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Optimal Quantum Clocks
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A quantum clock must satisfy two basic constraints. The first is a bound on the time resolution of
the clock given by the difference between its maximum and minimum energy eigenvalues. The second
follows from Holevo’s bound on how much classical information can be encoded in a quantum system.
We show that asymptotically, as the dimension of the Hilbert space of the clock tends to infinity, both
constraints can be satisfied simultaneously. The experimental realization of such an optimal quantum
clock using trapped ions is discussed. [S0031-9007(99)08612-3]

PACS numbers: 03.67.—a, 03.65.Bz, 42.50.Ar

Recent technical advances in the laser cooling and trage) onto the symmetric subspace without changing its
ping of ions suggest that coherent manipulations of trappednergy:U >, ¢walm, @) = c¢,,|m) where|m) is as before
ions will be performed in the not too far future [1]. Apart the symmetric state with energy. Sincel’ commutes
from various important applications such as quantum inwith the Hamiltonian the performance of the clock based
formation processing or improving high-precision spec-on i) is identical to the clock whose initial state is the
troscopy these techniques also allow us to test fundamentaymmetric statéi,m) = Ulp).
concepts of quantum theory. In particular, much deeper After the preparation stage, the ions evolve in
insight into the problem of quantum measurement can béme according to the Hamiltonian evolutiof(7) =
obtained. U0QUT (1), Ur) = exp{—itH}. The task is to deter-

In this Letter we study the problem of building an mine the elapsed time by carrying out a measurement
optimal quantum clock from an ensembleMfions. To on the ions. Note that because of the indeterminism of
be specific let us assume an ion trap withwo-level ions  quantum mechanics it is impossible, givesiagle set of
all in the ground stat¢¥) = [0) ® --- ® [0). This state N two-level ions, to determine the elapsed time with cer-
is an eigenstate of the free Hamiltonian and thus canndtinty. The best we can do is &stimatethe elapsed time
record time. Therefore the first step in building a clock isbased on the result of a measurement on the system [2].
to bring the system to an initial staté which is not an Making a good quantum clock requires a double opti-
energy eigenstate. For instance one can apply a Ramsayization. First of all one can optimize the measurement.
pulse whose shape and duration is chosen such that it puthis aspect has been studied in detail in [2] where the
all the ions in the product state best measuring strategy was derived. But one can also

) 8. ® b optimize the initial stat&) of the system. It is this sec-
prod = P P> ond optimization that is studied in this Letter.
. 1 Before turning to the problem of optimizing the initial
P 2 (10) + 1)) €0l + (11). (1) state O, it is instructive to review the fundamental

We shall al id | stat but sh Ilimitations on the performance of quantum clocks. Let
€ shall also consider more general states, but s aL]s first consider a simple classical clock that can then

a}vx;ﬁysNta.ke the_?;] tobbe_long tf[) the fs¥r?jmetr|c sub_ﬁpscge generalized to the quantum case. Our classical clock
3 (te dl onS. - 0e1 aS|stecT(r)]rs 0 5‘] space IWlt | € consists of a set of registers. Each register is either in
enote .m>’ M= s Y €y aré € COMPIELEY  1ha o or the 1 state. Thus the classical clock consists of
sym_metnzed states of twc_)-level ions withm ions in the n bits, and can be ia" different states. The dynamics of
excited state andV — m) ions in the ground state. The the clock is as follows: the first register flips from 0 to 1 or

states|m) ha."e energy, = m (this def|r_1es our unit of from 1 to O every2727", the second register flips every
energy, setting: = 1 then defines our unit of time). 2727 "1 etc. The last register flips every. This clock

