is given by the character of the ® eld
excitation in the cavity. In particular, we assume that the weight function is a
discrete Gaussian function of the form

f …kn† ˆ 1

N 1=2 exp ¡
…kn ¡ k0†2

4D2
k

" #

; …13†

centred in k-space around k0 with the dispersion Dk ; N ˆ …2ºD2
k†1=2 is the

corresponding normalization factor.
In the absence of the atom the one-photon wave packet (12) propagates `freely’

in the empty cavity{. Obviously, the total energy of the cavity ® eld as well as the
populations (spectrum) of the cavity modes are constant during the time evolution.
T he state vector jC…t†iF of the cavity ® eld at time t is given by equation (12) with
r0 ! r…t† ˆ r0 ‡ ct. It means that, except during the re¯ ections on the mirrors{,
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{ T he wave packet (12) with the exponential factor ¡iknr0 starts to propagate from left to
right; the exponential factor ‡ iknr0 corresponds to the propagation in the opposite direction.

{ For the ideal mirrors assumed here, the electric component of the ® eld on the mirror is
equal to zero. During the process of re¯ ection the shape of the energy density is transiently
changed. Its shape is `squeezed’ and exhibits an interference structure with pronounced
maxima and minima. Within the framework of our model this re¯ ection can be understood
as a speci® c interference between various modes which compose the wave packet. T hat is,
phases ¿n associated with di� erent modes evolve di� erently (i.e. ¿n ˆ !nt ¹ nt), which
results in a speci® c interference pattern which we observe as a propagation/re¯ ection of the
wave packet.



the energy density (7) preserves its shape and its peak being initially localized at
the position r0 moves with the velocity of light along r…t† ˆ r0 ‡ ct. We note that
this type of free motion of a photon wave packet and its re¯ ection from a mirror
was studied as early as the 1930s by Fermi [6]. In the presence of a single atom in
the cavity the picture is changed considerably. Let us now assume that the initial
wave packet (12) propagates towards the de-excited two-level atom which is
positioned at the cavity centre (ra ˆ L =2).

The scattering of the Gaussian one-photon wave packet on the atom is
intuitively clear. The irradiated atom partially absorbs the energy from the
impinging one-photon wave packet. As soon as the atom is partially excited it
starts to `re-emit’ the energy back to the ® eld{. T he scattering of the Gaussian
wave packet on the atom in the cavity centre is visualized in ® gure 1 in terms of the
energy density of the cavity ® eld. T he frequency dispersion of the wave packet is
Dk ˆ 1:2Ga, where Ga is the decay rate of the atom. (In our calculations we chose
units such that Ga ˆ º.) The t̀ransmitted’ part of the wave packet (travelling in the
direction of the original wave packet) consists of two peaks. The ® rst one
corresponds to the attenuated original wave packet (i.e. f̀reely’ propagating part
of the original wave packet) while the delayed second peak describes the re-emitted
radiation in the given direction. The `re¯ ected’ part of the wave packet is only due
to the re-emitted radiation.

The relation between the transmitted and the re¯ ected radiation depends
mainly on the frequency of the carrier mode and the frequency dispersion of the
original wave packet compared to the decay rate of the atom. Obviously, too wide a
Gaussian pro® le in the frequency domain causes only a small fraction of the cavity
modes, being close to the atomic resonance (§Ga) , to interact with the atom.
Consequently, just a fraction of the energy is re¯ ected. In our particular case with
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{ T he two-level atom acts as a quantum beam splitter or quantum semi-transparent mirror.
After all the energy absorbed by the atom is irradiated back to the ® eld, we may say that the
energy is partially `transmitted’ and partially `re¯ ected’.
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Figure 1. We present normally-ordered energy density of the Gaussian wave packet
(r0 ˆ 2, Dk ˆ 1:2Ga) which is scattered on the atom positioned in the cavity centre
(ra ˆ L =2). T he energy density of the cavity ® eld is shown at times t ˆ 0 and
t ˆ 3:5. T he other settings are L ˆ 2º, Ga ˆ º and c ˆ 1 in dimensionless units.



Dk ˆ 1:2Ga (see ® gure 1) the ratio between the transmitted and re¯ ected energy is
61%:39%. On the other hand, more narrow (in the frequency domain) photon wave
packets lead to a more e� cient absorption of the incident radiation by the atom.
Moreover, the absorbed radiation is preferably re-emitted in the backward
direction. Namely, for Dk ˆ 0:6Ga one gets the ratio 39%:61% between the
transmitted and re¯ ected energy. Making the incident wave packet e� ectively
`monochromatic’ with Dk ½ Ga, even more than 95%of the incident radiation can
be re¯ ected which is rather surprising, because in our 1D model we assume a left±
right symmetry, so the originally excited atom irradiates its energy in both
directions with equal probabilities (for details see [3]). What we observe in the
present case is the result of quantum interference between the re-emitted light and
the incident photon wave packet.

