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Quantum synthesis of arbitrary unitary operators
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Nature provides us with a restricted set of microscopic interactions. The question is whether we can syn-
thesize out of these fundamental interactions an arbitrary unitary operator. In this paper we present a construc-
tive algorithm for realization of any unitary operator which acts oftrancated Hilbert space of a single
bosonic mode. The algorithm itself is not unitary because it involves a conditional measurement. However, it
does yield a constant probability of the conditional measurement which does not depend on the input state of
the bosonic system. We consider a physical implementation of unitary transformations acting on one-
dimensional vibrational states of a trapped ion. As an example we present an algorithm which realizes the
discrete Fourier transform.

PACS numbg(s): 03.65.Bz, 42.50.Dv, 32.80.Pj

[. INTRODUCTION techniques which allow us to measure and reconstruct quan-
tum states of trapped iorifor a review, seg8]).

Controlled manipulations with individual quantum sys- (i) Arbitrary unitary evolution One of the most impor-
tems, such as trapped ions or cold atoms in atomic physicéant tasks in information processing is to design processors
molecules irradiated by laser fields, and Rydberg atoms inwhich take anarbitrary input and process it according to a
teracting with quantized micromaser fields, provide us with aSPecific prescription. Nature provides us with a restricted set
deeper understanding of fundamental principles of physicg microscopic interactions. The question is whether we can
Simultaneously, the possibility to control individual quantum synthesize out of these fundamental interactions an arbitrary
systems opens new perspectives in the application of quaitnitary operator. In this paper we present a constructive al-
tum physics. Specifically, coherent control over dynamics o@orithm for realization of any unitary operator which acts on
quantum systems is of vital importance for quantum comput? finite-dimensional Hilbert space. An algorithmic proof that
ing and information processirg.2]. any discrete finite-dimensional unitary matrix can be factor-

Quantum information processing can be schematically diized into a sequence of two-dimensional beam splitter trans-
vided into three stages. The first stage is the encoding dermations was given by Reckt al. [9]. The problem of
information into quantum systems, i.e., this corresponds to §ontrolled dynamics of quantum systems has been addressed
preparation of states of quantum systems. The second stafReently by Harel and Akulii10] and by Lloyd and Braun-
is the information processing which in general is equivalengtein[11]. Harel and Akulin[10] have proposed a method to
to a specific unitary evolution of the quantum system, i.e.attain any desired unitary evolution of quantum systems by
this is an application of a given quantum algorithm. The thirdSWwitching on and off alternatively two distinct constant per-
stage is the reading of output states of quantum regiéters turbations. The power of the method was shown in control-

the “decoding” of information from quantum systejn©b-  ling the 1D translational motion of a cold atom. _
Vi0u3|y this final Stage is the measurement of a quantum Our aim is to f|nd a Cf)nstructlve algo”thm to I‘eallze an
system and the reconstruction of relevant information. arbitrary unitary operato¥ which transforms any state/)

There are several physical systems which are believed tof a single bosonic mode, e.g., a 1D vibrational state of a
be candidates for quantum processors. In particular, Ciratapped ion in thex direction to another statpy’), i.e.,
and Zoller[3] have shown that a system of trapped ions car|,’y=V|4). In particular, we consider a truncated
be utilized as a prototype of a quantum computer. Thereforg,N + 1)-dimensional Hilbert space of the bosonic mode.

itis of great interest to understand how the three stages of th/ithin this truncated Hilbert space, the desired unitary op-
information processing as specified above can be 'mpleératorV in the number-state basis reads

mented in this system.
(i) State preparationRecently, several methods fdeter- NN
ministic synthesis (preparation of vibrational states of V= E Vy mln)(m| (1)
trapped ions have been proposed. In particular, a scheme for mnzo "M '
preparation of quantum states of one- and two-mode bosonic
fields[e.g., one-dimensiondlLD) and 2D quantum states of Under action of the operato?, a given input state trans-
vibrational motion of trapped iofshas been proposed by ¢5-ms as
Law and Eberly{4] and Kneer and Laws] (see als¢6], and
for a more general discussion on the state preparation, see

