PHYSICAL REVIEW A, VOLUME 62, 062309

Multiple observations of quantum clocks
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How much information about the original state preparation can be extracted from a quantum system which
has already been measured? That is, how many indepefm@rommunicatingobservers can measure the
guantum system sequentially and give a nontrivial estimation of the original unknown state? We investigate
these questions, and show from a simple example that information about the original preparation is not entirely
lost as a result of the measurement-induced collapse of the quantum state, and that an infinite number of
independent observers who havepr@or knowledge about the initial state can gain partial information about
the original preparation of the quantum system.

PACS numbd(s): 03.65.Bz, 42.50.Ar, 89.78-.c

From thedeterministicmeasurement model employed in sity matrix characterizes the state of the quantum object that
classical physics, it follows that the state of the physicalis the subject of the measurement.
system is not affected by measurement. That is, information The axiomatics of quantum theory implicitly require that
about states of the system can be determined with an arbihe state of the system is changed during measurement. Oth-
trary precision. Formally, from a kinematical point of view, erwise, repeated measurements of the previously measured
this can be expressed as follows: in classical physics thergyt unchanged quantum state could reveal still more infor-
are measurements) for which the statistics of the measure- yation about the state. Consequently, the measurement
ment resultsr) characterized by the conditional probability msdel would eventually be equivalent to the standard deter-
distribution pr(r|s) can be, forall possible states of the  inistic measurement model of classical physics. Therefore,
given classical system, of the form there is an additional rule which excludes the possibility of

repeated measurements. This additional principle is the well-
Pm(r[s)= (s —s). (D known von Neumanmprojection postulate.

Nevertheless it is an interesting question to ask how much
Moreover, these measurements do not change the state of thgormation about the original state is “left” in a system

classical system, so an arbitrary number of independent olghich has already been measured. That is, how much infor-
servers(i.e., observers who do not communicaéen deter-  marion about the preparation can be extracted from the sys-
mine the state. tem by a second observer who does not communicate with

The standard Copenhagen interpretation of quantum M&he first observer. A further question we would like to under-

qhamcs is deeply rooted in a mod_eI mxbndeterm_|n|st|cs'ga- stand is whether, from the axioms of quantum theory, we can
tistical measurememi]. From the kinematical point of view, . o . o . .
obtain a “classical-like” picture when a physical system in

the quantum theory mode(predicts the statistics of results ; .
registered by a measuring device when the measurement | unknpwn state can b(_a repeatedly measured, yet still retain
performed on a quantum object. Within this nondeterministi(fnform""tlon about thg original state preparapon. 'In what fol-
model of measurement, the conditional probability distribu-°WS We analyze a simple example which illuminates these
tion p,(r|s) can never be of the form of E(L) for arbitrary, ~ WO guestions.

initially unknown, states of a quantum system. In quantum First we specify the task of measurement. In measurement

mechanics the conditional probability distributipp(r|s) is W€ Wish to determine some parameters of the state of a quan-
given by the expression tum system which correspond to a symmetry group. As an
example, consider a position measurement which is con-
nected with a group of translations, or a measurement of the
angle of orientation connected with a group of rotations. In
R what follows we analyze the simplest example of a continu-
where the set of positive operatd@s which sum up to the ous parametep € (0,27), the phase which parametrizes the
identity operator models the measuring device, and the dergroup of rotations in the two-dimensional space of thel)

group. To make our discussion more physical we consider a

model of optimal quantum clocks discussed in our previous
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Pm(r|s)=Tr O, p¢], (2)
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In our previous paper we studied the problem of buildingence between the estimated tireand the true time is
an optimal quantum clock from an ensembleNdbns[3]. I qyantified by a cost functiofi(t,—t) [6]. Here we note that
particular we assumed an ion trap wihtwo-level ions, all - pecause of the periodicity of the clodkhas to be periodic.
in the ground state¥)=[0)® - -- ®[0). This state is an ei- \ye also take (t) to be an even function to ensure a nonzero

genstate of the free Hamiltonian, and thus cannot record timgyerage. Our task is to minimize the mean value of the cost
(phase. Therefore, the first step in building a clock was to fnction

bring the system to an appropriate initiaéference stateQ)

which is not an energy eigenstate. For instance, one can ap- > 27 ¢ dt 4
ply a Ramsey pulse whose shape and duration is chosen such B2 R pa(r[t)f(t,—t) pP (4)
that it puts all the ions into the product state
L where
Q=p*N, €) i
p1(r[t)=Tr[ O, Q(V)]. )

with p=|y)(¢| and|y)=(|0)+|1))/\/2. After this prepara- _ _ o
tion stage, the ions evolve in time according to the Hamil-Following the.éj'SCUSS'_On in Ref2], we chose the cost func-
tonian  evolution Q(t)= O(t)QOT(t)' Where U(t) tion to be 4 sint/2, which for small values of the mean cost

