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Quantum synthesis of arbitrary unitary operators
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Nature provides us with a restricted set of microscopic interactions. The question is whether we can syn-
thesize out of these fundamental interactions an arbitrary unitary operator. In this paper we present a construc-
tive algorithm for realization of any unitary operator which acts on a~truncated! Hilbert space of a single
bosonic mode. The algorithm itself is not unitary because it involves a conditional measurement. However, it
does yield a constant probability of the conditional measurement which does not depend on the input state of
the bosonic system. We consider a physical implementation of unitary transformations acting on one-
dimensional vibrational states of a trapped ion. As an example we present an algorithm which realizes the
discrete Fourier transform.

PACS number~s!: 03.65.Bz, 42.50.Dv, 32.80.Pj
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I. INTRODUCTION

Controlled manipulations with individual quantum sy
tems, such as trapped ions or cold atoms in atomic phys
molecules irradiated by laser fields, and Rydberg atoms
teracting with quantized micromaser fields, provide us wit
deeper understanding of fundamental principles of phys
Simultaneously, the possibility to control individual quantu
systems opens new perspectives in the application of q
tum physics. Specifically, coherent control over dynamics
quantum systems is of vital importance for quantum comp
ing and information processing@1,2#.

Quantum information processing can be schematically
vided into three stages. The first stage is the encoding
information into quantum systems, i.e., this corresponds
preparation of states of quantum systems. The second s
is the information processing which in general is equival
to a specific unitary evolution of the quantum system, i
this is an application of a given quantum algorithm. The th
stage is the reading of output states of quantum registers~i.e.,
the ‘‘decoding’’ of information from quantum systems!. Ob-
viously this final stage is the measurement of a quan
system and the reconstruction of relevant information.

There are several physical systems which are believe
be candidates for quantum processors. In particular, C
and Zoller@3# have shown that a system of trapped ions c
be utilized as a prototype of a quantum computer. Theref
it is of great interest to understand how the three stages o
information processing as specified above can be im
mented in this system.

(i) State preparation. Recently, several methods fordeter-
ministic synthesis ~preparation! of vibrational states of
trapped ions have been proposed. In particular, a schem
preparation of quantum states of one- and two-mode bos
fields @e.g., one-dimensional~1D! and 2D quantum states o
vibrational motion of trapped ions# has been proposed b
Law and Eberly@4# and Kneer and Law@5# ~see also@6#, and
for a more general discussion on the state preparation,
@7#!.

(ii) State measurement. There are various experiment
1050-2947/2000/61~2!/022102~6!/$15.00 61 0221
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techniques which allow us to measure and reconstruct qu
tum states of trapped ions~for a review, see@8#!.

(iii) Arbitrary unitary evolution. One of the most impor-
tant tasks in information processing is to design process
which take anarbitrary input and process it according to
specific prescription. Nature provides us with a restricted
of microscopic interactions. The question is whether we c
synthesize out of these fundamental interactions an arbit
unitary operator. In this paper we present a constructive
gorithm for realization of any unitary operator which acts
a finite-dimensional Hilbert space. An algorithmic proof th
any discrete finite-dimensional unitary matrix can be fact
ized into a sequence of two-dimensional beam splitter tra
formations was given by Recket al. @9#. The problem of
controlled dynamics of quantum systems has been addre
recently by Harel and Akulin@10# and by Lloyd and Braun-
stein@11#. Harel and Akulin@10# have proposed a method t
attain any desired unitary evolution of quantum systems
switching on and off alternatively two distinct constant pe
turbations. The power of the method was shown in contr
ling the 1D translational motion of a cold atom.

Our aim is to find a constructive algorithm to realize
arbitrary unitary operatorV̂ which transforms any stateuc&
of a single bosonic mode, e.g., a 1D vibrational state o
trapped ion in thex direction to another stateuc8&, i.e.,
uc8&5V̂uc&. In particular, we consider a truncate
(N11)-dimensional Hilbert space of the bosonic mod
Within this truncated Hilbert space, the desired unitary o
eratorV̂ in the number-state basis reads

V̂5 (
m,n50

N,N

Vn,mun&^mu. ~1!