We note that due to the position dependence of the atom± ® eld coupling
constant the even modes of the cavity ® eld are decoupled from the atom positioned
in the cavity centre (at ra ˆ L =2 the mode functions sin …knra† ˆ 0 for even n). It
means that only the odd modes can excite the atom. Right after the moment when
the atom becomes maximally excited the envelope of the spectrum associated only
with odd cavity modes has the shape of the absorption line with a minimum
around the atomic resonant frequency. When all the energy absorbed by the atom
is irradiated back to the ® eld the initial spectrum of the cavity modes is recovered.
Because even modes have zero coupling coe� cients only half of the radiation
interacts with the atom. Nevertheless, when the width of the Gaussian photon
wave packet is Dk ˆ 0:6Ga more than half of the radiation is re¯ ected (and even
more for smaller Dk). This peculiar behaviour of the energy density illustrates the
intriguing features of the involved interference between various modes which form
the photon wave packet. It resembles the interference e� ect responsible for the
re¯ ection of the wave packet on the cavity mirrors (boundaries).

4. Stim u late d e m ission w ith n on -Gaussian on e -ph oton pac ke ts
Scattering of non-Gaussian one-photon wave packets on atoms is very inter-

esting. Let us assume the one-photon wave packet to be a superposition of two
mutually shifted Gaussian packets, i.e.

jC…0†iF ˆ
XN

n 1̂

N ¿‰exp …¡iknr1† ‡ exp …¡iknr2 ¡ i¿†Šf …kn†j1niF ; …14†

where r1 , r2 are initial positions of two peaks of the energy density (7) associated
with particular Gaussian components which enter equation (14) ; ¿ denotes the
mutual phase shift of the Gaussian components with f …kn† given by equation (13) ,
and N ¿ is a normalization factor.

It turns out that the scattering of the wave packet (14) with the separation of the
Gaussian components jr1 ¡ r2j c=Ga depends very sensitively on the phase shift
¿{. In particular, let us present those values of ¿ for which the minimum and
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{ An analogous situation, when dynamics of a molecular system is controlled via a laser-
induced quantum interference, has been discussed by Shapiro and Brumer [7]. Never-
theless, there is a fundamental di� erence between the two approachesÐ in our case we
`control’ dynamics of the atom by a single photon wave packet. Shapiro and Brumer consider
the control via laser (multiphoton ) ® elds.



maximum excitation of the atom is achieved. In ® gure 2 (b) we show the scattering
of the wave packet (14) with the phase shif t ¿ ˆ 1:3º of the Gaussians components
(r1 ˆ 2, r2 ˆ 1:6, Dk ˆ 1:2Ga). T he total energy density of the cavity ® eld consists
initially of just one peak, which means that owing to the interference the Gaussian
components are indistinguishable. T herefore the picture for the t̀ransmission’ and
`re¯ ection’ of the wave packet on the atom positioned in the cavity centre does not
di� er qualitatively from that in ® gure 1. Also the time-dependent atomic decay
rate G…t† de® ned by equation (10) con® rms that the decay of the atom is not
changed signi® cantly, i.e. G…t† is close to the `reference’ decay rate induced by the
one-component Gaussian wave packet (12) (see ® gure 2 (d)). Analogously, the time
evolution of the excitation of the atom (see ® gure 2 (c)) is essentially equivalent in
both cases, i.e. the excitation probability exhibits a single peak. On the other hand,
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Figure 2. Scattering of the one-photon wave packet made of two Gaussian components
(r1 ˆ 2:0, r2 ˆ 1:6, Dk ˆ 1:2Ga) on the atom positioned in the cavity centre
(ra ˆ L =2). In (a) we present the energy density of the cavity ® eld at times t ˆ 0 (- - -)
and t ˆ 3:5 (Ð ) for the one-photon wave packet (equation (14)) with the phase shift
of components ¿ ˆ 0:3º. In (b) the energy density of the ® eld mode is represented
when the phase shift between the Gaussian components is ¿ ˆ 1:3º. In (c) we
present the time evolution of the atomic excitation for ¿ ˆ 0:3º (- - -) and ¿ ˆ 1:3º
(Ð ). In (d) we present the time-dependent atomic decay rate G…t† for ¿ ˆ 0:3º (Ð )
and ¿ ˆ 1:3º (- - -). For reference the Gaussian photon wave packet considered in
® gure 1 is shown (¢ ¢ ¢) as well. T he constant value of G…t† for times t ¶ 2 (in chosen
units) is equal to Ga ˆ º, i.e. the value given by the Fermi golden rule.



