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Abstrac t. The action of a NOT gate on a classical bit results in a change of its
value from a 0 to a 1 and vice versa. The action of the classical NOT gate is in
principle perfect because with ® delity equal to unity it complements the value of a
bit. The action of the quantum NOT gate in a computational basis j 0i and j 1i is
very similar to the action of the classical NOT gate. However, a more general
quantum mechanical operation which corresponds to a classical NOT gate would
take a qubit in an arbitrary state j Ci and produce a qubit in the state j C? i
orthogonal to j Ci. This operation is anti-unitary and therefore, cannot be realized
exactly. S o how well we can do? We ® nd a unitary transformation acting on an
input qubit and some auxiliary qubits, which represent degrees of freedom of the
quantum NOT gate itself, which approximately realizes the NOT operation on
the state of the original qubit. We call this `device’ a universal-NOT gate because
the size of the error it produces is independentof the input state. We show that an
optimal U-NOT gate which has as its input N identical qubits and produces M
outputs achieves a ® delity of F ˆ … N ‡ 1† = … N ‡ 2† , which is equal to the ® delity
of estimation of the input qubits. We also show that when a priori information
about the state of the input qubit is available, the ® delity of a quantum NOT gate
can be much better than the ® delity of estimation.

1. In trod u c tion

In order to utilize the full potential of quantum information processing, we
have to understand clearly what are the `rules of the game’ . In particular, the limits
within which quantum information can be manipulated have to be determined. T o
be speci® c, quantum information is represented by qubits which are two-level
quantum systems with one level labelled j 0i and the other j 1i. Qubits can be not
only in one of the two levels, but in any superposition of them as well. T his fact
makes the properties of quantum information quite di� erent from those of its
classical counterpart. For example, it is not possible to construct a device which
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will perfectly copy an arbitrary qubit [1± 4] while the copying of classical informa-
tion presents no di� culties. T his impossibility of copying (cloning) quantum
information puts fundamental limits on the amount of information extractable
from ® nite ensembles of identically prepared quantum systems [5, 6].

Another di� erence between classical and quantum information is as follows: It
is not a problem to complement a classical bit, i.e. to change the value of a bit, a 0
to a 1 and vice versa. T his is accomplished by a NOT gate. Complementing a qubit
in an unknown state, however, is another matter. T he complement of a qubit
j C i ˆ ¬ j 0i ‡ - j 1i is the qubit j C ? i ˆ - ¤ j 0i ¡ ¬¤ j 1i which is orthogonal to it. T he
question is: Is it possible to build a device which will take an arbitrary qubit and
transform it into the qubit orthogonal to it?

T he best intuition for this problem is obtained by looking at the desired
operation as an operation on the Bloch (PoincareÂ ) sphere, which represents the set
of pure states of a qubit system. T hus every state, pure or mixed, is represented by
a vector in a three-dimensional space, whose components are the expectations of
the three Pauli matrices. T he full state space is thereby mapped onto the unit ball,
whose surface represents the set of pure states. In this picture the ambiguity of
choosing an overall phase for j C i is already eliminated. T he points corresponding
to j C i and j C ? i are antipodes of each other. T he desired Universal NOT (U-
NOT ) operation is therefore nothing but the inversion of the Bloch sphere.

Note that the inversion preserves angles (related in a simple way to the scalar
product j hF ;C i j of rays), so by Wigner’ s T heorem the ideal U-NOT must be
implemented either by a unitary or by an anti-unitary operation. Unitary opera-
tions correspond to proper rotations of the Bloch sphere, whereas anti-unitary
operations correspond to orthogonal transformations with determinant ¡ 1.
Clearly, the U-NOT operation is of the latter kind, and an anti-unitary operator
Y (unique up to a phase) implementing it is

Y … j C i† ˆ j C ? i: … 1†

T he di� culty with anti-unitarily implemented symmetries is that they are not
completely positive, i.e. they cannot be applied to a small system, leaving the rest
of the world alone. (T he tensor product of an anti-linear and a linear operator is ill-
de® ned). T hus time-reversal, perhaps the best known operation of this kind, can
only be a global symmetry, but makes no sense when applied only to a subsystem.
By de® nition, a `gate’ is an operation applied to only a part of the world, so must be
represented by a completely positive operation. By the Stinespring Dilation
T heorem [7] (see [8, 9] for a version adapted to our needs) this is equivalent to
saying that any gate must have a realization by coupling the given system to a
larger one (some ancillas), performing a unitary operation on the large system, and
subsequently restricting to a subsystem. Hence an ideal U-NOT gate does not
exist.

T he same is true, of course, for other anti-unitarily implemented operations
like the complex conjugation (or equivalently the transposition) of the density
matrix, which corresponds to the re¯ ection of the sphere at the x2 ˆ 0 plane,
because only the Pauli matrix ¼2 has imaginary entries. Clearly, any such operation
can be represented by a U-NOT , followed by a suitable unitary rotation, and
conversely. On the other hand, if we relax the `universality’ condition, the U-NOT
operation may become viable: if we are promised that the elements of the density
matrix (or the components of j C i) are real, the states lie in the x2 ˆ 0 plane so that
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the inversion at the centre is equivalent to a proper rotation by p around the x2-
axis.

Because we cannot design a perfect Universal-NOT gate, we would like to see
how close we can come. T he most straightforward approach would be just to
measure optimally [10± 12] the input state j C i, resulting in a description of the state
in terms of classical parameters, then to perform the desired transformation on
these parameters, and to prepare a new state with the transformed parameters.
T his idea can be applied to any transformation on density matrices, be it com-
pletely positive or anti-linearly implemented. It even applies to non-linear opera-
tions or to the reversal of the e� ects of noise. T he only problem with this approach
is that states (pure states or density matrices) can only be determined statistically.
T herefore, the input cannot be a single system, but has to be a collection of, say N ,
identically prepared systems. T he quality of the result will depend on N , and will
become perfect in the limit N ! 1 .

One task to which this approach has been applied is cloning. T he single input
or `one-shot’ version of this problem requires the production of two quantum
systems, both in the same state as a given (unknown) input state, and is forbidden
by the No-Cloning T heorem [1, 4]. T he multiple input version [13] asks, more
generally, for the optimal way to increase the number N of identically prepared
input systems to number N ‡ M of output systems, all in a state as close as
possible to the state of the inputs. In the case of pure input states this optimization
problem has been solved completely [8, 9]. T he result is that the above scenario,
using a statistical measurement as an intermediate step is not optimal. Only when
either N or M goes to in® nity, i.e. either there are so many inputs that the
statistical measurement is very good, or else very many output systems are
required, the optimal solution approaches the classical, measurement-based one.

T hese results suggest that while a measurement-based method will produce a
good U-NOT gate in the limit of very many input systems, there might be a better
way, staying completely in the quantum world, and somehow utilizing the input
more coherently. However, in a sense complementing is harder than cloning: we
will show (at least in the pure input case) that the classical, measurement-based
method is indeed optimal. T he methods for this proof are very similar to those
needed for the cloning problem, and we refer to [9] for a broader explanation of
this background.