A i o 2
=exp{—itH} (we use units such th&t=1). Therefore, these can be approximated &s-At*, .
ions can be viewed as a time-recording device. The task is to Holevo|[6] originally considered covariant measurements

determine this timet (or equivalently the corresponding In which timest, take a continuum of values between 0 and

phase by carrying out a measurement on the ions. Note tha?”' But, as shqwn n Re{.4], the completeness relatlpn can
because of the indeterminism of quantum mechanics it iglso be satisfied by taking a_d|screte set Of. _tlmes
impossible, given aingle set of N two-level ions, to deter- =2mr/(N+1), r=0,... N. Inthis case the Hermitian op-
mine the elapsed time with certainty. As we showed earlieeratorsO;, can be taken in the form

[4], one can find an optimal measuremésee beloy, with R

the help of which information about the phase can be most O, =¥ ¥, (6)
optimally “extracted” from a system oN identically pre-

pared spin-1/2 particles. The ability of the system to retairsuch thats,0,=1, where

information about the phasgime) depends very much on

the choice of the initial reference stafk. For instance, if R 1 N

this state is an eigenstate of the total Hamiltonian, the system [W)=e""[Wo), [Wo)= UN+1 meo [m), @
is not able to recordkeep time information. In Ref[2] we

addressed the question of which is the most appropriate inighich can be rewritten as

tial state() of the N spin-1/2 particle which “keeps” the

record of the phase in the most reliable way. In other words, 1 N

what are the optimal quantum clocks, and what is the perfor- |W, )= >, ell2m(NTIIm) ), 8)
mance of such quantum clocks when compared with classi- VN+1 m=0

cal clocks.

The phase statgdV,) [7] form an orthonormal basis of
comparison. That is, we discuss the “robustness” of quan- e Hilbert space, and the corresponding measurement is

tum clocks with respect to repeated measurements performéBer‘?for.e avon Neumann measurement. This is important for
on them. Classical clocks, as all classical objects, do no"{lpphca'tlons, because it means that it is not necessary to use
change their state or behavior when they are observed. As wi! ancilla to make the optimal measurement. Moreover, as
stated above, this is no longer true for quantum objects. Thil!lows from the von Neumann projection postulate, the state
has consequences for the functioning of our proposed quaﬁr—nme‘j'ately after the measurement Is uniquely determined.
tum clocks. In particular, one can ask whether quantum Once we have specified the Optlm?J measurement we have
clocks may be robust enough in the sense that repeated red@-specify the initial(reference state() of our system. As
out of the time, let us say by many independent and noncongliscussed in Ref2], by an appropriate choice of this state
municating observers, can provide reliable informatiin  one can substantially improve the performance of quantum
any) about the time to all of them. In order to find quantita- clocks. However, this concerns the estimation performed by
tive answers to our questions, let us recall briefly the detailéhe first observe(see below. The subsequent observers will
of how time is read out from our quantum clocks. actually always observe only rotated phase states. These are
In general, a quantum-mechanical measurement is degenerated in the von Neumann measurement performed by
scribed by a positive operator value measi®®VM) [1,5,6)  the previous observer and subsequent time evolution. There-

which is a Sei{ér}ﬁzl of positive Hermitian operators, such fore, in order to simplify our caquIations we will assume
that =,0,=1. Because such a measurement is in generdhat the initial (reference state () is the phase staté)

nondeterministic, with each outconmeof the measurement = |V o)(Wol given by Eq.(7). This initial state will evolve in
we associate an estimateof the time elapsed. The differ- time asQ(t)=|¥q(t))}(¥o(t)|, where