N ~
7. 9=3 calm)—)=Vw)= cilm. @

(i) State measuremeniThere are various experimental
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wherec,=21_ oV mCm. Our task is to represent by a fea-  The dynamical Stark shift operateg= 3,5,/ m),(m| is
sible physical process any opera{d)r(l)_ The synthesis of induced by a detuned standing-wave laser field applied in the
the operators thus enables us to realize universal quanturdirection[5]. For x>|g,|, the effective Hamiltoniad (4™
gates for qubits which can be encoded into vibrational levelsaddresses the states with fixed numbeof excitations(in-
We note that the synthesis itself should not necessarily bdicated by the superscrigh the modex setting the detuning
represented by a unitary operatide.g., one stage of the A, of the laser field, applied in the orthogonaldirection,
synthesis presented in this paper is realized by a conditiona&qual to the dynamical Stark shifts,,. In other words,
measuremeit nevertheless when the condition is fulfilled when the interaction is governed by the Hamiltontaft™
the desired unitary transformation on an arbitréaypriori with Ay = —s,, there is an exchange of the population only
unknown state is performed. between the statdsn,n)®|a)<|m,n)®|b) with the given
The paper is organized as follows. In Sec. Il we brieflynumber of quantan in the vibrational modex and any num-
introduce physical tools which we use to realize arbitraryber of phonons in the modey. The populations of the other
unitary operators for a trapped ion. The synthesis algorithrmumber stategwith the number of excitations in the mode
is described in Sec. lll. The method is illustrated in Sec. IV,different fromm) effectively do not change due to a large
where a realization of quantum gates which perform the Foudetuning. However, there are significant phase shifts of the
rier transform is considered. We also discuss stability of themplitudes of the off-resonant states. It should be stressed
algorithm and possibilities to realize also nonunitary operathat the addressing of states with a given nunmbef exci-

tors. We finish our paper with conclusions. tations in the modex is effective only for large ratios
x!191/>1. Moreover, the approximate Hamiltoniat>™ is
Il. TOOLS FOR SYNTHESIS: itself justified only wheny>|g,| (for details, seg5]).
LASER-STIMULATED PROCESSES The considered interaction®) are quite typical for a

trapped ion. The effective interaction Hamiltonians represent

Our realization of the unitary transformatidhgiven by  a classical driving of the iofsee H®] and a nonlinear
Eq. (1) is based on an enlargement of the Hilbert subspace afaynes-Cummings modgl2] [seeH ()] when the applied
the given system. Namely, the transformed bosonic modé&asers are tuned to appropriate vibrational sidebands. These
corresponds to one vibrational moda the x direction, for ~ Hamiltonians are thoroughly discussed $13].
concretenesof a quantized center-of-mass motion of anion  The dynamics governed by the interaction Hamiltonians
confined in the 2D trapping potential. Within our synthesis(3) can be separated into independent 2D subspaces. Switch-
procedure, the vibrational mode becomes entangled with ing on a particular interaction “channel” associated with one
the auxiliary degrees of freedofancilla) which are repre-  of the interaction Hamiltoniansi® (3) for a time 7 is de-
sented by the second vibrational mdeeg., quantized vibra- scribed as the action of the corresponding unitary time-

Itlonelll mo“%” In the;y dr:fe(_:tlorﬂﬁ?d three |r|1ternr?l .elect:conhm evolution operatot) (P =exd —iH®7] on the state vector of
evels |a),|b),|c) of the ion. The particular choice of the o system under consideration.