The reason we can restrict ourselves to the symmetriﬁ1us measures time moduler. Note that this clock has

subspace IS that we can map any _cloc_k state onlg. ihherent uncertainty since it cannot measure time with
the symmetric SUbSp.a(.:e without affecting its dynamlcsa precision better thakwr2™". Throughout this Letter the
Indeed consider an initial stat® = |¢) (| that does time uncertainty is defined as

not belong to the symmetric subspace of the atoms. We

can decome)vosd;zp) = 2 2 Cmalm, @) where [m, a), A7 = [(tostimate — frrae) (mod 277) .. )
a =1,...,(,) denote a basis of the states with energy

m. Consider the unitary operatdr that maps the state For the classical clocR 1z, = 727" /~/3.
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It is straightforward to replace the classical clock byhave better resolution. But is it possible, by making an
a quantum version. The quantum clock consistsnof optimal measurement and choosing in an astute manner
two-level systems (qubits). The first qubit has an energyhe initial state of the clock, to make a quantum clock
splitting between the levels @' so that it has the same with similar performances to the classical one? Our main
period as the corresponding classical register. The secomdsult is to show that this is indeed the case for clocks
qubit has an energy splitting @2 and so on up to the built out of symmetric states @¥ ions and to provide an
last qubit that has an energy splitting of 1. Consideredalgorithm for constructing such an optimal clock.
together thesa qubits constitute a quantum system with  The problem of constructing quantum clocks has been

2" equally spaced energy levels. considered previously in [7,8]. However, the best clocks
The mapping between the Hilbert space of this abstraatonsidered in these papers are based on the phase state
guantum clock and the symmetric subspaceNoftwo-  |W,) described below. As we shall see for these clocks

level ions is straightforward wheN + 1 = 2". Indeed the time uncertainty is very largA: = (1/4/n) and is
in this case the dimension and energy spectrum of botkiery far from reaching equality in Eq. (4). Recently,
Hilbert spaces coincide. Note, however, that this isVaidman and Belkind [9] considered the problem of a
not a mapping between the qubits of the clock andclock for which equality holds in Eg. (3). They showed
the ions individually, but between energy eigenstatesthat in the limit of largeN the product states satisfy
This comparison between classical and quantum clockhis condition. However, for the product state the energy
suggests that a quantum clock built outMfions cannot uncertainty is very smallAE = +/N/2 hence they also
behave better then a classical clock built out @M+ 1)  do not saturate Eq. (4). Furthermore, clocks based on
registers. That this is indeed the case follows from twgproduct state also do not attain Holevo’s bound.
fundamental constraints: A similar approach to the one used here, namely
The first constraint is a bound on the time resolution ofoptimizing both the initial state and the measurement on a
the clock that results from its energy spectrum. Indeedystem of N ions was considered in [10] with the aim

the time-energy uncertainty [3,4] of using the ions as an improved frequency standard.
This problem can be rephrased in the following way: one
AtAE = 1 3) disposes of a classical but noisy clock which provides

somea priori knowledge about the timeand one wants

A A to improve the knowledge of by using theN ions.
2 — 2 _ 2 - .
where AE® = Tr(H°()) — [Tr(HQ)J" relates the uncer- o, he other hand, in the present Letter we suppose

tainty in the estimated time [defined by Eq.(2)] t0 they,q; there is no prior knowledge about The other
spread in en_et:gy of the clock. In the present case theirﬁ}fference with the present work is that our aim is to study
Is a state Y/V'—t a maximum energy uncertainty, namelyne fndamental structure of quantum mechanics. We
|l/f+} — .(1/ 2)(IN) + 10)) for which AE = N/2_. In-therefore neglect the effect of noise during the preparation
serting in Eq. (3) shows that for any clock built out of and measurement stages and decoherence during the

