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A quantum clock must satisfy two basic constraints. The first is a bound on the time resolution of
the clock given by the difference between its maximum and minimum energy eigenvalues. The second
follows from Holevo’s bound on how much classical information can be encoded in a quantum system.
We show that asymptotically, as the dimension of the Hilbert space of the clock tends to infinity, both
constraints can be satisfied simultaneously. The experimental realization of such an optimal quantum
clock using trapped ions is discussed. [S0031-9007(99)08612-3]

PACS numbers: 03.67.–a, 03.65.Bz, 42.50.Ar
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Recent technical advances in the laser cooling and tra
ping of ions suggest that coherent manipulations of trapp
ions will be performed in the not too far future [1]. Apar
from various important applications such as quantum i
formation processing or improving high-precision spec
troscopy these techniques also allow us to test fundamen
concepts of quantum theory. In particular, much deep
insight into the problem of quantum measurement can
obtained.

In this Letter we study the problem of building an
optimal quantum clock from an ensemble ofN ions. To
be specific let us assume an ion trap withN two-level ions
all in the ground statejCl ­ j0l ≠ · · · ≠ j0l. This state
is an eigenstate of the free Hamiltonian and thus cann
record time. Therefore the first step in building a clock
to bring the system to an initial statêV which is not an
energy eigenstate. For instance one can apply a Ram
pulse whose shape and duration is chosen such that it p
all the ions in the product state

V̂prod ­ r̂ ≠ · · · ≠ r̂ ;

r̂ ­
1
2

sj0l 1 j1ld sk0j 1 k1jd . (1)

We shall also consider more general states, but sh
always take them to belong to the symmetric subspa
of the N ions. The basis vectors of this space will b
denotedjml, m ­ 0, 1, . . . , N . They are the completely
symmetrized states ofN two-level ions withm ions in the
excited state andsN 2 md ions in the ground state. The
statesjml have energyEm ­ m (this defines our unit of
energy, settinḡh ­ 1 then defines our unit of time).

The reason we can restrict ourselves to the symmet
subspace is that we can map any clock state on
the symmetric subspace without affecting its dynamic
Indeed consider an initial stateV ­ jcl kcj that does
not belong to the symmetric subspace of the atoms. W
can decomposejcl ­

P
m

P
a cmajm, al where jm, al,

a ­ 1, . . . , s N
m d denote a basis of the states with energ

m. Consider the unitary operator̂U that maps the state
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jcl onto the symmetric subspace without changing
energy:Û

P
a cmajm, al ­ cmjml wherejml is as before

the symmetric state with energym. SinceÛ commutes
with the Hamiltonian the performance of the clock bas
on jcl is identical to the clock whose initial state is th
symmetric statejcsyml ­ Ûjcl.

After the preparation stage, the ions evolve
time according to the Hamiltonian evolution̂Vstd ­
ÛstdV̂Ûystd, Ûstd ­ exph2itĤj. The task is to deter-
mine the elapsed timet by carrying out a measuremen
on the ions. Note that because of the indeterminism
quantum mechanics it is impossible, given asingleset of
N two-level ions, to determine the elapsed time with ce
tainty. The best we can do is toestimatethe elapsed time
based on the result of a measurement on the system [2

Making a good quantum clock requires a double op
mization. First of all one can optimize the measureme
This aspect has been studied in detail in [2] where
best measuring strategy was derived. But one can a
optimize the initial stateV̂ of the system. It is this sec-
ond optimization that is studied in this Letter.

Before turning to the problem of optimizing the initia
state V̂, it is instructive to review the fundamenta
limitations on the performance of quantum clocks. L
us first consider a simple classical clock that can th
be generalized to the quantum case. Our classical cl
consists of a set ofn registers. Each register is either i
the 0 or the1 state. Thus the classical clock consists
n bits, and can be in2n different states. The dynamics o
the clock is as follows: the first register flips from 0 to 1 o
from 1 to 0 every2p22n, the second register flips ever
2p22n11, etc. The last register flips everyp. This clock
thus measures time modulo2p. Note that this clock has
an inherent uncertainty since it cannot measure time w
a precision better than2p22n. Throughout this Letter the
time uncertainty is defined as

Dt2 ­ fstestimate 2 ttrued smod 2pdg2 . (2)

For the classical clockDtclass ­ p22ny
p

3.
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It is straightforward to replace the classical clock b
a quantum version. The quantum clock consists ofn
two-level systems (qubits). The first qubit has an ener
splitting between the levels of2n21 so that it has the same
period as the corresponding classical register. The sec
qubit has an energy splitting of2n22 and so on up to the
last qubit that has an energy splitting of 1. Consider
together thesen qubits constitute a quantum system wit
2n equally spaced energy levels.