In the present paper we investigate another aspect of thit?1
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1 N _ state is one of the statd®¥,). In addition, the following
|Wo(t))= > e tMm). (99  random factors enter the game: First, tte-(1)st observer
VN+1 m=o does not have complete information about the choice of the

measuring apparatus of theh observer. Although all ob-
svstem ofN spin-1/2 particles initially prepared in an un- &rvers possess an optimal measuring apparatus of the same
y P P y prep construction(corresponding to the optimal von Neumann

known state obtained by the rotation of the reference stat :
[Eq. (7)]. As far as the first observer was concerned, theﬁ1easuremeb1lthere is one parameter they can choose at ran

dom. That is, if we take the POVM characterized by the set
problem was already solveédee Ref[4]) and the mean cost , .
[Eq. (4)] could be calculated. Taking into account that the©f projectorsO, =W (W], r=0,... N, and rotate them
optimal phasdtime) measurement is realized via the projec-all by the same transformatiod («) =exp{—iaH}, we ob-
tors Or:|qfr><\lfr| with the phase statd®’,) given by Eq.  tain a new POVM,0¢#=U(a)0,U(a), which also corre-
(8), we can express the mean cﬁ;tafter the first measure- SPonds to the optimal measuring apparatus. It is this infor-

ment (therefore we use the subscript 1) as mation about the anglex’ e<0,27-r>_ characterizing the
“actual orientation” of thekth measuring apparatus which is
_ N congt| N 2 t — not available to the K+ 1)st observer. The second piece of
i(t,—t)m| i ( r ) . . s . .
f1=420 o 2m EO et sir? (100 information which is not available to thé{- 1)st observer is
r= m=

the knowledge of which of the possible outconmiésof the

After the integration is performed, we find that the mean cosfnéasurement was detected by kil observer. Finally, the
as a function of numbeN of spin-1/2 particles is given by actual timet’ when this measurement was performed is also

the expression unknown(however, as we will soon see, this is not important

for our consideration Taking these random factors into ac-

, — 2 count, the required conditional probability distribution
AtP=F,(N)=2) 1= o= 1= \F 1 (1D p,,.(r|t,a) (we have included the parameterin the con-

ditional probability distribution reads
We see that the mean cost when a single measurement is
performed (N=1) takes the valuef;(N=1)=1. Con-
versely, forN—oo the mean cost is equal to zero. Specifi-
cally, for largeN the variance\t goes to zero as YN. This

% 27 da’
pk+1(r|taa)_r,:0 . pu(r' |t a )ﬁ

is far from being optimal. As shown in Ref2], in order to ><Tr[éfU(t—t’)(A)r“,,LAJT(t—t')]. (13
make this variance minimal we should take the reference
state to be It is easily seen that this can be simplified as
V2 & a(men) —TH Qs (1O 14
|\I,op[>2 2 Sin Im> (12) pk+l(r|tra) r[ k+l(t)or]1 ( )
YN+ 1m=0 N+1
where

In this case the cost decreases for Iargasf_opt: w2/ (N N , d
+1)? corresponding ta\t,=7/(N+1). Nevertheless, as ﬁkJrl(t): 2 ”pk(rr“ a,)éa,’i (15)
our task is to study how much information subsequent ob- r'=o J0 ’ v 2w

servers can gain we are not over-worried about the optimal-
ity of the preparation of the reference state. Our further resulfhe last transformation is possible becaysgr’|t’,a’)
can be understood as a lower bound, and the optimizatior p,(r'|t,@’+t—t") and the integration with respect to
can be performed rather straightforwardly in any case. ensures that the shift{t’) is irrelevant.

Now we turn our attention to subsequent observers. We Now we define the mean cost of thk+ 1)st measure-
have assumed that our observers do not communicate. If thegent as
do then the first observer can broadcast the result of his mea-
suremeni{or, what is equivalent, he can broadcast the orien- — 2m dt
tation of his apparatysand there is no need for subsequent ka(N):Z JO pk+l(r|t*0‘)f(tr_t)ﬂ' (16)
observers to perform any measurement, because they know
that they cannot perform better than this first observer. T‘vaiously the choice of (the orientation of the apparaus
describe the mean cost of the estimation of subsequent oes not affect the mean cost of the measurement under
servers, in Eq(4) we have to modify the conditional prob-  given circumstances. On the other hand, it definitely affects
ability distribution p,(r|t)=Tr[O,Q(t)] characterizing the the state into which system collapses after the projective
measurement statistics of the observer. This is because thgeasuremen®® .