In this paper we will present a detailed description of the universal NOT gate
which has been introduced in [14]. T he presentation is organized as follows. In
section 2 we treat the simplest case, a single input U-NOT gate with a single
output. T he discussion here is at an elementary level, and we again show that a
perfect U-NOT gate is impossible after which we proceed to the description of an
approximate gate. We also explore the connection between a U-NOT gate and a
quantum cloner. In section 3 we use this connection to develop a network for the
U-NOT gate. T he role of a priori knowledge about the state of the input qubit is
analysed in section 4. In section 5 we present the multiple-input U-NOT gate the
optimality of which is proven in section 6. We conclude the paper with section 7.

2. Sin g le -in pu t U-NOT gate

We start the discussion with a single-input case. We will discuss ® rst the
measurement-based scenario, when the single qubit is ® rst optimally measured
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and, based on the result of the measurement, a complement is prepared. T hen we
will study the quantum scenario when the input qubit interacts with an additional
quantum system, the gate, and as a result of the unitary evolution of the whole
system, the qubit of interest, i.e. a subsystem, can be found in the state as
orthogonal as possible to the input.

2.1. Measurement-based scenario
Here we ® rst measure the original qubit and using the result of the measurement

we manufacture an orthogonal one. In the case of a single input qubit, the optimal
way to estimate the state, is to measure it along a randomly chosen direction in the
two-dimensional Hilbert space [10± 12]. T herefore, the ® rst step in implementing
the measurement-based procedure is choosing a random vector j ²i, where

j ²i ˆ cos … # 0 =2† j 0i ‡ exp … i’ 0 † sin … # 0=2† j 1i … 2†

and measuring j C i along it. If the result is positive, then the output is taken to be
j ²? i, and if negative, the output is j ²i. T his gives an output density matrix

«
… out† … ²† ˆ j hC j ²i j

2
j ²? ih²? j ‡ j hC j ²? i j

2
j ²ih² j : … 3†

T o get the ® nal output density matrix one averages this over all possible choices of
the measurement (i.e. over all vectors j ²i)

«
… out†

ˆ
1
4p

… 2p

0
d’ 0

… p

0
d# 0 sin # 0 «

… out† … ² † : … 4†

After the integration is performed we ® nd

«
… out†

ˆ s«? ‡
1 ¡ s

2
… 5†

where for a single input qubit we have s ˆ 1=3 and «? ˆ j C ? ihC ? j . T his is the best
`U-NOT operation’ performed via measurement and estimation of the original
qubit. It gives for the mean ® delity of the measurement-based U-NOT gate

F ˆ

…
d O«hC ? j «

… out†
j C ? i ˆ

2
3

… 6†

where d O « ˆ 1=4p sin # d# d’ is the corresponding integration measure. T he
advantage of the measurement-based scenario is that once the input qubit(s) is
measured and its state is estimated an arbitrary number of identical (approxi-
mately) complemented qubits can be produced with the same ® delity.

2.2. Quantum scenario
Let us now construct a unitary gate which complements an arbitrary qubit. As

discussed in the Introduction this cannot be done perfectly, and we review this
point. An approximate gate can be constructed by appending an ancilla to the
input qubit and performing a unitary transformation on the larger system. As we
shall see, the ancilla can be taken to be two qubits, and the whole system, the input
qubit and the two additional ones, is closely related to a quantum cloner.

We ® rst note that logical operations in quantum information processing are
usually de® ned in a speci® c basis. For instance the logical NOT operation de® ned as

N j 0i ˆ ¡ j 1i; N j 1i ˆ j 0i … 7†
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generates a complement (with some phase shift) to given basis vectors j 0i and j 1i.
I f it is known a priori that the qubit is in one of two mutually orthogonal basis
states (e.g. j 0i or j 1i) then the NOT operation can be performed via a simple
unitary rotation R… ³† de® ned as

R… ³† j 0i ! cos ³=2j 0i ¡ sin ³=2j 1i ;

R… ³† j 1i ! sin ³=2 j 0i ‡ cos ³=2j 1i
… 8†

with a speci® c angle of rotation ³ ˆ p. On the other hand, suppose that we want to
construct a gate which will take a qubit in an unknown state, j C i ˆ ¬ j 0i ‡ - j 1i (we
shall sometimes ® nd it convenient to represent ¬ and - as ¬ ˆ cos #=2 and
- ˆ exp … i’† sin #=2) and transform it into the state orthogonal to it,

j C ? i ˆ - ¤ j 0i ¡ ¬¤ j 1i … 9†

T hat this operation cannot be performed perfectly can be seen by considering the
action such a transformation must have on the basis states

j 0i ! exp… i¿0 † j 1i; j 1i ! exp … i¿1 j 0i … 10†

where the phases, ¿0 and ¿1 are, for the moment, undetermined. We then note that
there is no choice of these phases for which the output of our gate for a general
input state

j C i ! ¬ exp … i¿0† j 1i ‡ - exp … i¿1† j 0i … 11†

will be equal to j C ? i for all values of ¬ and - . T he problem is, of course, the
complex conjugates which appear in the orthogonal state. If ¬ and - are real, then
it is possible to realize this transformation by choosing ¿0 ˆ p and ¿1 ˆ 0. As we
have discussed this in the Introduction the transformation j C i ! j C ? i can be
realized by an anti-unitary transformation, Y , which transforms the basis vectors
as given by equation (7).

Quantum mechanics limits us to unitary transformations, so there is no
quantum gate which can realize the transformation Y . Because we cannot design
a perfect U-NOT gate, we would like to see how close we can come. T his entails
approximating an anti-unitary transformation on a two-dimensional Hilbert space
by a unitary transformation on a larger one. T he gate is assumed to have its own
degrees of freedom, and its quantum state is described by a vector in a Hilbert
space whose dimension is left, for now, unspeci® ed. We shall assume that the gate
is always in the same initial state, which we shall designate as j X i, and this state is
assumed to be normalized. Our gate can now be described by the transformation

j 0i j X i ! j 1i j Q 0i ‡ j 0i j Y 0i;

j 1i j X i ! j 0i j Q 1i ‡ j 1i j Y 1i
… 12†

where the vectors j Q j i, and j Y ji, for j ˆ 1 ;2, are states of the gate. Note that
because we need only specify four output states of the gate, we can assume that its
state space is four-dimensional. Unitarity implies these vectors must satisfy the
equations
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kQ0k 2
‡ kY 0k 2

ˆ 1;

kQ1k 2
‡ kY 1k 2

ˆ 1;

hQ 0 j Y 1i ‡ hY 0 j Q 1i ˆ 0:

… 13†

Using the transformation above we ® nd that for the input state j C i, the output
state is given by