physical system is motivated by a feasibility of highly coher-
ent control over motional degrees of freedom as demon-

strated in recent experimerit8], which causes trapped ions IIl. SYNTHESIS OF TRANSFORMATIONS
to be candidates for quantum processors. A
A physical realization of the desired operatofor an ion To implement the desired transformatign(1) for an ion

confined in a 2D trapping potential consists of a sequentia¢onfined in the 2D trapping potential, we realize a mapping

switching (on/off) of laser fields which irradiate the ion. v " ~ .
Namely, we utilize four types of laser-stimulated interac:tions| ¢X’0V>H|OX’¢V>_.|OX.’V¢V> of _two-mo_de t_)osonlc state;_
(here subscripts indicate particular vibrational modes; in

which are associated with the followinigffective interac- what follows the subscripts will be omitted for a given or-

tion Hamiltonians: dering of models To be more explicit, the realization of the
A@m = (A +5,)(|a)al—|b)(b|)+g,|a)b|+g|b)al, transformationV can be expressed as the mapping in the
(8y+s)(]a)(al=[b)(bl)+a1la)bl +01lb)a extended Hilbert space of two bosonic modes and internal
. At aga . Aran electronic levels in the following form:
A= gyl b)(cla] F(afa,) +g31c) (bl A(aja,)ay ’
()
A®=ga|b)(c| +g3lc)(bl, 0.4")®[o)=APpyBAIp0)@a), @

" (4) 2t ata * S A
H®=g,|b)(c|a,F(asa,) +galc)(b| Faza)ax, where the operatord and B represent a sequence of four
types of unitary operations. The final projectié’rﬂ)) on the

- A 2o . 2k ~ tkak state |b) selectsconditionally the right outcome A is a
and  Flagag)=e " Zy_o[(—1)"7g/(k+1)!k!Jag"ag.  proper normalization constantin the subsequent step one
The Lamb-Dicke parameters are defined ag; could use the two-mode linear coupler based on laser-
= wq/(cy2m,vy) (assuming units such thdt=1), where stimulated Raman transitiod4] to swap the states of the
wq, vy are frequencies of the laser and vibrational mode invibrational modes, i.e.|0,#')—|#’,0). The additionalw
direction q(q=x,y), respectively. Furtherl.® denote the pulse can be used to flip the electronic state from the level
Laguerre polynomialm, is the mass of the ion. |b) into the initial level|a).

~ . _ 2
where 5,=3 spim)(m| with s,=x[1+e 2%L%(4%2)]
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The operatorsA, B, Py, appearing in Eq(4) indicate X U
three essential steps which lead us subsequently to the de- lc) - .
sired transformations. Im <) \\i\i\\i \\QU&;»

Step A The operatoA “spreads” the amplitudes,,’s of b> T e Vit Ve Vo Vo Voo
the component number states,0)®|a) over the whole Hil- T T T e e
bert spaceH,® H,® H;, so that the entangled state of the (
composed system becones

0y 11y 120 13 W4y 150 Y

N,N R
FIG. 1. The action of the operatdk’(m) on the row with a

_ it
|¢A>— m,;:0 Vi, mCme ‘Pm|m,n>®|a>. ®) fixed numbem of phonons in the mode The population from the
superpositior ,V,, u/n)y is “swept” down into the vacuunf0), in

This task can be done by the method of 1D quantum statée modey.
synthesis proposed by Law and Ebddy. An important tool ) ) ) _
represents also the photon-number-dependent interactid@r Synthesis of 1D bosonic states in a straightforward way.
F@m considered by Kneer and L4i], which enables us to Ther_efore, we rgfer reade(s to.the original pd@eéifor other
address individually the subspaces with a fixed nunmbef details (generalized Hamiltonians to operate beyond the

h in thec direction. Th oA b ) Lamb-Dicke limit can be found if13]). Note that in our
phonons in thec direction. The operatoh can be written as 456 we apply the state-synthesis procedure only inythe