changing the phase shif t to ¿ ˆ 0:3º a two-peak structure of the initial energy
density is resolved as shown in ® gure 2 (a). The time evolution of the excitation of
the atom in the cavity centre re¯ ects the two-peak structure of the incident energy
density. A more detailed view o� ers the corresponding time-dependent atomic
decay rate G…t† shown in ® gure 2 (d). Speci® cally, we can observe a highly
enhanced decay rate associated with re-emission of radiation absorbed from the
® rst peak in the energy density. T his behaviour can be understood as a stimulated
emission of the atom. It means that re-emission of the radiation absorbed from the
® rst peak of the incident energy density is stimulated by the incident second peak
of the initial energy density. This is indicated by an anomalous increase of the
time-dependent decay rate G…t† (solid line in ® gure 2 (d)). A more traditional
con® rmation o� ers the picture of the completely re-emitted radiation from the
atom shown in ® gure 2 (a). T he `re¯ ected’ part of the photon wave packet is highly
suppressed, which means that the atom preferably re-emits the absorbed radiation
in the direction of the incident wave packet. Namely, in ® gure 2 (a) with ¿ ˆ 0:3
only 14%of the incident radiation is re-emitted backwards (`re¯ ected’ ) while 86%
of the energy is propagating forwards. For comparison, in ® gure 2 (b) with ¿ ˆ 1:3
the balance between the re¯ ected and transmitted radiation is 52%to 48%.

From our results it follows that for a properly chosen phase shif t between
Gaussian components of the two-peak singe-photon wave packet, one can observe
the e� ect of stimulated emission with the decay rate transiently increased by an
order of the magnitude. This `microscopic’ e� ect of the stimulated emission is
exclusively caused by quantum interference.

To appreciate the role of quantum interference we compare the results for the
one-photon wave packet prepared as the superposition of two mutually shifted
Gaussian packets (14) with the corresponding mixture which is described by the
initial density operator

«̂…t ˆ 0†F ˆ N mix ‰«̂…0; r1†F ‡ «̂…0; r2†FŠ: …15†

T he component density operators «̂…0; rj†F ˆ jC…0; rj†iFhC…0; rj †j correspond to the
state vectors given by equation (12) with r0 ! rj .

We plot the time evolution of the energy density when the initial one-photon
wave packet is represented as a statistical mixture of two Gaussians in ® gure 3 (a).
We see a striking di� erence between this case and the case represented in
® gure 2 (a) when the wave packet is in a pure superposition state. In particular ,
the amount of radiation re¯ ected by the atom is much larger in the case when the
wave packet is represented by a two-peak mixture. (The ratio between the re¯ ected
and transmitted radiation for the mixture (15) is the same as for the single
Gaussian wave packet (12).) Moreover, in this case the decay rate (shown in
® gure 3 (b)) does not exhibit an increase which is typical for the stimulated
emission (compare with ® gure 2 (d)).

It is worth noticing that the results considered in this paper also apply for
scattering of photon wave packets on an ensemble of M identical two-level atoms
(for references see [3]) which are con® ned in a small space region (compared to the
resonant wavelength). E� ectively, the dipole moment deg is replaced by degM1=2

thus appreciably increasing the strength of the atom± ® eld interaction. It means
that such an ensemble of atoms acts as a quantum semi-transparent mirror (for
Gaussian packets) and its re¯ ectivity is related to the density of atoms.
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5. Conc lu sion s
All the e� ects considered in this paper have a common denominatorÐ quantum

interference of probability amplitudes. We have focused our attention on the
scattering of one-photon wave packets on a single atom initially prepared in the
ground state. We have shown that one atom behaves as a semi-transparent
quantum mirror{. However, the balance between the t̀ransmitted’ and the
`re¯ ected’ radiation depends mainly on shapes of incident photon wave packets.
Moreover, a proper shape of the incident wave packet can enhance the re-emission
rate and the stimulated emission can be observed.

Certainly there are many questions one can ask at this point. For instance, is it
possible to engineer single-photon wave packets of speci® c forms? It is unlikely
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Figure 3. Scattering of the mixture of two mutually shifted Gaussian wave packets
(r1 ˆ 2:0, r2 ˆ 1:6) on the atom in the cavity centre (ra ˆ L =2). (a) T he energy
density of the cavity ® eld at t ˆ 0 (- - - ) and t ˆ 3:5 (Ð ). (b) T he time-dependent
atomic decay rate G…t† for the mixture (Ð ). T he reference (¢ ¢ ¢) corresponds to the
Gaussian wave packet from ® gure 1.

{ Let us note that the mean value of the electric ® eld (4) in one-excitation states (6) is
equal to zero. On the other hand the superposition state

jC…0†iF ˆ ‰
P N

n 1̂ exp …¡iknr0†f …kn†j1niF ‡ j0 >FŠ=21=2

possesses a non-zero mean value of the electric ® eld. T his state vector describes what we
could call a one-half photon wave packet (i.e.

P
nhây

n âni ˆ 1=2). T he novel feature in the
propagation of the one-half photon wave packet is that the phase of the mean value of the
electric ® eld in the `re¯ ected’ part of the wave packet is shifted by º which (again) suggests
that a single two-level atom plays the role of a quantum semi-transparent mirror.



that this would be possible with cavity ® elds. Nevertheless, as a matter of principle
it is important to understand the microscopic nature of the stimulated emission.
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