«
… out†

ˆ j 0ih0j … j ¬ j
2kY 0k 2

‡ j - j
2kQ 1k 2

‡ ¬¤ - hY 0 j Q1i ‡ - ¤ ¬hQ1 j Y 0i†

‡ j 1ih1 j … j ¬ j
2kQ0k2

‡ j - j
2kY 1k2

‡ ¬¤ - hQ0 j Y 1i ‡ - ¤ ¬hY 1 j Q0i†

‡ j 0ih1 j … j ¬ j
2hQ 0 j Y 0i ‡ j - j

2hY 1 j Q1i ‡ ¬¤ - hQ0 j Q 1i ‡ - ¤ ¬hY 1 j Y 0i†

‡ j 1ih0 j … j ¬ j
2hY 0 j Q0i ‡ j - j

2hQ 1 j Y 1i ‡ ¬¤ - hY 0 j Y 1i ‡ - ¤ ¬hQ1 j Q0i† : … 14†

From this expression we can compute the mean ® delity given by equation (6) of
the output state:

F ˆ j ¬ j
4kQ0k 2

‡ ¬¤ - j ¬ j
2 … hQ0 j Y 1i ¡ hQ 0 j Y 0i† ‡ ¬- ¤ j ¬ j

2… hY 1 j Q 0i ¡ hY 0 j Q0i†

‡ j ¬ j
2

j - j
2… kY 0k 2

‡ kY 1k 2 ¡ hY 0 j Y 1i ¡ hY 1 j Y 0i† ¡ … ¬¤ - † 2hQ0 j Q 1i

¡ … ¬- ¤ † 2hQ1 j Q0i ‡ ¬- ¤ j - j
2 … hQ1 j Y 0i ¡ hQ 1 j Y 1i†

‡ ¬¤ - j - j
2 … hY 0 j Q 1i ¡ hY 1 j Q1i† ‡ j - j

4kQ 1k 2
: … 15†

Our ® rst requirement is that F be independent of ¬ and - . It is perhaps easiest
to see how this happens if we set

¬ ˆ cos … #=2† ; - ˆ exp … i’† sin … #=2† : … 16†

T he terms in equation (15) are either independent of ’, proportional to (exp § i’†

or proportional to exp… § 2i’† . Each of the terms with a particular kind of ’

dependence, except of course those which are independent of ’, must vanish. For
example, there are two terms proportional to exp … i’† , so their sum must vanish,
but each of these terms has a di� erent # dependence, so they must vanish
individually. Reasoning of this type gives us that each of the ’-dependent terms
is equal to zero. T his implies that

hQ 0 j Y 1i ˆ hQ0 j Y 0i;

hQ 1 j Y 0i ˆ hQ1 j Y 1i;

hQ0 j Q1i ˆ 0:

… 17†

We can take the remaining terms in equation (15) and express them as functions of
cos … #=2† . We then demand that the terms which are not independent of # vanish.
T his gives us that F ˆ kQ1k2 , and that

kY 0k 2
‡ kY 1k 2 ¡ kQ0k 2 ¡ kQ1k2

ˆ hY 0 j Y 1i ‡ hY 1 j Y 0i;

kY 0k 2
‡ kY 1k 2 ¡ 2kQ0k2

ˆ hY 0 j Y 1i ‡ hY 1 j Y 0i:

… 18†

216 V . BuzÏ ek et al.



T hese two equations imply that

kQ 0k 2
ˆ kQ1k2 … 19†

which together with the unitarity conditions, equation (13) further imply that

kY 0k 2
ˆ kY 1k 2

ˆ 1 ¡ kQ 0k 2
: … 20†

Let us now take into account the fact that we want to maximize F , which means
that we want to minimize kY 0k 2. I f we now substitute the results of the previous
two equations into equation (18) we ® nd that

kY 0k 2
ˆ 1

2 ‡ 1
4 … hY 0 j Y 1i ‡ hY 1 j Y 0i† : … 21†

I f we de® ne x to be

x ˆ
Re… hY 0 j Y 1i†

kY 0k 2 … 22†

then ¡ 1 4 x 4 1, and

kY 0k 2
ˆ

1
2 ¡ x

: … 23†

T he minimum of the right-hand side of this equation occurs when x ˆ ¡ 1. T his
implies that

kY 0k ˆ kY 1k ˆ

��
1
3

q
; kQ0k ˆ kQ1k ˆ

��
2
3

q
… 24†

and that j Y 0i ˆ ¡ j Y 1i. T his last condition in conjunction with equation (17) gives
us that both j Q 0i and j Q 1i are orthogonal to j Y 0i.

Summarizing our results we ® nd that the Hilbert space of the gate is 3-
dimensional, and that the vectors appearing in transformation in equation (12) can
be take to be

j Q0i ˆ

���
2
3

s
1

0

0

0
BBB
@

1
CCC
A

; j Q 1i ˆ

���
2
3

s
0

1

0

0
BBB
@

1
CCC
A

; j Y 0i ˆ

���
1
3

s
0

0

1

0
BBB
@

1
CCC
A

… 25†

and j Y 1i ˆ ¡ j Y 0i. T his gives F ˆ 2=3, and the qubit output state, obtained by
tracing over the gate states, is

«
… out†

ˆ 1
3 «? ‡ 1

3 : … 26†

Let us now choose a speci® c representation for the vectors j Q0i, j Q 1i, and j Y 0i
as vectors in the symmetric subspace of the state space of two qubits. In particular,
denote these qubits as qubits b and c (qubit a being the input qubit) and let

j Q0i ˆ ¡

��
2
3

q
j 00ibc;

j Q1i ˆ

��
2
3

q
j 11ibc;

j Y 0i ˆ
1���
6

p … j 01ibc ‡ j 10ibc† :

… 27†
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With this choice we ® nd that the NOT gate acts in the following way (for
convenience we assume that qubits b and c are initially in the state j 00ibc)

j C ia j 0ibj 0ic¡ !
��
2
3

q
j C ? ia j C ibj C ic ¡

1���
6

p j C ia j C ? ibj C ic ‡ j C ibj C ? ic

¡
: … 28†

If we now examine the reduced density matrixes of the individual qubits at the
output we ® nd that qubit 1 is in the state given in equation (26) and that qubits b
and c are both in the state

«
… out†

j ˆ 2
3 « ‡ 1

6 ; j ˆ b;c: … 29†

T he output states of qubits b and c are the same as the output states of the
Universal Quantum Cloning Machine (UQCM) [4]. T hat device can also be
realized with three qubits; one is the state we want to copy, which we assume to
be in the state j C i, one is a qubit onto which information about the quantum state
of the ® rst is to be copied, and the third, which has been called the `idle’ qubit,
represents degrees of freedom of the cloning machine. T he output of that device
consists of two qubits whose reduced density matrixes are given by equation (29),
and the `idle’ qubit which is in the state

«
… out†

ˆ 1
3 «T ‡ 1

3 … 30†

where the superscript T denotes the transpose. T his means that our 3-qubit
realization of the U-NOT gate is not identical to the previously developed
UQCM, but is very closely related to it. T here is, in fact, some ¯ exibility in the
de® nition of the UQCM in the choice of how the two vectors which represent the
degrees of freedom of the copy machine, correspond to the states of a single qubit,
and in the U-NOT gate we have made a di� erent choice from the original
realization of the UQCM. T he result is a quantum machine which is both the
optimal quantum copier, and the optimal U-NOT gate.