N direction and the resulting staté) remainsunknown
A=1] OO ois yAM O, (6) To resume, the action of the operafdrencodes the ma-
m=0 " trix elementsV,, ,, (multiplied with the amplitude<,,’'s of
the unknown stabeinto rows of the 2D vibrational “lattice”
of number statesm,n). In the next step an appropriate su-
- ~2) 1(3) ~2) NG perposing of columns within the 2D vibrational number-state
AM =U[GnmYimn-1:0 " UlminUimoe - () “lattice” is required.
) ) A my Step B.n the second step the operaém:reates the state
The subscript of the unitary transformatlth.tgl; indicates i, \which the amplitudes of the statef)n)®|b) (n
the required setting of the corresponding interaction param=0, . .. N) are proportional t@,=3N_V, nCn. The state

eter gy7=|g;7/e'm. In other transformationsU(§} (b of the systen]y®)=B|y*) after this synthesis step reads
=2,3) the subscripts denote steps in 1D quantum-state syn-

where

thesis as explained below. In other words, within a particular 1 NN

subspace with a fixed numbar of phonons in thex direc- [¥B)=——=—=[0y")2|b)+ X > zp mn)e|a).

tion, we flip from the electronic leveh) to |b) by means of N+1 m=0n=0 ®)

UM Then to “spread”|m,0)®|b) we apply 1D quantum

state synthesis associated with the action of the operatgfhe gperato can be written in the form

A(m) to “prepare” the superposition=N_oV, n/m,n)

®|b). After that the electronic leveb) is flipped back to _ [Nt N

|]a) via the action of U®M) [here ¢,,'s represent B= 1__[ B(m) |05, ©
—ml2exp{¢,) m m=0

proper phase factors which will be discussed later, see Eq.
(11)]. where

The appropriate interaction parameters for our 1D R R R R
quantum-state synthesis can be found when we solve the B(m)=Uﬁli"'e‘l)mtan(m\l +17m)U(*3i)1T/2U(ji)77/(2\ﬁm)' (10
inverse task which is given by the inverse transformation:
IM,0)®|b)=AT(M),Va mlm,n)@|b). The inverse task is Here the subscripts of the unitary operatm‘é‘;)T indicate
based on “sweeping” down the probability from the com- again the proper choice of interaction paramegg)rs2
ponent states of the given superposition in jheode into The action of the operatds on a particular column with
the \{azc)uum. Therefore, the subscripts of the unitary operag given numben of phonons in they mode is shown sche-
torsUjg) (pi=2,3) in Eq.(7) indicate that interaction param- agically in Fig. 2. Simultaneously, the operaracts in
etersg,r=e QD|9pTU]r""VG to be chosen in such way that afterthe same way on “parallel” columns with differemt As
the action of theU|{ the amplitude(population of the  jllustrated in the upper part of Fig. 2, the operafti"), (for
component stat¢d) becomes equal to zero. The action of
the operatorAf(m) is shown schematically in Fig. 1. We

have applied the procedure introduced by Law and Eberly 2Here and in Fig. 2 the explicit expressions for required settings,
e.g.,g,7=—iw/(2ym+1), refer for clarity to the Lamb-Dicke re-
gime 7n,<1. Outside of the Lamb-Dicke regime, the Rabi fre-
Yn our synthesis algorithm we neglect off-resonant transitionsquencyym-+1 is simply replaced by the nonlinear Rabi frequency

between internal levels it (™. Strictly speaking, the equality e’”i’ZL#(ni)/\/m-%l, whereLrln denotes the associated Laguerre
sign applies only in the limif/|g,|— . polynomial.
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FIG. 2. The action of the operat(ﬁ on the column withn
vibrational quanta in the mode The same changes occur simulta-
neously on “parallel” columns with different. The upper figure

shows the action 004N, (for N=5) followed by the basic se-
quence of operation8(m) (for m=4). Decreasing the number of

quantam in the x direction, the basic sequenBg¢m) is recursively
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m—1 N
b= == > f0(m— D 10| arcta !
mo2 & " k=mer JN=—k+1/’
(11)
where £0(|g,| ) =ard cosQW ) +i(s—sy)/

200 sin@¥A] with QK = \/(s,—syn)%4+]g,]?. The ori-
gin of the expressiofill) can be traced back to the operators

UM in the stepsA andB. The aim is to cancel the phase
shifts of the amplitudes in order to “superpose” them on the

mth row by means oé(m). Therefore, the first sum in Eq.
(12) compensateén advanceg for the subsequent shifts o

due toU™X for k=0, ... m—1. The second sum compen-
sates for the shifts which will take place during “superpos-
ing” operationsB(k) for k=m+1, ... N, which precede
B(m). As seen from Eq(11), these phases depend on the
parameters, which are related to Stark shifts given explic-
itly by the formula below Eq(3). We stress that the phases
¢m do not depend on the input state, i.e., they are indepen-
dent of the complex amplitudes, [see Eq.(2)].