Under action of the operatorV̂, a given input state trans
forms as

uc&5 (
m50

N

cmum&→
V̂

uc8&5V̂uc&5 (
n50

cn8un&, ~2!
©2000 The American Physical Society02-1
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wherecn85(m50
N Vn,mcm . Our task is to represent by a fea

sible physical process any operatorV̂ ~1!. The synthesis of
the operators thus enables us to realize universal quan
gates for qubits which can be encoded into vibrational lev
We note that the synthesis itself should not necessarily
represented by a unitary operation~e.g., one stage of the
synthesis presented in this paper is realized by a conditi
measurement!, nevertheless when the condition is fulfille
the desired unitary transformation on an arbitrary~a priori
unknown! state is performed.

The paper is organized as follows. In Sec. II we brie
introduce physical tools which we use to realize arbitra
unitary operators for a trapped ion. The synthesis algorit
is described in Sec. III. The method is illustrated in Sec.
where a realization of quantum gates which perform the F
rier transform is considered. We also discuss stability of
algorithm and possibilities to realize also nonunitary ope
tors. We finish our paper with conclusions.

II. TOOLS FOR SYNTHESIS:
LASER-STIMULATED PROCESSES

Our realization of the unitary transformationV̂ given by
Eq. ~1! is based on an enlargement of the Hilbert subspac
the given system. Namely, the transformed bosonic m
corresponds to one vibrational mode~in the x direction, for
concreteness! of a quantized center-of-mass motion of an i
confined in the 2D trapping potential. Within our synthe
procedure, the vibrationalx mode becomes entangled wi
the auxiliary degrees of freedom~ancilla! which are repre-
sented by the second vibrational mode~e.g., quantized vibra-
tional motion in they direction! and three internal electroni
levels ua&,ub&,uc& of the ion. The particular choice of th
physical system is motivated by a feasibility of highly cohe
ent control over motional degrees of freedom as dem
strated in recent experiments@8#, which causes trapped ion
to be candidates for quantum processors.

A physical realization of the desired operatorV̂ for an ion
confined in a 2D trapping potential consists of a sequen
switching ~on/off! of laser fields which irradiate the ion
Namely, we utilize four types of laser-stimulated interactio
which are associated with the following~effective! interac-
tion Hamiltonians:

Ĥ (1,m)5~Dy1 ŝx!~ ua&^au2ub&^bu!1g1ua&^bu1g1
!ub&^au,

Ĥ (2)5g2ub&^cuây
†F~ ây

†ây!1g2
!uc&^buF~ ây

†ây!ây ,
~3!

Ĥ (3)5g3ub&^cu1g3
!uc&^bu,

Ĥ (4)5g4ub&^cuâx
†F~ âx

†âx!1g4
!uc&^buF~ âx

†âx!âx ,

where ŝx5(msmum&x^mu with sm5x@11e22hx
2
Lm

0 (4hx
2)#

and F(âqâq)5e2hq
2/2(k50@(21)khq

2k/(k11)!k! #âq
†kâq

k .
The Lamb-Dicke parameters are defined ashq

5vq /(cA2manq) ~assuming units such that\51), where
vq ,nq are frequencies of the laser and vibrational mode
direction q(q5x,y), respectively. Further,Lm

0 denote the
Laguerre polynomial;ma is the mass of the ion.
m
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The dynamical Stark shift operatorŝx5(msmum&x^mu is
induced by a detuned standing-wave laser field applied in
x direction@5#. Forx@ug1u, the effective HamiltonianH (1,m)

addresses the states with fixed numberm of excitations~in-
dicated by the superscript! in the modex setting the detuning
Dy of the laser field, applied in the orthogonaly direction,
equal to the dynamical Stark shift2sm . In other words,
when the interaction is governed by the HamiltonianH (1,m)

with Dy52sm , there is an exchange of the population on
between the statesum,n& ^ ua&⇔um,n& ^ ub& with the given
number of quantam in the vibrational modex and any num-
ber of phononsn in the modey. The populations of the othe
number states~with the number of excitations in the modex
different from m) effectively do not change due to a larg
detuning. However, there are significant phase shifts of
amplitudes of the off-resonant states. It should be stres
that the addressing of states with a given numberm of exci-
tations in the modex is effective only for large ratios
x/ug1u@1. Moreover, the approximate HamiltonianH (1,m) is
itself justified only whenx@ug1u ~for details, see@5#!.