3. Qu an tu m n e tw ork for U-NOT gate

We can now use the relation between the U-NOT gate and quantum cloner to
derive a network for the U-NOT gate. T he network for the cloner is known [15,
16] and only minor modi® cations are necessary. Our network takes 3 input qubits
(one for the input with the two other qubits playing the r̂ole of the quantum U-
NOT gate) and transforms them into 3 output qubits. T he input qubit is indexed
by a, while the two gate qubits are indexed by b and c.

In the network we will use a single-qubit NOT gate R de® ned by equation (7)
and a two-qubit operator, the so-called controlled-NOT gate, which has as its
inputs a control qubit and a target qubit. T he control qubit is una� ected by the
action of the gate, and if the control qubit is j 0i, the target qubit is una� ected as
well. However, if the control qubit is in the j 1i state, then a NOT operation is
performed on the target qubit. T he operator which implements this gate, Pkl , acts
on the basis vectors of the two qubits as follows (k denotes the control qubit and l
the target):

Pkl j 0ik j 0i l ˆ j 0ik j 0i l ; Pkl j 0ik j 1i l ˆ j 0ik j 1i l ;

Pkl j 1ik j 0i l ˆ j 1ik j 1i l ; Pkl j 1ik j 1i l ˆ j 1ik j 0i l :
… 31†
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We can decompose the U-NOT gate network into two parts. In the ® rst part
the gate itself (qubits b and c) are prepared in a speci® c state j X i … prep†

bc . T hen in the
second part of the U-NOT network the information from the original qubit a is
redistributed among the three qubits. T hat is, the action of the quantum U-NOT
can be described as a sequence of two unitary transformations

j C i … in†
a j 0ibj 0ic¡ ! j C i … in†

a j X i … prep†

bc ¡ ! j C i … out†

abc : … 32†

Prior to any interaction with the input qubit we have to prepare the quantum
U-NOT gate qubits (b and c) in a speci ® c state j X i … prep†

bc

j X i … prep†

bc ˆ C00 j 00ibc ‡ C01 j 01ibc ‡ C10 j 10ibc ‡ C11 j 11ibc … 33†

with the amplitudes Cij

C00 ˆ

��
2
3

q
; C01 ˆ C10 ˆ

1���
6

p ; C11 ˆ 0: … 34†

T he state (33) can be prepared with the help of a simple network [17] which is
shown in the left block in ® gure 1.

Once the qubits of the quantum U-NOT gate are properly prepared then the
complementing of the initial state j C i … in†

a of the original qubit can be performed by
a sequence of four controlled-NOT operations followed by a single NOT opera-
tion performed on the qubit a (see ® gure 1)

j C i … out†

abc ˆ N aPcaPbaPacPab j C i … in†

a j X i … prep†

bc : … 35†

When this operation is combined with the preparation stage, we ® nd that the basis
states of the original qubit (a) are transformed as
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Figure 1. A graphical representation of a logical network for the U-NOT gate
corresponding to the unitary transformation given by equation (35). T he logical
operation of the controlled NOT Pkl de® ned by equation (31) has as its input a
control qubit (denoted as * ) and a target qubit (denoted as *). T he single-qubit
rotation R and the NOT operation N are de® ned by equations (8) and (7),
respectively. We see that the action of the U-NOT gate is represented by a sequence
of four controlled NOT gates via which the information from the original qubit is
distributed in the network. T his distribution of information depends very much on
the character of preparation of the U-NOT gate, i.e. on the state j Xi… prep†

bc (33) of the
ancilla qubits b and c. When these two qubits are prepared in the state (33) with the
probability amplitudes (34) then the qubit a is the one which at the output is in
the complemented state (29).



j 0ia j 00ibc ! ¡

��
2
3

q
j 1ia j 00ibc ‡

��
1
6

q
j 0ia… j 01ibc ‡ j 10ibc† ;

j 1ia j 00ibc !
��
2
3

q
j 0ia j 11ibc ¡

��
1
6

q
j 1ia… j 01ibc ‡ j 10ibc† … 36†

which is equivalent to the U-NOT transformation given by equation (28). From
our previous discussion we then conclude that the network shown in ® gure 1 can
be used as the U-NOT gate as well as the universal cloning machine.

We note that if the amplitudes of the state j X iprep
bc given by equation (33) are

chosen to be

C00 ˆ

��
2
3

q
; C01 ˆ C11 ˆ

1���
6

p ; C10 ˆ 0 … 37†

then at the output of the network similar to the one given by equation (35) except
with the NOT operation N c applied to the qubit c, that is,

j C i … out†

abc ˆ N cPcaPbaPacPabj C i … in†

a j X i … prep†

bc
… 38†

we ® nd the qubit c to be in the `orthogonal’ state (26) while the qubits a and b play
the r̂ole of clones (see ® gure 2). T his example illustrates the fact that using
di� erent preparations of the U-NOT gate (i.e. using di� erent states j X i … prep†

bc ) we
can control the ¯ ow of information in the network. In what follows we will use the
convention that the qubit c will be the complement of the input qubit a.

3.1. Multiple complements
Here we present a generalization of the network (38) to the case when out of a

single input qubit we wish to produce a set of M qubits in states which are as
orthogonal as possible to the input. In order to generate these qubits we need a
quantum U-NOT gate composed of 2M qubits. We can assume that initially all
these qubits are prepared in the state j 0i, i.e. they are described by the state vector
j 0i« M

b j 0i« M
c . T hen using a unitary transformation these U-NOT gate qubits are

prepared in the state
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Figure 2. A graphical representation of a logical network for the U-NOT gate
corresponding to the unitary transformation given by equation (38). Here the
network is essentially the same as in ® gure 1 except that the U-NOT gate is initially
prepared in the state (33) with the probability amplitudes given by equation (37)
which result in the fact that at the output of the U-NOT gate the qubit c is
complemented. In other words the ¯ ow of information in the U-NOT gate can be
controlled by a speci® c preparation of this gate.



j X i … prep†

bc ˆ
X
M

jˆ 0

ej j f … M ‡ 1† ¢ 0; j ¢ 1g ib ‡ f j j f … M ¡ j ‡ 1† ¢ 0; … j ¡ 1† ¢ 1g ib

£ j f … M ¡ j† ¢ 0; j ¢ 1g ic … 39†

where j f A ¢ 0; B ¢ 1g i denotes a symmetric state with A qubits in the state j 0i and B
qubits in the state j 1i. T he amplitudes ej and f j given by the expressions

ej ˆ ®
… 1 ;M †

j
M ‡ 1 ¡ j

M ‡ 1

¡ ¢1=2

; f j ˆ ®
… 1 ;M †

j
j

M ‡ 1

¡ ¢
… 40†

with

®
… 1 ;M†

j ˆ … ¡ 1† j 2… M ‡ 1 ¡ j†

… M ‡ 2† … M ‡ 1†

1=2
… 41†

(this notation will become clear later in section 6). With the ancilla (i.e. the U-
NOT gate) prepared in the state (39) the network for the 1 ! M U-NOT gate can
be expressed in the form

j C i … out†

abc ˆ ~N c~Pca~Pba~Pac~Pab j C i … in†

a j X i … prep†

bc
… 42†

where

~N c ˆ
Y
M

jˆ 1

N cj … 43†

describes the action of the NOT gates on the qubits c and

~Pac ˆ
Y
M

jˆ 1

Pacj … 44†

describes the sequence of M controlled-NOT gates with the qubit a being the
control and the qubits cj being targets (see ® gure 3).