The mapping between the Hilbert space of this abstra
quantum clock and the symmetric subspace ofN two-
level ions is straightforward whenN 1 1 ­ 2n. Indeed
in this case the dimension and energy spectrum of bo
Hilbert spaces coincide. Note, however, that this
not a mapping between the qubits of the clock an
the ions individually, but between energy eigenstate
This comparison between classical and quantum cloc
suggests that a quantum clock built out ofN ions cannot
behave better then a classical clock built out of lnsN 1 1d
registers. That this is indeed the case follows from tw
fundamental constraints:

The first constraint is a bound on the time resolution
the clock that results from its energy spectrum. Inde
the time-energy uncertainty [3,4]

DtDE $
1
2

, (3)

whereDE2 ­ TrsĤ2V̂d 2 fTrsĤV̂dg2 relates the uncer-
tainty in the estimated time [defined by Eq. (2)] to th
spread in energy of the clock. In the present case th
is a state with a maximum energy uncertainty, name
jc1l ­ s1y

p
2d sjNl 1 j0ld for which DE ­ Ny2. In-

serting in Eq. (3) shows that for any clock built out o
N ions

Dt $
1
N

. (4)

Note that one cannot attain equality in Eq. (3). Indeed t
statejc1l evolves with a period2pyN , hence it necessar-
ily has a large time uncertainty. Thus Eq. (4) is only
lower bound and maximizing the energy uncertainty as
[5] is not necessarily an optimal procedure.

The second fundamental constraint the clock mu
obey is a bound on the total information it can carr
Indeed Holevo [6] has shown that one cannot enco
and subsequently retrieve reliably more thann bits of
classical information inton qubits. Letting a clock evolve
for a given time intervalt can be viewed as trying to
encode information about the classical variablet into
the state of the clock. Hence a measurement on o
model clock [consisting ofn ­ lnsN 1 1d qubits] cannot
retrieve more than lnsN 1 1d bits of information aboutt.

Together these two bounds imply that the quantu
clock cannot perform better than the corresponding clas
cal clock: it cannot carry more information and it canno
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have better resolution. But is it possible, by making a
optimal measurement and choosing in an astute mann
the initial state of the clock, to make a quantum cloc
with similar performances to the classical one? Our ma
result is to show that this is indeed the case for clock
built out of symmetric states ofN ions and to provide an
algorithm for constructing such an optimal clock.

The problem of constructing quantum clocks has bee
considered previously in [7,8]. However, the best clock
considered in these papers are based on the phase s
jC0l described below. As we shall see for these clock
the time uncertainty is very largeDt . s1y

p
n d and is

very far from reaching equality in Eq. (4). Recently,
Vaidman and Belkind [9] considered the problem of a
clock for which equality holds in Eq. (3). They showed
that in the limit of largeN the product states satisfy
this condition. However, for the product state the energ
uncertainty is very small:DE ­

p
Ny2 hence they also

do not saturate Eq. (4). Furthermore, clocks based o
product state also do not attain Holevo’s bound.

A similar approach to the one used here, name
optimizing both the initial state and the measurement on
system ofN ions was considered in [10] with the aim
of using the ions as an improved frequency standar
This problem can be rephrased in the following way: on
disposes of a classical but noisy clock which provide
somea priori knowledge about the timet and one wants
to improve the knowledge oft by using theN ions.
On the other hand, in the present Letter we suppo
that there is no prior knowledge aboutt. The other
difference with the present work is that our aim is to stud
the fundamental structure of quantum mechanics. W
therefore neglect the effect of noise during the preparatio
and measurement stages and decoherence during
evolution. On the other hand, taking these effects int
account was central to [10].