The considered interactions~3! are quite typical for a
trapped ion. The effective interaction Hamiltonians repres
a classical driving of the ion@see H (3)# and a nonlinear
Jaynes-Cummings model@12# @seeH (2),(4)# when the applied
lasers are tuned to appropriate vibrational sidebands. Th
Hamiltonians are thoroughly discussed in@5,13#.

The dynamics governed by the interaction Hamiltonia
~3! can be separated into independent 2D subspaces. Sw
ing on a particular interaction ‘‘channel’’ associated with o
of the interaction HamiltoniansĤ (p) ~3! for a time t is de-
scribed as the action of the corresponding unitary tim
evolution operatorÛ (p)5exp@2iĤ(p)t# on the state vector o
the system under consideration.

III. SYNTHESIS OF TRANSFORMATIONS

To implement the desired transformationV̂ ~1! for an ion
confined in the 2D trapping potential, we realize a mapp

ucx,0y&→
V̂

u0x ,cy8&5u0x ,V̂cy& of two-mode bosonic state
~here subscripts indicate particular vibrational modes;
what follows the subscripts will be omitted for a given o
dering of modes!. To be more explicit, the realization of th
transformationV̂ can be expressed as the mapping in
extended Hilbert space of two bosonic modes and inte
electronic levels in the following form:

u0,c8& ^ ub&5NP̂ub&B̂Âuc,0& ^ ua&, ~4!

where the operatorsÂ and B̂ represent a sequence of fou
types of unitary operations. The final projectionP̂ub& on the
state ub& selectsconditionally the right outcome (N is a
proper normalization constant!. In the subsequent step on
could use the two-mode linear coupler based on las
stimulated Raman transitions@14# to swap the states of th
vibrational modes, i.e.,u0,c8&→uc8,0&. The additionalp
pulse can be used to flip the electronic state from the le
ub& into the initial levelua&.
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61 022102-3QUANTUM SYNTHESIS OF ARBITRARY UNITARY OPERATORS
The operatorsÂ, B̂, Pub& appearing in Eq.~4! indicate
three essential steps which lead us subsequently to the
sired transformations.

Step A. The operatorÂ ‘‘spreads’’ the amplitudescm’s of
the component number statesunx,0& ^ ua& over the whole Hil-
bert spaceHx^ Hy^ Hin so that the entangled state of th
composed system becomes1

ucA&5 (
m,n50

N,N

Vn,mcmeiwm
A
um,n& ^ ua&. ~5!

This task can be done by the method of 1D quantum s
synthesis proposed by Law and Eberly@4#. An important tool
represents also the photon-number-dependent intera
Ĥ (1,m) considered by Kneer and Law@5#, which enables us to
address individually the subspaces with a fixed numberm of
phonons in thex direction. The operatorÂ can be written as

Â5 )
m50

N

Û2p/2exp(ifm)
(1,m) Â~m!Ûp/2

(1,m) , ~6!

where

Â~m!5Û um,N;b&
(2) Û um,N21;c&

(3)
•••Û um,1;b&

(2) Û um,0;c&
(3) . ~7!

The subscript of the unitary transformationÛg1t
(1,m) indicates

the required setting of the corresponding interaction par
eter g1t5ug1tueifm. In other transformationsÛ uF&

(p) (p
52,3) the subscripts denote steps in 1D quantum-state
thesis as explained below. In other words, within a particu
subspace with a fixed numberm of phonons in thex direc-
tion, we flip from the electronic levelua& to ub& by means of
Ûp/2

(1,m) . Then to ‘‘spread’’um,0& ^ ub& we apply 1D quantum
state synthesis associated with the action of the oper
Â(m) to ‘‘prepare’’ the superposition(n50

N Vn,mum,n&
^ ub&. After that the electronic levelub& is flipped back to
ua& via the action of Û2p/2exp(ifm)

(1,m) @here fm’s represent

proper phase factors which will be discussed later, see
~11!#.