It can be shown that the network (42) is equivalent to the unitary transforma-
tion of the basis vectors of the original qubit a

j 0ia j X i … prep†

bc ¡ ! X
M

jˆ 0

®
… 1 ;M †

j j f … M ‡ 1 ¡ j† ¢ 0; j ¢ 0? g iabj f … M ¡ j† ¢ 0? ; j ¢ 0g ic;

j 1ia j X i … prep†

bc ¡ ! X
M

jˆ 0

®
… 1 ;M †

j j f … M ‡ 1 ¡ j† ¢ 1; j ¢ 1? g iabj f … M ¡ j† ¢ 1? ; j ¢ 1g ic … 45†

where the coe� cients ®
… 1 ;M †

j are given by equation (41). We have also used the
notation j 1? i ˆ j 0i and j 0? i ˆ ¡ j 1i .

Using the transformation (45) we can check that all qubits c (there are M of
them) at the output of the U-NOT gate are in the state

«
… out†
cj

ˆ 1
3 «? ‡ 1

3 ; j ˆ 1 ; . . . ;M … 46†

i.e. that they all are the best possible complements of the original qubit.
It is important to note that the ® delity of the gate does not depend on the

number of complements produced, i.e. it is independent of M . In addition, these
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qubits are pairwise separable, i.e. the two-qubit density operators « … out†
ci cj

(i 6̂ j) are
separable.

T o check this property, we ® rst recall that a density operator of two subsystems
is inseparable if it cannot be written as a convex sum

«xy ˆ
X

m

w … m†
«

… m†
x « «

… m†
y : … 47†

Inseparability is one of the most fundamental quantum phenomena. It is required
for a violation of Bell’ s inequality (to be speci® c, a separable system always satis ® es
Bell’ s inequality, but the contrary is not necessarily true). Distant parties cannot
prepare an inseparable state from a separable one if they only use local operations
and classical communication. In the case of two spin-1/2 particles we can utilize
the Peres ± Horodecki theorem [18, 19] which states that the positivity of the partial
transposition of a state is necessary and su� cient for its separability.

Using the transformation (45) we can ® nd the density operator « … out†
cicj

(here
i ; j ˆ 1 ; . . . ; M and i 6̂ j) describing an arbitrary state of two complemented qubits
at the output of the U-NOT gate. From here we straightforwardly obtain eigen-
values ~E ˆ f E1 ; E2 ; E3 ; E4g of the partially transposed density operator … «… out†

cicj
† T 2 .

T hese eigenvalues are input-state independent

~E ˆ
1
6

;
1
6

;
1
3

‡

���
2

p

6
;
1
3

¡

���
2

p

6
… 48†

and they do not depend on the number M of complemented qubits. Moreover,
these eigenvalues are positive, which means that pairs of the complemented qubits
at the output of the U-NOT gate are not quantum-mechanically entangled, i.e.
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Figure 3. A graphical representation of a logical network for the U-NOT gate
corresponding to the unitary transformation given by equation (45) when out of a
single input qubit M complements are generated. In this particular case we consider
M ˆ 3. T he structure of the network is very simple and the ¯ ow of information is
controlled via the preparation of the gate qubits bk and cj .



they are separable. We can conclude that from this point of view the U-NOT gate
behaves as a classical device.

4. Role of a priori in form ation

It follows from our previous results that there is no advantage in using the
unitary device if one is trying to complement an arbitrary qubit in a pure state.
However, if one is faced with mixed states, or if one has some information about
the input state, a unitary device will do better. In this section we will study these
two cases.

4.1. Complementing mixed states
T he ® rst thing to decide is what the complement of a mixed state of a qubit

should be. T he density matrix represents an ensemble of qubits, and so a natural
way of producing an ensemble which is the complement of the ® rst is to take each
qubit in the original ensemble and replace it by a qubit in the orthogonal state.
T his corresponds to de® ning the complement, «? , of a single qubit density matrix,
«, to be

«? ˆ Y «Y ¡ 1 … 49†

where Y is the anti-unitary operator given by equation (1). I f we now send a qubit
in the state « into the U-NOT gate, the reduced density matrix of the output will
be

«
… out†

ˆ 1
3 «? ‡ 1

3 … 50†

just as in the case of a pure state.
Developing a measurement-based strategy with which to compare this is now

much harder. I t is more di� cult to estimate a mixed state than a pure state (which
is due to the fact, that for a given quantum system a space of mixed states is much
larger than a space of pure states). T he best estimate of a density operator based on
an optimal measurement of a single qubit prepared in a mixed state is given by the
expression [20]

«
… est†

ˆ 1
5 « ‡ 2

5 : … 51†

Consequently, the estimation-based strategy for constructing the complement
would on average result in the density operator

«
… out†

ˆ 1
5 «? ‡ 2

5 : … 52†

T his illustrates the fact that in the case of mixed states, the U-NOT gate is
superior to a strategy based on measuring the qubit.

4.2. Restricted input ensembles
As was noted in the Introduction, if the input state j C i ˆ ¬ j 0i ‡ - j 1i is

restricted to the case where the coe� cients ¬ and - are real, then it is possible
to construct a perfect NOT gate. A measurement-based strategy in this case does
not do as well. If we measure j C i along a random direction

j ² 0 i ˆ cos # 0
j 0i ‡ sin # 0

j 1i … 53†
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where 0 4 # 0 < 2p, compute «… out† … ² 0 † as in Equation (4), and then average over # 0 ,
we obtain

«
… out†

ˆ
1

2p

… 2p

0
d#«

… out† … #† ˆ 1
2«

? ‡ 1
4 ; … 54†

giving a ® delity of 3=4 rather than one.
We now want to examine the situation in which we have some knowledge about

the phases of ¬ and - , but not complete information. Let ¬ and - be given in terms
of the angles # and ’. We shall assume that the probability distribution, p… #;’† , is
normalized to unity on the Bloch sphere. Note that p… #; ’† ˆ 1 corresponds to the
case where nothing about the input qubit is known. We want to design a U-NOT
gate which makes use of any extra a priori information to improve the ® delity
between its output and the ideal output.