In order to find how to build an optimal clock we
must delve in detail into the functioning of this device
We first recall Holevo’s results concerning the optima
measurement strategy [2]. The measurement is describ
by a positive operator measurement (POVM), that is
set hÔr jR

r­1 of positive Hermitian operators such thatP
r Ôr ­ 1. To each outcomer of the measurement

we associate an estimatetr of the time elapsed. The
difference between the estimated timetr and the true time
t is measured by a cost functionfstr 2 td. Here we note
that because of the periodicity of the clock,f has to be
periodic. We also takefstd to be an even function. The
task is to minimize the mean value of the cost function

f̄ ­
X

r

Z 2p

0
TrfÔrV̂stdg fstr 2 td

dt
2p

. (5)

To proceed we expand the cost function in Fourier serie

fstd ­ w0 2
X̀
k­1

wk coskt . (6)
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The essential hypothesis made by Holevo is positivi
of the Fourier coefficients:wk $ 0, sk ­ 1, 2, . . .d. He
also supposes that the initial statêV ­ jvl kvj, jvl ­P

m amjml is a pure state (and makes a phase convent
such thatam is real and positive). He then shows that

f̄ $ w0 2
1
2

X̀
k­1

wk

X
m,m0

jm2m0 j­k

amam0 , (7)

and equality is attained only if the measurement is of t
form

Ôr ­ pr jCrl kCr j; pr $ 0; jCr l ­ eitr Ĥ jC0l ,

jC0l ­
1

p
N 1 1

NX
m­0

jml , (8)

with the completeness relation
P

r Ôr ­ 1̂.
Several remarks about this result are called for:
(1) Holevo supposed that the initial state is a pu

state. If the initial state is mixed,̂V ­
P

i pijcil kcij,
then one finds that the corresponding cost is bounded
the average of the bounds Eq. (7). This shows that
building a good quantum clock one should always ta
the initial state to be pure.

(2) Holevo considered covariant measurements
which the timestr takes the continuum of values betwee
0 and2p. But as shown in [11] the completeness relatio
can also be satisfied by taking a discreet set of tim
tj ­

2pj
N11 , j ­ 0, . . . , N . These “phase” statesjCjl [12]

form an orthonormal basis of the Hilbert space, and th
measurement is therefore a von Neumann measurem
Thus it is not necessary to use an ancilla to make t
optimal measurement in this case.

(3) In Eq. (7) only the valuesk ­ 0, . . . , N intervene
because of the conditionjm 2 m0j ­ k. That is, only the
first N 1 1 Fourier coefficients of the cost function are
meaningful.

(4) Because of the condition of positivity ofwk , not all
cost functions are covered by this result, but several imp
tant examples are4 sin2 t

2 ­ 2s1 2 costd, jtsmod 2pdj,
jsin t

2 j, 2dftsmod 2pdg. The most notable absence from
this list is the quadratic deviationt2 [as defined in Eq. (2)]
but it can be well approximated by the first cost functio
since4 sin2 t

2 . t2 for jtj ø p.
We now turn back to the central problem of this Lette

namely how to optimize the initial state of the system
so that the time estimate is as good as possible. T
corresponds to minimizing the right-hand side of Eq. (
with respect toam. To this end let us define the matrix

Fmm0 ­ w0dm,m0 2
1
2

NX
k­1

wksdm,m01k 1 dm1k,m0d .

(9)

We must then minimizēf ­ aT F̂a under the condition
aT a ­ 1. Using a Lagrange multiplier we find the eigen
value equationsF̂ 2 l1̂da ­ 0, and the task is therefore
to find the smallest eigenvalue and eigenvector ofF̂.
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Let us first consider the cost functionf ­ 4 sin2 ty2.
The advantage of this cost function is that the matrixF
is particularly simple in this case. Furthermore, for error
much smaller than2p, f and Dt2 as defined in Eq. (2)
coincide. Hence the first constraint on clock resolutio
Eq. (4) can be approximately replaced byf̄ $ 1yN2.

If the initial state is the product state Eq. (1) then
the mean cost is given by the expressionf̄ ­ 2f1 2

22N
PN21

i­0

q
sN
i d sN

i11dg which for large N decreases as
f̄ . 1yN . If the initial state is the phase statejC0l,
then direct calculation shows thatf̄ ­

2
N11 . Thus for

both statesDt . N21y2 and one is very far from attaining
equality in Eq. (4).

However, neither of these two states is optimal. T
find the optimum we note that the matrix̂F ­ 2dmm0 2

dmm011 2 dm11m0 can be viewed as the discretized secon
derivative operatorF̂ . 2d2ydx2 with von Neumann
boundary conditions. The lowest eigenvalue ofF̂ is
therefore approximatelylmin . p2ysN 1 1d2 and the
corresponding eigenvector is

jCoptl .
p

2
p

N 1 1

X
m

sin
psm 1 1y2d

N 1 1
jml . (10)

Thus in this case the cost decreases for largeN asf̄opt .
p2

sN11d2 corresponding toDtopt . p

sN11d . Therefore, up to
a factor ofp the optimal clock attains the bound Eq. (4).