The appropriate interaction parameters for our
quantum-state synthesis can be found when we solve
inverse task which is given by the inverse transformati
um,0& ^ ub&5Â†(m)(nVn,mum,n& ^ ub&. The inverse task is
based on ‘‘sweeping’’ down the probability from the com
ponent states of the given superposition in they mode into
the vacuum. Therefore, the subscripts of the unitary op
torsÛ uF&

(p) (p52,3) in Eq.~7! indicate that interaction param
etersgpt5eiwugptu have to be chosen in such way that af
the action of theÛ uF&

†(p) the amplitude~population! of the
component stateuF& becomes equal to zero. The action
the operatorÂ†(m) is shown schematically in Fig. 1. W
have applied the procedure introduced by Law and Eb

1In our synthesis algorithm we neglect off-resonant transitio

between internal levels inĤ (1,m). Strictly speaking, the equality
sign applies only in the limitx/ug1u→`.
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for synthesis of 1D bosonic states in a straightforward w
Therefore, we refer readers to the original paper@4# for other
details ~generalized Hamiltonians to operate beyond
Lamb-Dicke limit can be found in@13#!. Note that in our
case we apply the state-synthesis procedure only in thy
direction and the resulting state~5! remainsunknown.

To resume, the action of the operatorÂ encodes the ma
trix elementsVn,m ~multiplied with the amplitudescm’s of
the unknown state! into rows of the 2D vibrational ‘‘lattice’’
of number statesum,n&. In the next step an appropriate s
perposing of columns within the 2D vibrational number-sta
‘‘lattice’’ is required.

Step B.In the second step the operatorB̂ creates the state
in which the amplitudes of the statesu0,n& ^ ub& (n
50, . . . ,N) are proportional tocn85(m50

N Vn,mcm . The state

of the systemucB&5B̂ucA& after this synthesis step reads

ucB&5
1

AN11
u0,c8& ^ ub&1 (

m50

N

(
n50

N

zm,num,n& ^ ua&.

~8!

The operatorB̂ can be written in the form

B̂5F )
m50

N21

B̂~m!G Û2 ip/2
(1,N) , ~9!

where

B̂~m!5Û2 i arctan(1/AN112m)
(1,m) Û2 ip/2

(3) Û2 ip/(2Am11)
(4) . ~10!

Here the subscripts of the unitary operatorsUgpt
(p) indicate

again the proper choice of interaction parametersgpt.2

The action of the operatorB̂ on a particular column with
a given numbern of phonons in they mode is shown sche
matically in Fig. 2. Simultaneously, the operatorB̂ acts in
the same way on ‘‘parallel’’ columns with differentn. As
illustrated in the upper part of Fig. 2, the operatorÛ2 ip/2

(1,N) ~for

s

2Here and in Fig. 2 the explicit expressions for required settin
e.g.,g4t52 ip/(2Am11), refer for clarity to the Lamb-Dicke re-
gime hx!1. Outside of the Lamb-Dicke regime, the Rabi fr
quencyAm11 is simply replaced by the nonlinear Rabi frequen

e2hx
2/2Lm

1 (hx
2)/Am11, whereLm

1 denotes the associated Laguer
polynomial.

FIG. 1. The action of the operatorÂ†(m) on the row with a
fixed numberm of phonons in the modex. The population from the
superposition(nVn,mun&y is ‘‘swept’’ down into the vacuumu0&y in
the modey.
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N55) transfers the population from the internal levelua& to
ub& only in the row with the fixed number of quantam55 in
the modex. Further, this population is transfered to the i
ternal levelub& in the neighboring row with the number o
quanta m54 performing transformations

Û2 ip/2
(3) Û2 ip/(2Am11)

(4) .
The equal superposition of the amplitudesVn,4c4 and

Vn,5c5 in the row with m54 is obtained after action o
Û2 i arctan(1/A2)

(1,4) , i.e., undergoing one-half of the Rabi flipping
Decreasingm ~the number of quanta in the modex), the
basic sequenceB̂(m) is recursively repeated as indicated
the lower part of Fig. 2. Note thatÛ2 i arctan(1/AN2m11)