We shall consider a very simple gate, the one speci® ed in equation (10) which
generates the state j C i … out† given by equation (11). In this case the average ® delity
of the gate for the input ensemble speci® ed by p… #;’† is given by

F ˆ
1
4p

… 2p

0
d’

… p

0
d# sin # p… #;’† j hC ? j C … out† i j

2

ˆ 1
2 ‡

1
8p

… 2p

0
d’

… p

0
d# sin # p… #; ’† F … # ;¢’† … 55†

where F … #;¢’† ˆ ‰cos2 # ¡ sin2 # cos … 2’ ¡ ¢’† Š and ¢’ ˆ ’1 ¡ ’0 . For a given
input ensemble ¢’ is chosen to maximize F . For example, if ’ is ® xed at some
value ’ ˆ ’p , i.e. p… #;’† ˆ ¯… ’ ¡ ’p† h… #† , where h… #† is the probability distri-
bution for # , then we can choose ¢’ ˆ p ¡ 2’p, and the average ® delity will be
one. If nothing is known about the input states we ® nd that F ˆ 2=3, the same
value achieved by the universal device. Finally, let us look at the case where the
probability distribution does not depend on # (i. e. all values of # are equally
probable). T hen p… #;’† ! p… ’† , where 1=… 2p†

„ 2p
0 d’ p… ’† ˆ 1. In this case we ® nd

F ˆ 2
3 ‡

u
3

… 56†

where

u ˆ sup
… 2p

0

d’

2p
p… ’† cos … 2’ ¡ ¢’† … 57†

and the supremum is taken over all angles ¢’.
Let us now consider the measurement-based strategy in more detail so that,

eventually, we can compare the ® delities it gives to those of the gate given above.
As before, we choose an input qubit from our ensemble, measure it along a
direction j ²i [see equation (2)], and output j ²? i if the result is positive and j ²i if it
is negative. Whereas earlier we chose j ²i to be a completely random state (any state
on the Bloch sphere being equally likely), now we choose its angles # 0 and ’ 0

according to a probability distribution q… # 0 ; ’ 0 † , which will be chosen to optimize
the average ® delity. T he average ® delity for this scheme is given by

F ˆ

…
dO

…
dO 0 p… # ;’† q… # 0 ;’ 0 † hC ? j «… ²† j C ? i … 58†
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where both integrations are over the Bloch sphere with the invariant integration
measure dO ˆ d’ d# sin #=4p. Inserting the explicit expressions for «… ²† and j C ? i
and simplifying the expression we ® nd

F ˆ

…
dO

…
dO 0 p… #; ’† q… #

0
;’

0 † f … #;’ ; #
0
;’

0 † … 59†

where

f … #; ’; # 0 ;’ 0 † ˆ
sin # sin # 0 cos … ’ ¡ ’ 0 † ‡ cos # cos # 0‰ Š2

2
: … 60†

T he ® delity is maximized if q… # 0 ;’ 0 † is chosen to be a delta function at the values of
# 0 and ’ 0 where

„

dO pf is a maximum. T his implies that the maximum value of
the ® delity is given by

F ˆ sup
…

dO p… # ;’† f … #;’ ; # 0 ;’ 0 † … 61†

where the supremum is taken over all values of # 0 and ’ 0 .
We now use this result to ® nd the optimal ® delities from the measurement-

based strategy in the two cases considered above. If p… #;’† ˆ ¯… ’ ¡ ’p† h… #† , then
the ® delity given in equation (61), while it can be one for special choices of h… #† ,
will in general be less than one. For the unitary gate, however, it is one for any
choice of h. In the second case, p… # ;’† ! p… ’† , we ® nd that the ® delity from
equation (61) is given by

F ˆ 2
3 ‡

u
6

… 62†

which is, again, less than that resulting from the unitary gate. T herefore, we can
conclude that while a unitary NOT gate does not do better than a measurement-
based strategy in the case in which we have no information about the input qubits,
this is not always true if we do have information about the input ensemble. In that
case, there are situations in which the unitary gate will perform better.

5. Mu ltip le -in pu t U-NOT gate

Let us now suppose that instead of one input qubit in the state jCi, we have N. This,
clearly, will allow us to produce approximate complements which are closer to j C? i than
if we have only one input qubit. We shall ® rst ® nd the ® delity which is produced by the
measurement-based strategy and then ® nd a unitary gate which leads to the same ® delity.
Finally we shall prove that this is the best one can do. This last point requires a more
mathematical treatment, so that we shall begin by restating exactly what we wish to do.

In order to state our problem precisely, let H ˆ C2 denote the two-dimensional
Hilbert space of a single qubit. T hen the input state of N systems prepared in the
pure state j C i is the N - fold tensor product j C i« N 2 H« N . T he corresponding
density matrix is ¼ ² «« N , where « ˆ j C ihC j is the one-particle density matrix. An
important observation is that the vectors j C i« N are invariant under permutations
of all N sites, i.e. they belong to the symmetric, or `Bose’ -subspace H« N

‡ « H« N .
T hus as long as we consider only pure input states we can assume all the input
states of the device under consideration to be density operators on H« N

‡ . We will
denote by S … H † the density operators over a Hilbert space H . T hen the U-NOT
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gate must be a completely positive trace preserving map T : S H« N
‡

¡
! S … H † . Our

aim is to design T in such a way that for any pure one-particle state « 2 S … H † the
output T … «« N † is as close as possible to the orthogonal qubit state «? ˆ ¡ «. In
other words, we are trying to make the ® delity F :ˆ T r‰«? T … «« N † Š ˆ 1 ¡ ¢ of the
optimal complement with the result of the transformation T as close as possible to
unity for an arbitrary input state. T his corresponds to the problem of ® nding the
minimal value of the error measure D …T † de® ned as

D… T † ˆ max
« ;pure

T r «T … «« N † : … 63†

Note that this functional ¢ is completely unbiased with respect to the choice of
input state. More formally, it is invariant with respect to unitary rotations (basis
changes) in H : When T is any admissible map, and U is a unitary on H , the map
T U … ¼† ˆ U ¤ T … U « N ¼U ¤ « N †U is also admissible, and satis ® es D… T U † ˆ D … T † . We
will show later that one may look for optimal gates T , minimizing D …T † , among the
universal gates, i.e. those satisfying T U ˆ T for all U . For such U-NOT gates, the
maximization can be omitted from the de® nition (63), because the ® delity
T r «T … «« N †‰ Š is independent of «.

5.1. Measurement-based scenario
An estimation device by de® nition takes an input state ¼ 2 S … H« N

‡ † and
produces, on every single experiment, an `estimated pure state’ « 2 S … H † . As in
any quantum measurement this will not always be the same «, even with the same
input state «, but a random quantity. T he estimation device is therefore described
completely by the probability distribution of pure states it produces for every
given input. Still simpler, we will characterize it by the corresponding probability
density with respect to the unique normalized measure on the pure states (denoted
`dF ’ in integrals), which is also invariant under unitary rotations. For an input
state ¼ 2 S … H« N

‡ † , the value of this probability density at the pure state j F i is

p… F ;¼† ˆ … N ‡ 1† hF « N ;¼ F« N i: … 64†

T o check the normalization, note that
„

dF p… F ;¼† ˆ T r ‰X¼Š for a suitable
operator X , because the integral depends linearly on ¼ . By unitary invariance of
the measure `dF ’ this operator commutes with all unitaries of the form U « N , and
since these operators, restricted to H« N

‡ form an irreducible representation of the
unitary group of H [for d ˆ 2, it is just the spin N=2 irreducible representation of
SU (2)], the operator X is a multiple of the identity. T o determine the factor, one
inserts ¼ ˆ , and uses the normalization of `dF ’ to verify that X ˆ .