Step C.Comparing the stat&)®) [Eq. (8)] with the de-
sired ong Eq. (4)], we see that the target state is entangled to
the internal levelb). On the other hand, also undesired com-
ponent statem+ 0,n)®|a) are now contributing to Eq8)

repeated as shown in the lower figure. After the action of the opwith nonvanishing amplitudes. Howeviortunately, all the

eratorB, the value of the amplitude of the component stée)
®|b) is ry=(m-oVamCm)/ VN+1.

N=5) transfers the population from the internal leje) to
|b) only in the row with the fixed number of quanta=>5 in
the modex. Further, this population is transfered to the in-
ternal level|b) in the neighboring row with the number of
guanta m=4 performing transformations
U (—3i)71'/2U (fi)vr/(ZV“m_+I) '

The equal superposition of the amplitud¥g 4c, and
V,sCs in the row with m=4 is obtained after action of
0(_1;4gmanm), i.e., undergoing one-half of the Rabi flipping.
Decreasingm (the number of quanta in the modg, the
basic sequencB(m) is recursively repeated as indicated in
the lower part of Fig. 2. Note thaﬂg{?rctan(l{fW) is
responsible for adding the amplitudg, c, (with a proper
weigh to previously superposed amplitudﬁg:mHVn,ka

undesired components are entangled with the internal level
|a). Therefore, we can perform a conditional measurement
to project the state vect8) on the internal levelb). To be
more specific, the internal state of the ion can be determined
by driving the transition from the leveh) to an auxiliary
level |r) and observing the fluorescence sigh&lo signal

(no interaction with probing fielddmeans that the undis-
turbed ion is occupying the levéb) being in the motional
state|0,i’). This means that after the conditional measure-
ment [indicated in Eq.(4) by the projectorIAD‘m], the state
vector (8) is reduced to the desired state vectdy. The
probability to find the right outcome for the unitary transfor-
mations is equal to N+ 1.

In spite of the involvedconditional selectiorof the right
outcomes, our algorithm isniversalas the sequence of the
“elementary” operations(with appropriate interaction pa-
rameter$ which represents the desired transformation is al-
waysindependenbf input states. Moreover, contrary to con-
ditional measurement schemes known from quantum state

performing an adequate part of the Rabi flipping. After theyenaration, in our case the probability of the right outcome

action of the whole operat(ﬁ, the amplitude ,, of the com-
ponent state |0On)®|b) takes the value r,
=(1/\/N+1)Eﬁzovn,mcm, i.e., r,~c,. The transformed
state|4®) is given in Eq.(8).

At this step we should notice thaachaction of the “el-
ementary” unitary operatod(*™, associated with the inter-

action HamiltoniarH*™ with A, = —s,,, causes significant

phase shifts on off-resonant rows with the number of quant

in the modex different fromm [5]. These phase shifts have
to be compensateith advancein order to “superpose” the

amplitudes via the action dd(m) as described abovsee
the role oflAJ(,li'”?mtan(MW)). This compensation can be

done when we include appropriate phase shiftss directly
in the operato [see Eq(6)]. The explicit expression reads

is constant, being alsmdependenbf input states.

IV. DISCUSSION

One of the important applications of the operator synthe-
sis is a realization ofuniversal quantum gates for qubits

which are encoded in vibrational levels. The number states

of the vibrational mode can represent a quantum register.

@ Toillustrate our synthesis procedure, we considered a re-

alization of the operator which “rotates” the population be-

3As a check, one could drive also the transition from the I¢wgl
to another auxiliary lever'). Errors in the synthesis procedure are
thus indicated by the presence of the fluorescence signal.
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10 shows that the fidelity is close to 1 for large ratig4g,|
>1 for both operator¥g andVqer. In such a case both the

validity of the approximate Hamiltoniahi*™ is justified
08 [5] and the level flipping |@)«|b)) on off-resonant “rows”
(as the source of nonideal fidelitgan be neglected.