(1,m) is
responsible for adding the amplitudeVn,mcm ~with a proper
weight! to previously superposed amplitudes(k5m11

N Vn,kck

performing an adequate part of the Rabi flipping. After t
action of the whole operatorB̂, the amplituder n of the com-
ponent state u0,n& ^ ub& takes the value r n

5(1/AN11)(m50
N Vn,mcm , i.e., r n;cn8 . The transformed

stateucB& is given in Eq.~8!.
At this step we should notice thateachaction of the ‘‘el-

ementary’’ unitary operatorÛ (1,m), associated with the inter
action HamiltonianĤ (1,m) with Dy52sm , causes significan
phase shifts on off-resonant rows with the number of qua
in the modex different fromm @5#. These phase shifts hav
to be compensatedin advancein order to ‘‘superpose’’ the
amplitudes via the action ofB̂(m) as described above~see
the role of Û2 i arctan(1/AN2m11)

(1,m) ). This compensation can b
done when we include appropriate phase shiftsfm’s directly
in the operatorÂ @see Eq.~6!#. The explicit expression read

FIG. 2. The action of the operatorB̂ on the column withn
vibrational quanta in the modey. The same changes occur simult
neously on ‘‘parallel’’ columns with differentn. The upper figure

shows the action ofÛ2 ip/2
(1,N) ~for N55) followed by the basic se

quence of operationsB̂(m) ~for m54). Decreasing the number o

quantam in thex direction, the basic sequenceB̂(m) is recursively
repeated as shown in the lower figure. After the action of the

erator B̂, the value of the amplitude of the component stateu0,n&
^ ub& is r n5((m50

N Vn,mcm)/AN11.
ta

fm52
p

2
2 (

k50

m21

f m
(k)~p!2 (

k5m11

N

f m
(k)S arctan

1

AN2k11
D ,

~11!

where f m
(k)(ug1ut)5arg@cos(Vm

(k)t)1i(sk2sm)/
2Vm

(k))sin(Vm
(k)t)] with Vm

(k)5A(sk2sm)2/41ug1u2. The ori-
gin of the expression~11! can be traced back to the operato
Û (1,m) in the stepsÂ and B̂. The aim is to cancel the phas
shifts of the amplitudes in order to ‘‘superpose’’ them on t
mth row by means ofB̂(m). Therefore, the first sum in Eq
~11! compensates~in advance! for the subsequent shifts inÂ
due toÛ (1,k) for k50, . . . ,m21. The second sum compen
sates for the shifts which will take place during ‘‘superpo
ing’’ operations B̂(k) for k5m11, . . . ,N, which precede
B̂(m). As seen from Eq.~11!, these phases depend on t
parameterssn which are related to Stark shifts given expli
itly by the formula below Eq.~3!. We stress that the phase
fm do not depend on the input state, i.e., they are indep
dent of the complex amplitudescn @see Eq.~2!#.

Step C.Comparing the stateucB& @Eq. ~8!# with the de-
sired one@Eq. ~4!#, we see that the target state is entangled
the internal levelub&. On the other hand, also undesired co
ponent statesumÞ0,n& ^ ua& are now contributing to Eq.~8!
with nonvanishing amplitudes. However~fortunately!, all the
undesired components are entangled with the internal le
ua&. Therefore, we can perform a conditional measurem
to project the state vector~8! on the internal levelub&. To be
more specific, the internal state of the ion can be determi
by driving the transition from the levelua& to an auxiliary
level ur & and observing the fluorescence signal.3 No signal
~no interaction with probing field! means that the undis
turbed ion is occupying the levelub& being in the motional
stateu0,c8&. This means that after the conditional measu
ment @indicated in Eq.~4! by the projectorP̂ub&#, the state
vector ~8! is reduced to the desired state vector~4!. The
probability to find the right outcome for the unitary transfo
mations is equal to 1/N11.

In spite of the involvedconditional selectionof the right
outcomes, our algorithm isuniversalas the sequence of th
‘‘elementary’’ operations~with appropriate interaction pa
rameters! which represents the desired transformation is
waysindependentof input states. Moreover, contrary to con
ditional measurement schemes known from quantum s
preparation, in our case the probability of the right outco
is constant, being alsoindependentof input states.