Note that the density (64) is proportional to j hF ;C i j
2N , when ¼ ˆ j C « N ihC « N j

is the typical input to such a device: N systems prepared in the same pure state j C i.
In that case the probability density is clearly peaked sharply at states j F i which are
equal to j C i up to a phase.

Suppose now that we combine the state estimation with the preparation of a
new state, which is some function of the estimated state. T he overall result will
then be the integral of the state valued function with respect to the probability
distribution just determined. In the case at hand the desired function is
f … F † ˆ … ¡ j F ihF j † . So the result of the whole measurement-based (`classical’ )
scheme is
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«
… est†

ˆ T … ¼† ˆ

…
dF p… F ;¼† ¡ j F ihF j… † : … 65†

T he ® delity required for the computation of D from equation (63) is then equal to
(see also [12])

D ˆ … N ‡ 1†

…
dF j hF ;C i j

2N … 1 ¡ j hF ;C i j
2† ˆ

1
N ‡ 2

… 66†

where we have used the conditions that the two integrals have exactly the same
form (di� ering only in the choice of N ), and that the ® rst integral is just the
normalization integral. S ince this expression does not depend on «, we can drop
the maximization in the de® nition (63) of D , and ® nd D … T † ˆ 1=… N ‡ 2† , from
which we ® nd that the ® delity of creation of a complement to the original state « is

F ˆ
N ‡ 1
N ‡ 2

… 67†

Finally we note that the result of the operation (65) can be expressed in the form

«
… out†

ˆ sN «? ‡
1 ¡ sN

2
; … 68†

with the `scaling’ parameter sN
ˆ N=… N ‡ 2† . From here it is seen that in the limit

N ! 1 , perfect estimation of the input state can be performed and, consequently,
the perfect complement can be generated. For ® nite N the mean ® delity is always
smaller than unity. T he advantage of the measurement-based scenario is that once
the input qubit(s) is (are) measured and its state estimated, an arbitrary number M
of identical (approximately) complemented qubits can be produced with the same
® delity, simply by replacing the output function f … F † ˆ … ¡ j F ihF j † by
fM … F † ˆ … ¡ j F ihF j †

« M .

5.2. Quantum scenario
Let us now present a transformation which produces complements whose

® delity is the same as those produced by the measurement-based method. Assume
we have N input qubits in an unknown state j C i and we are looking for a
transformation which generates M qubits at the output in a state as close as
possible to the orthogonal state j C ? i. T he universality of the proposed transfor-
mation has to guarantee that all input states are complemented with the same
® delity. If we want to generate M approximately complemented qubits at the
output, the U-NOT gate has to be represented by 2M qubits (irrespective of the
number, N , of input qubits), M of which serve as ancilla, and M of which become
the output complements. We will indicate these subsystems by subscripts
`a’ ˆ input, `b’ ˆ ancilla, and `c’ ˆ (prospective) output. T he U-NOT gate trans-
formation, U NM , acts on the tensor product of all three systems. T he gate is always
prepared in some state j X ibc , independently of the input state j C i. T he transfor-
mation is determined by the following explicit expression, valid for every unit
vector j C i 2 H :

U NM j NC ia « j X ibc ˆ
X
M

jˆ 0

®
… N ;M†

j j X j … C † iab « j f … M ¡ j† C ? ; jC g ic … 69†

with
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®
… N ;M †

j ˆ … ¡ 1† j
N ‡ M ¡ j

N… †
1=2 N ‡ M ‡ 1

M… †
¡ 1=2

… 70†

where j NC ia ˆ j C i« N is the input state consisting of N qubits in the same state
j C i. On the right hand side of equation (69) j f … M ¡ j† C ? ; jC g ic denotes symmetric
and normalized states with … M ¡ j† qubits in the complemented (orthogonal) state
j C ? i and j qubits in the original state j C i. Similarly, the vectors j X j … C † iab consist
of N ‡ M qubits, and are given explicitly by

j X j … C † iab ˆ j f … N ‡ M ¡ j† C ; jC ? g iab : … 71†

Note that with this choice of the coe� cients ®
… N ;M †

j , the scalar product of the right
hand side with a similar vector, with C replaced by F , becomes hC ;F iN . T his is
consistent with the unitarity of the operator UNM .

Each of the M qubits at the output of the U-NOT gate is described by the
density operator (68) with sN

ˆ … N=N ‡ 2† , irrespective of the number of comple-
ments produced. T he ® delity of the U-NOT gate depends only on the number of
inputs. T his means that this U-NOT gate can be thought of as producing an
approximate complement and then cloning it, with the quality of the cloning
independent of the number of clones produced. T he universality of the transfor-
mation is directly seen from the `scaled’ form of the output operator (68).

We stress that the ® delity of the U-NOT gate (69) is exactly the same as in the
measurement-based scenario. Moreover, it also behaves as a classical (measure-
ment-based) gate in a sense that it can generate an arbitrary number of comple-
ments with the same ® delity. We have also checked that these cloned complements
are pairwise separable.

T he N ‡ M qubits at the output of the gate which do not represent the
complements are individually in the state described by the density operator

«
… out†

j ˆ s« ‡
1 ¡ s

2
; j ˆ 1 ; . . . ;N ‡ M ; … 72†

with the scaling factor s ˆ N=… N ‡ 2† ‡ 2N=‰… N ‡ M † … N ‡ 2† Š i.e. these qubits
are the clones of the original state with a ® delity of cloning larger than the ® delity of
estimation. T his ® delity depends on the number, M , of clones produced out of the
N originals, and in the limit M ! 1 the ® delity of cloning becomes equal to the
® delity of estimation. T hese qubits represent the output of the optimal
N ! N ‡ M cloner introduced by Gisin and Massar [13]. T his means that the
U-NOT gate as presented by the transformation in equation (69) serves also as a
universal cloning machine.

6. Optim al ity of U-NOT gate

At this point the question arises whether the transformation (69) represents the
optimal U-NOT gate via quantum scenario. If this is so, then it would mean that
the measurement-based and the quantum scenarios realize the U-NOT gate with
the same ® delity.

Th e ore m . L et H be a Hilbert space of dimension d ˆ 2. T hen among all completely
positive trace preserving maps T : S H« N

‡

¡
! S … H † , the measurement-based U-NOT
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scenario equation (65) attains the smallest possible value of the error measure de® ned by
equation (63), namely D… T † ˆ 1=… N ‡ 2† .

We have already shown [see equation (66)] that for the measurement-based
strategy the error D attains the value 1=…N ‡ 2† . T he more di� cult part, however,
is to show that no other scheme [i.e. quantum scenario] can do better. Here we will
largely follow the arguments in [9].

Note ® rst that the functional D is invariant with respect to unitary rotations
(basis changes) in H : when T is any admissible map, and U is a unitary on H , the
map T U … ¼† ˆ U ¤ T … U « N ¼U ¤ « N † U is also admissible, and satis ® es D… T U † ˆ D… T † .
Moreover, the functional D is de® ned as the maximum of a collection of linear
functions in T , and is therefore convex. Putting these observations together we get

D … T † 4

…
dU D… T U † ˆ D … T U † … 73†

where T ˆ
„

dUT U is the average of the rotated operators T U with respect to the
Haar measure on the unitary group. T hus T is at least as good as T U , and has the
additional `covariance property’ T U ˆ T . Without loss we can therefore assume
from now on that T U ˆ T for all U .