Let us note that for nonunitary transformations the prob-
ability depends on initial states and can be from the interval
(0,1). However, the realization of the transformatigiven
by the sequence of the “elementary” operations with appro-
priate interaction parametens alwaysindependenbf input
04 states.

fidelity
4

- VQFT
— Vi V. CONCLUSIONS

0.2 -
2 /1 6|° 80 100 In this paper we have proposed a constructive algorithm
X/ &1 for the synthesis of operators, a superior task to the synthesis
FIG. 3. The fidelity of outputs to the ideally transformed statesOf quantum states. Our method allows us to farhlytical
as a function of the ratiq/|g,| for the quantum Fourier transform €xpressions for switching times and interaction parameters of
Ve (thick solid ling and the exponential phase operaiy (thin the utilized laser-stimulated processes by which an arbitrary
solid ling). Lamb-Dicke parameters arg,= 7,=0.4. unitary dynamics can be realized. One of the important ap-
plications of the operator synthesis is a realizatiommif/er-

tweenN vibrational Fock states under consideration, sal quantum gates for qubits which are encoded in vibra-
tional levels. As an example, we consider a realization of the
. 1 (NP _ discrete Fourier transform.
VR:\/m ZO |[J+ 1) +[0)(NJ]. (12) The solution of the problem we present in our paper is
= neither unique nor optimdin the sense of a number of el-

It corresponds to a cyclic “rotation” of the quantum register. EMeNtary operations used for a construction of the given uni-
N . . tary operatoy. The optimization of the procedure is the prob-
The operatorVg represents the unitary exponential phaseIem which has to be solved. The other problem which
Op?rrlatfé 2;22?1 dpggg;nBall;n?ﬁefzrmn?rll'j:?' rocedure is a Iiegﬁserves attention is the stability of the algorithm with re-
for the unitary Operatopr (;f the ):JuantumpFourier transﬁ)em pect to noise inherent m_th_e system. Ir-] fact, one can con-
) sider two types of uncertainties which might play an impor-
defined ag16] tant role. First, it is the noise induced by the environment,
i.e., the elementary gates are not unitary. The second source

N—1
\‘/QFT:L > exp 2mi _mn Im)(n|. (13 of noise(a kind of technical noiseis due to the fact that it is
YN+1 mn=0 N+1 not possible to keep the interaction times and parameters

fixed as given by the theory. Fluctuations in these parameters
The operator of the quantum Fourier transform represents amight reduce the fidelity of the realization of the desired
important tool in quantum computir{d6]. unitary evolution. We will address these questions else-
In the presented synthesis procedure, we have neglectgghere.
transitions between internal levels on off-resonant “rows”

. . . 2N (l,m) . . .
when .the interaction Hamlltonlaﬂ. |§ applied. Strictly ACKNOWLEDGMENTS
speaking, the off-resonant transitions kf*™ can be ne- _ o _
glected only in the limity/|g;|— . Our estimation of the We thank Gil Harel and Vladimir Akulin for support, and

error due to the finite values of the ratid|g,| (feasible in Jason Twamley for discussions. This work was supported in
practice is based on the fidelity of the outputs to the ideally Part by the Slovak Academy of Sciend@soject VEGA, by
transformed state@). The fidelity of two state§d),|®’) is  the GACR(201/98/0369 and by the Royal Society.

defined as their squared scalar prod(dt’ |®)[°. As a test-

ing input state of thex mode, we can take a uniform super-

position _of involved number states, i.e.|¢) “In Fig. 3 we consider parameters outside of the Lamb-Dicke
=(LWN+1)=]_oIm), (the initial internal state of the ion is regime. To operate in the Lamb-Dicke regime requires a further
|a) and the vibrationay mode is in the vacuum Figure 3  increase of the ratiq/|g,|>1 to reach a fidelity close to 1.
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