IV. DISCUSSION

One of the important applications of the operator synt
sis is a realization ofuniversal quantum gates for qubits
which are encoded in vibrational levels. The number sta
of the vibrational mode can represent a quantum registe

To illustrate our synthesis procedure, we considered a
alization of the operator which ‘‘rotates’’ the population b

3As a check, one could drive also the transition from the leveluc&
to another auxiliary levelur 8&. Errors in the synthesis procedure a
thus indicated by the presence of the fluorescence signal.

-
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61 022102-5QUANTUM SYNTHESIS OF ARBITRARY UNITARY OPERATORS
tweenN vibrational Fock states under consideration,

V̂R5
1

AN11
S (

j 50

N21

u j 11&^ j u1u0&^Nu D . ~12!

It corresponds to a cyclic ‘‘rotation’’ of the quantum registe
The operatorV̂R represents the unitary exponential pha
operator of the Pegg-Barnett formalism@15#.

In the second example, the synthesis procedure is app
for the unitary operator of the quantum Fourier transfo
defined as@16#

V̂QFT5
1

AN11
(

m,n50

N21

expS 2p i
mn

N11D um&^nu. ~13!

The operator of the quantum Fourier transform represent
important tool in quantum computing@16#.

In the presented synthesis procedure, we have negle
transitions between internal levels on off-resonant ‘‘row
when the interaction HamiltonianĤ (1,m) is applied. Strictly
speaking, the off-resonant transitions inĤ (1,m) can be ne-
glected only in the limitx/ug1u→`. Our estimation of the
error due to the finite values of the ratiox/ug1u ~feasible in
practice! is based on the fidelity of the outputs to the idea
transformed states~4!. The fidelity of two statesuF&,uF8& is
defined as their squared scalar productz^F8uF& z2. As a test-
ing input state of thex mode, we can take a uniform supe
position of involved number states, i.e., uc&
5(1/AN11)(m50

N um&x ~the initial internal state of the ion is
ua& and the vibrationaly mode is in the vacuum!. Figure 3

FIG. 3. The fidelity of outputs to the ideally transformed sta
as a function of the ratiox/ug1u for the quantum Fourier transform

V̂QFT ~thick solid line! and the exponential phase operatorV̂R ~thin
solid line!. Lamb-Dicke parameters arehx5hy50.4.
e

ed

an

ted
’

shows that the fidelity is close to 1 for large ratiosx/ug1u
@1 for both operatorsV̂R andV̂QFT.4 In such a case both th
validity of the approximate HamiltonianĤ (1,m) is justified
@5# and the level flipping (ua&↔ub&) on off-resonant ‘‘rows’’
~as the source of nonideal fidelity! can be neglected.

Let us note that for nonunitary transformations the pro
ability depends on initial states and can be from the inter
(0,1). However, the realization of the transformation~given
by the sequence of the ‘‘elementary’’ operations with app
priate interaction parameters! is alwaysindependentof input
states.

V. CONCLUSIONS

In this paper we have proposed a constructive algorit
for the synthesis of operators, a superior task to the synth
of quantum states. Our method allows us to findanalytical
expressions for switching times and interaction parameter
the utilized laser-stimulated processes by which an arbitr
unitary dynamics can be realized. One of the important
plications of the operator synthesis is a realization ofuniver-
sal quantum gates for qubits which are encoded in vib
tional levels. As an example, we consider a realization of
discrete Fourier transform.

The solution of the problem we present in our paper
neither unique nor optimal~in the sense of a number of e
ementary operations used for a construction of the given
tary operator!. The optimization of the procedure is the pro
lem which has to be solved. The other problem whi
deserves attention is the stability of the algorithm with
spect to noise inherent in the system. In fact, one can c
sider two types of uncertainties which might play an impo
tant role. First, it is the noise induced by the environme
i.e., the elementary gates are not unitary. The second so
of noise~a kind of technical noise! is due to the fact that it is
not possible to keep the interaction times and parame
fixed as given by the theory. Fluctuations in these parame
might reduce the fidelity of the realization of the desir
unitary evolution. We will address these questions el
where.
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