An advantage of this assumption is that a very explicit general form for such
covariant operations is known by a variant of the Stinespring Dilation T heorem
(see [9] for a version adapted to our needs).

T he form of T is further simpli® ed in our case by the fact that both
representations involved are irreducible: the de® ning representation of SU (2) on
H , and the representation by the operators U « N restricted to the symmetric
subspace H« N

‡ . T hen T can be represented as a discrete convex combination
T ˆ

P
j ¶jT j , with ¶j 5 0 ;

P
j ¶j ˆ 1, and T j admissible and covariant maps in their

own right, but of an even simpler form. Covariance of T already implies that the
maximum can be omitted from the de® nition (63) of D , because the ® delity no
longer depends on the pure state chosen. In a convex combination of covariant
operators we therefore get

D … T † ˆ
X

j

¶jD … T j † : … 74†

Minimizing this expression is obviously equivalent to minimizing with respect to
the discrete parameter j.

We write the general form of the extremal instruments T j in terms of
expectation values of the output state for an observable X on H :

T r ‰T … ¼† X Š ˆ T r ‰¼V ¤ … X « † V Š … 75†

where V : H « N
‡ ! H « C2j‡ 1 is an isometry intertwining the respective represen-

tations of SU (2), namely the restriction of the operators U « N to H« N
‡ (which has

spin N=2) on the one hand, and the tensor product of the de® ning representation
(spin-1=2) with the irreducible spin-j representation. By the triangle inequality for
Clebsch± Gordan reduction, this implies j ˆ … N=2† § … 1=2† , so only two terms
appear in the decomposition of T . It remains to compute D … T j † for these two
values.
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T he basic idea is to use the intertwining property of the isometry V for the
generators S ¬ ;J¬ , and L ¬ ;¬ ˆ 1 ;2 ;3 of the SU(2)-representations on H ; C2j‡ 1 and
H« N

‡ , respectively. We will show that

V ¤ … S ¬ « j †V ˆ ·j L ¬ ; … 76†

where ·j is some constant depending on the choice of j . T hat such a constant exists
is clear from the fact that the left hand side of this equation is a vector operator
(with components labeled by ¬ ˆ 1 ; 2 ; 3), and the only vector operators in an
irreducible representation of SU(2) are multiples of angular momentum (in this
case L ¬). T he constant · j can be expressed in terms of a 6j-symbol, but can also be
calculated in an elementary way by using the intertwining property,
V L ¬ ˆ … S ¬ « ‡ « J¬ † V and the fact that the angular momentum squares
J2 ˆ

P
¬ J2

¬ ˆ j … j ‡ 1† , S2 ˆ 3=4, and L2 ˆ N=2… N=2 ‡ 1† are multiples of the
identity in the irreducible representations involved, and can be treated as scalars:

· jL
2 ˆ

X

¬

V ¤ … S ¬ « j † V L ¬ ˆ S2 ‡
X

¬

V ¤ …S ¬ « J¬ † V : … 77†

T he sum on the right hand side can be obtained as the mixed term of a square,
namely as

1
2

X

¬

V ¤ … S ¬ « ‡ « J
¬ † 2V ¡ S2 ¡ J2 ˆ … L2 ¡ S2 ¡ J2† : … 78†

Combining these equations we ® nd

· j ˆ 1
2 ‡

S2 ¡ J2

2L2 ˆ

1
N

f or j ˆ
N
2

‡ 1
2

¡ 1
N ‡ 2

for j ˆ
N
2

¡ 1
2:

8>><
>>:

… 79†

We combine equations (75) and (76) to get the error quantity D from equation (63),
with the pure one-particle density matrix « ˆ 1

2 ‡ S 3:

D … T † ˆ T r ‰V ¤ … « « † V «« N Š ˆ 1
2 … 1 ‡ N·j † : … 80†

With equation (79) we ® nd

D… T † ˆ

1 for j ˆ
N
2

‡ 1
2

1
N ‡ 2

f or j ˆ
N
2

¡ 1
2:

8>><
>>:

… 81†

T he ® rst value is the largest possible ® delity for getting the state « f rom a set of N
copies of «. T he ® delity 1 is expected for this trivial task, because taking any one of
the copies will do perfectly. On the other hand, the second value is the minimal
® delity, which we were looking for. T his clearly coincides with the value (66), so
the T heorem is proved.

T he T heorem as it stands concerns the task of producing just one particle in
the U-NOT state of the input. From the results of the previous section we see that
it is valid also in the case of many outputs. We see that the maximum ® delity is
achieved by the classical process via estimation: in equation (65) we just have to
replace the output state … ¡ j F ihF j † by the desired tensor power. Hence once again
the optimum is achieved by the scheme based on classical estimation. Incidentally,
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this shows that the multiple outputs from such a device are completely unen-
tangled, although they may be correlated.

7. Con c lu d in g re m arks

Our results clearly indicate yet another fundamental di� erence between
classical and quantum information. Classical bit can be complemented perfectly,
while as we have shown there are fundamental limits on the ® delity of the universal
NOT gate. Speci® cally, the ® delity of the optimal universal NOT gate with N
input qubits is equal to the ® delity of the optimal measurement performed on the
input qubits. In this paper we have addressed the problem of how anti-unitary
operation can be realized on qubits. Our results can be generalized for higher
dimensions. We will report on this elsewhere.

At this point we should note that just af ter the appearance of our ® rst report of
these results [14], a very interesting work by Gisin and Popescu [21] appeared in
which the concept of a spin-¯ ip operation on a single qubit, which is essentially
equivalent to the U-NOT gate with a single input, was introduced. It has been
shown that the ® delity of the spin± ¯ ip machine, equal to 2=3, is optimal using the
methods presented by Bechmann-Pasquinucci and Gisin [22].

Finally, it would be a real experimental challenge to construct a U-NOT gate
and the related universal quantum cloning machine. In fact, a hint as to how to
construct a U-NOT gate for polarization states of photons can be found in a short
note by Mandel on cloning via stimulated emission [2]. T his idea has recently
beeen revived by Simon et al. [23], who have proposed an experiment in which the
U-NOT gate and the universal quantum cloner are realized with the help of
stimulated emission. Speci® cally, the input qubits are represented by polarization
states of photons. T he cloning is then realized via stimulated emission in an
inverted medium. T o make the cloning universal, i.e. input-state independent, the
initial state of the inverted medium, and the interaction Hamiltonian with the
electromagnetic ® eld, have to be invariant under general polarization transforma-
tions so that the medium can emit photons of an arbitrary polarization with the
same probability. T hat is, if a photon enters such a medium, it stimulates the
emission of photons of the same polarization. S imultaneously, in addition to these
photons, photons with the orthogonal polarization are also emitted. As shown by
S imon et al. [23] these photons represent the corresponding output of the U-NOT
gate with the optimal ® delity.
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