N ions evolution. On the other hand, taking these effects into
1 account was central to [10].
At = N 4) In order to find how to build an optimal clock we

must delve in detail into the functioning of this device.
Note that one cannot attain equality in Eq. (3). Indeed th&Ve first recall Holevo's results concerning the optimal
state|+) evolves with a perio@ /N, hence it necessar- measurement strategy [2]. The measurement is described
ily has a large time uncertainty. Thus Eq. (4) is only aby a posmve operator measurement (POVM), that is a
lower bound and maximizing the energy uncertainty as irset {0,}, . of positive Hermitian operators such that
[5] is not necessarily an optimal procedure. >.0,=1. To each outcome of the measurement
The second fundamental constraint the clock mustve associate an estimate of the time elapsed. The
obey is a bound on the total information it can carry.difference between the estimated timeand the true time
Indeed Holevo [6] has shown that one cannot encodeis measured by a cost functigitr, — ¢). Here we note
and subsequently retrieve reliably more tharbits of  that because of the periodicity of the clogk,has to be
classical information inta qubits. Letting a clock evolve periodic. We also také¢(¢) to be an even function. The
for a given time intervals can be viewed as trying to task is to minimize the mean value of the cost function
encode information about the classical variablénto 2 A dt
the state of the clock. Hence a measurement on our f= Z/ IO, Q)] f(t, — 1) —. (5)
model clock [consisting of = In(N + 1) qubits] cannot r 70 2m
retrieve more than v + 1) bits of information about. To proceed we expand the cost function in Fourier series:
Together these two bounds imply that the quantum w
clock cannot perform better than the corresponding classi- f(t) = wy — Z Wy COSkt . (6)
cal clock: it cannot carry more information and it cannot
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The essential hypothesis made by Holevo is positivity Let us first consider the cost functigh= 4 sir? ¢/2.

of the Fourier coefficientsw, = 0, (k =1,2,...). He The advantage of this cost function is that the mafrix
also supposes that the initial stale = |w){w|, |lw) = s particularly simple in this case. Furthermore, for errors
> .. anlm) is a pure state (and makes a phase conventiomuch smaller thar27, f and Ar> as defined in Eq. (2)
such thatu,, is real and positive). He then shows that  coincide. Hence the first constraint on clock resolution

~ 1 & Eq. (4) can l_Je approx'imately replaced py= 1/N2.
S =wo — B Z Wik Z A (7) If the initial state is the product state Eq. (1) then
k=t the mean cost is given by the expressipn=2[1 —
and equality is attained only if the measurement is of thQ_‘N SV A @ )] which for large N decreases as
form f = 1/N. If the initial state is the phase statdy),

Vo), then direct calculation shows thgt = % Thus for

. N both states\r = N~!/2 and one is very far from attaining
- Im), (8) equality in Eq. (4).

VN +1 mgo However, neither of these two states is optimal. To
with the completeness relatidn, O, = 1 find the optimum we note that the matrf = 26, —

Several remarks about this result are called for: Omm+1 — Sm+ 1, CAN b€ viewed as the discretized second

. - Fa — 2 2 .
(1) Holevo supposed that the initial state is a purederivative operatorf” = —d*/dx* with von Neumann

state. If the initial state is mixed) = 3, p;lu) (i, boundary conditions. The lowest eigenvalue Bfis

i 2 2
then one finds that the corresponding cost is bounded ?glerefore a}pproxlmately)\m.,) =7 /(N +1)" and the
orresponding eigenvector is