It is also interesting to consider the situation where th
cost function is the delta functionf ­ 2dftsmod 2pdg.
In this caseFmm0 ­ 2

1
2p for all m, m0. One checks that

the phase statejC0l is the eigenvector of̂F with minimal
eigenvaluel ­ 2

N
2p . Note that one could also have

taken a smeared delta function since only the firstN 1 1
terms intervene in Eq. (7). The smeared delta function
approximately zero everywhere except in an interval o
about1yN around zero where it is equal toN . Thus for
this cost function one wants to maximize the frequenc
with which the estimated value oft is within about 1

N of
the true value. But there is no extra cost if the estimate
value is very far from the true one. It is for this reaso
that takingjC0l as the initial state when the cost function
is 4 sin2 ty2 is bad since making estimates that are wildl
off is strongly penalized in that case.

The mean value of a cost function gives only par
tial information about the sensitivity of a clock. The
full information is encoded in the probabilityPstjtr d ­
PsÔr jtdPstdyPsÔr d ­ PsÔr jtd N11

2p that the true time ist
given that the readout of the measurement istr . In the
case of the optimal statejCoptl, one finds that

Poptstjtr d

. N
f1 1 cossN 1 1dT g s1 1 cosT d

f1 2 cossT 1
p

N11 dg f1 2 cossT 2
p

N11 dg
,

(11)
2209
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FIG. 1. A plot of the a posteriori probability Pstjtr d that
the time wast given that the measurement yielded outcom
tr ­ p for different initial states (N ­ 20). The dotted line
corresponds to the product state Eq. (1), the solid line to t
phase statejC0l (8), and the dashed line to the optimal stat
jCoptl (10).

whereN . p

4sN11d3 and T ­ t 2 tr . This distribution
(see Fig. 1) has a central peak of width3pysN 1 1d
and tails which decrease for2p ¿ jt 2 tr j ¿ N21 as
Poptstjtr d . N23jt 2 tr j

24.
For the phase statejC0l one finds

PjC0lstjtrd ­
1

2psN 1 1d
f1 2 cossN 1 1dT g

s1 2 cosT d
. (12)

This distribution has a slightly tighter central peak o
width 2pysN 1 1d but the tails of the distribution de-
crease asN21jt 2 tr j

22. It is these slowly decreasing
tails that give the main contribution toDt . N21y2.

For the product state Eq. (1) the distributionPprodstjtrd
has a very wide central peak of width. 1

p
N

. In this case
it is the wide central peak that gives rise to the large tim
uncertainty.

Using these distributions it is possible to calculate th
number of bits of information about time that is encode
in the outcomes of the measurement. This is given by t
mutual information

I ­ 2
Z

dtPstd ln Pstd

1
X

r
Pstr d

Z
dtPstjtrd ln Pstjtr d . (13)

In all cases the integral in the second term is dominat
by the central peak. Thus one finds that for the produ
state only 1

2 ln N bits of information about time are
obtained, whereas for both the statesjC0l and jCoptl
one obtains approximately lnN bits, thereby saturating
Holevo’s bound.
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In summary, we have seen that for different cost func
tions there are different optimal clocks. There is, of course
no cost function that is in an absolute sense better than a
other, and the choice of a particular cost function depend
on the physical context. Nevertheless, the experiment
realization of a quantum clock based on the statejCoptl
seems particularly desirable because it combines the attra
tive features that thea posterioriprobabilityPstjtr d has a
tight central peak and rapidly decreasing tails.

Carrying out such an experiment with trapped ions
presents two main difficulties. The first is the preparation
of the initial stateV̂. Such coherent manipulation of
trapped ions is one of the current experimental challenge
A possibly important simplifying feature of the quantum
clock is that since it is symmetric in theN ions one does
not need to address each ion individually. The secon
problem is to realize the optimal phase measurement
discussed in the present Letter. Recent experiments [1
suggest that this type of coherent preparation and speci
projective measurements are possible for systems with
moderate number of trapped ions. Therefore, one ma
hope that it will be feasible to make optimal quantum
clocks in the not too distant future.
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