(k+1)st observer does not observe the original sfa(e). Before we present a general solution for the mean cost
He can only measure the state generated via the measulfdsq. (16)], we analyze a simple example: Let us assume just
ment performed by the previodgh observer. Taking into a single qubit, i.e.N=1. This qubit is first prepared in the

account the projective character of the measurement, thistate|0), and then after the application of the Hadamard
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transform it is “rotated” into a superposition stafe)) / , , 1 /
=(|0)+]1))/y2, which evolves according to the free Pt ) =W ()P =5[1*+cogt—a’)], (23
Hamiltonian as

where+ (—) stands for’=0(1). Consequently, using Eq.

|(1)=(10)+e "1))/V2, (17 (15), we find
i.e., Qi(t)=]¥(t))(y(t)]. The two projectors which de- RN I
scribe the measurement apparatus used by the first observer Qa(t)= 4]+ zﬂl(t)' (4
are defined above, .60, =| ¥, )(¥,|, where in the case of a _ _ o .
single qubit When we insert this expression into EG.4) we find the
probabilitiesp,(r|t,«) (for definiteness, in what follows we
1 1 chosea=0):
Voy=—=(0)+|1)), |¥=-—=(0)—|1)). (18
|o>\/§|>|>)|1>\/§|>|>) 11
p2(r|t,a)=§ 1t§cost , r=0,1. (25)

In this case, obviouslyty=0 andt,;= 7. The probability that
the systen]y(t)) is measured in the staf@,) is Once this is done we utilize E416), and for the mean cost
of the second measurement we find the expression

1
P1(r[)=[(W[y(1)|?=5 (1 £cost), r=0.1. (19

_ 1 2 dt
fonf Pa(r(t,a)f(t 1) 5
Thus the mean cost of the first measurement is r=0.70
27 cost| .t cost tidt
— 27 ot tjdt =2f 1+ ——|sif=+|1-— ——|cof=|=—
flzzf (1+cost)sir’= +(1—cost)cos = | — 0 2 2 2 2|2
0 2 22w
1-(3/]-3
1 =21-(Z| |=2.
=2 1—5 , (20) 2 2

o o _ As expected, the mean cost of the second observation is
which is equal to 1, and is in accordance with the generalarger than for the first one, but is still smaller than the cost
result given by Eq(11). The system after the measurement jgsociated with a random gueds=2). This means that the

is either in the statg¢¥o) or in the stateWy). second observer can gain nontrivial information about the
Now assume that the second observer is going to perfO”Briginal preparation of the qubit.

a measurement under the conditions described above. Since Using the iterative definition given by Eqd.4) and(15),

he does not know the res_ult of the previqus measureme%gether with the definition for the mean cé&g. (4)], we

and does not know the orientation of the first apparatus, hgacyjate the precision of the measurement of time performed
has to assume that the state he is going to measure has {3 the quantum clocks as a function of the number of
form given by Eq.(19), i.e., qubitsN and the number of subsequent obsenkers

~ ! 2m ,\a/dal _ k
Q)= 2 | palr'[ta)Of 5~ (2D f(N)=2
=0 0 a

1‘(m - @)

This means he has to average over all possible orienfhis is the main result of our paper. We stress that the above

tations of the first apparatus as well as over all possiblgesult holds for the reference state corresponding to the phase

outcomes of the first measurement. We first specify thestate[Eq. (7)], and the case in which observers haveano

projectors é;r”: ¥, (a" )V, (a')], where |¥, (a')) priori know_ledge about the |n|t|al-state_ preparation. This can
be generalized to the case when the initial reference state is

=exp(-ia’H)[¥y). These states in the case of a singe qubit,yen to pe the optimal staf€q. (12)]—unfortunately, in

read this case we are not able to find a solution in an elegant
closed analytical form.
v >=i(|o)+e*i“'|1>) Let us summarize our results. We have shown that by
0 2 ' performing a measurement on quantum clocks which were
already measured independently, observers can still obtain
nontrivial information about the original preparation of the
|w,)= i(|o>_e7ia’|1>)' (22) quantum system. The larger fche ensemiNg, (the more ro-
\/5 bust the quantum system with respect to subsequent mea-
surements. Obviously, as follows from E@7) for the (k
The corresponding probabilitigs,(r’|t,a") then read +1)st observer, the mean cost of the estimation will be
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