the average of the bounds Eg. (7). This shows that i
building a good quantum clock one should always take
the initial state to be pure. |Wopt) =
(2) Holevo considered covariant measurements in
which the times, takes the continuum of values between N +
0 and27. But as shown in [11] the completeness reIationTr:TlﬂS in this case _the cost decrea:‘es for lavges fop: =
can also be satisfied by taking a discreet set of timegy 7y corresponding td\zo, = (g7;. Therefore, up to
1 = % j=0,....N. These “phase” statd®¥ ;) [12] @ fa<_:tor ofﬂ-_ the opfumal clock attains th_e boynd Eq. (4).
form an orthonormal basis of the Hilbert space, and this Itis alsq interesting to con5|qer the situation where the
measurement is therefore a von Neumann measuremef@St function is the delta functiofi = —é[7(mod 27)].
Thus it is not necessary to use an ancilla to make thén this caseF,,,» = —5- for all m,m’. One checks that
optimal measurement in this case. the phase statgly) is the eigenvector of' with minimal
(3) In Eq. (7) only the values = 0,...,N intervene eigenvalueA = —%. Note that one could also have
because of the conditidm — m’| = k. Thatis, only the taken a smeared delta function since only the first 1
first N + 1 Fourier coefficients of the cost function are terms intervene in Eq. (7). The smeared delta function is
meaningful. approximately zero everywhere except in an interval of
(4) Because of the condition of positivity ef;, not all  aboutl/N around zero where it is equal 8. Thus for
cost functions are covered by this result, but several importhis cost function one wants to maximize the frequency
tant examples ard sinzé = 2(1 — cost), |t(mod27)|,  with which the estimated value ofis within about% of
Isinél, —&8[t(mod27)]. The most notable absence from the true value. But there is no extra cost if the estimated
this list is the quadratic deviation [as defined in Eq. (2)] value is very far from the true one. It is for this reason
but it can be well approximated by the first cost functionthat taking|¥) as the initial state when the cost function
since4sir? 5 = 12 for |t| < . is 4 sir? t/2 is bad since making estimates that are wildly
We now turn back to the central problem of this Letter,off is strongly penalized in that case.
namely how to optimize the initial state of the system The mean value of a cost function gives only par-
so that the time estimate is as good as possible. Thital information about the sensitivity of a clock. The
corresponds to minimizing the right-hand side of Eq. (7)full information is encoded in the probability(¢|7,) =
with respect taz,,. To this end let us define the matrix ~ P(O,|t)P(¢)/P(0,) = P(O,It)]\g—;1 that the true time is
1 X given that the readout of the measurement,is In the
> > wiBmmtk + Smrim)- case of the optimal sta{@,,), one finds that

k=1 (9)

We must then minimizg = a” Fa under the condition
a’a = 1. Using a Lagrange multiplier we find the eigen- = 1+ COS(N: DT]{ + cosT) —
value equatior(F' — Al)a = 0, and the task is therefore [1 = codT + z57)][1 — cosT — 7=9)]

to find the smallest eigenvalue and eigenvectoF of (12)

Or = prl\I’r><\pr|; pr = 0; |\Ifr> = eit,f{

|Wo) =

AT S o

me’ = W05m,m’ -

Popi(tlt,)
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3.5 In summary, we have seen that for different cost func-
tions there are different optimal clocks. Thereis, of course,
3.0¢ no cost function that is in an absolute sense better than an-
other, and the choice of a particular cost function depends
257 | on the physical context. Nevertheless, the experimental
= i\ realization of a quantum clock based on the statg,)
i 20 seems particularly desirable because it combines the attrac-
"E‘" 15 tive features that tha posterioriprobability P(z|z,) has a
o I tight central peak and rapidly decreasing tails.
10l ; " Carrying out such an experiment with trapped ions
a0 presents two main difficulties. The first is the preparation
05/} A v of the initial state(). Such coherent manipulation of
A trapped ions is one of the current experimental challenges.
0.0 AL R A possibly important simplifying feature of the quantum

N
(6]
[e)]

clock is that since it is symmetric in thé ions one does
not need to address each ion individually. The second
FIG. 1. A plot of thea posteriori probability P(s|,) that ~ problem is to realize the optimal phase measurement as
the time wasr given that the measurement yielded outcomediscussed in the present Letter. Recent experiments [13]
- (‘;%rdg"‘tfgrﬁlrg Irllrglgllj ;tzttZ?eN Ea 28)) t;’ll—gesgl?ét?i?]e“?g 1 Suggest that this type of coherent preparation and specific
phasepstaté%> @), %nd the dashedqline,to the optimal State‘i)rOJec'uve measurements are possmle for systems with a
W) (10). moderate r_1um_ber of trapped ions. There_fore, one may
hope that it will be feasible to make optimal quantum
clocks in the not too distant future.
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