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Optimal manipulations with qubits: Universal-NOT gate
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Quantum information processing is usually associated with a specific computational basis. Nevertheless, for
a deeper understanding of the fundamental principles of quantum computing, it is essential to investigate what
is the fidelity ofuniversaloperations that are basis independent; i.e., the task is to perform optimally a specific
operation on a qubit or a quantum register that is in an unknown state. In this paper we introduce the
universal-NOT gate that takes as an input a qubit in an arbitrary stateuC& and generates an output that is as
close as possible to the orthogonal stateuC'&. @S1050-2947~99!51110-4#

PACS number~s!: 03.67.Lx, 03.65.Bz
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Classical information consists of bits, each of which c
be either 0 or 1. Quantum information, on the other ha
consists of qubits which are two-level quantum syste
~spin-1/2 particles! with one level labeledu0& and the other
u1&. Quantum two-level systems cannot only be in one of
two levels, but in any superposition of them as well. Th
fact makes the properties of quantum information quite d
ferent from that of its classical counterpart. For example, i
not possible to construct a device that will perfectly copy
arbitrary ~unknown! state of a spin-1/2 particle@1,2#, while
the copying of classical information presents no difficultie
Another difference between classical and quantum inform
tion is as follows: It is not a problem to complement a cla
sical bit, i.e., to change the value of a bit, a 0 to a 1 and v
versa. This is accomplished by a NOT gate. Complemen
a qubit~i.e., inverting the state of the spin-1/2 particle!, how-
ever, is another matter. The complement of a stateuC& is the
stateuC'& that is orthogonal to it. The question we want
address is: Is it possible to build a device that will take
arbitrary ~unknown! qubit and transform it into the qubi
orthogonal to it?

The best intuition for this problem is obtained by lookin
at the desired operation as an operation on the Poin´
sphere, which represents the set of pure states of a q
system. Thus every state, pure or mixed, is represented
vector in a three-dimensional space, whose components
the expectations of the three Pauli matrices. The full s
space is thereby mapped onto the unit ball, whose sur
represents the set of pure states. In this picture the ambig
of choosing an overall phase foruC& is already eliminated.
The points corresponding touC& and uC'& are antipodes of
each other. The desired universal-NOT~U-NOT! operation is
therefore nothing but theinversion of the Poincare´ sphere.

Note that the inversion preserves angles~related in a
simple way to the scalar productu^F,C&u of rays!, so by
Wigner’s theorem the ideal U-NOT operation is just imp
mented either by a unitary or by an antiunitary operati
Unitary operations correspond to proper rotations of
Poincare´ sphere, whereas antiunitary operations corresp
to orthogonal transformations with determinant21. Clearly,
PRA 601050-2947/99/60~4!/2626~4!/$15.00
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the U-NOT operation is of the latter kind, and an antiunita
operatorQ ~unique up to a phase! implementing it is

Q~au0&1bu1&)5b* u0&2a* u1&. ~1!

The difficulty with antiunitarily implemented symmetrie
is that they are not completely positive; i.e., they cannot
applied to a small system, leaving the rest of the world alo
~The tensor product of an antilinear and a linear operato
ill-defined.! Thus time reversal, perhaps the best known o
eration of this kind, can only be a global symmetry, b
makes no sense when applied only to a subsystem. By d
nition, a ‘‘gate’’ is an operation applied to only a part of th
world, so must be represented by a completely positive
eration. By the Stinespring dilation theorem this is equival
to saying that any gate must have a realization by coup
the given system to a larger one~some ancillas!, performing
a unitary operation on the large system, and subseque
restricting it to a subsystem. Hence an ideal U-NOT g
does not exist. The same is true, of course, for other anti
tarily implemented operations like the complex conjugati
~or equivalently the transposition! of the density matrix.

Because we cannot design a perfect universal-NOT g
what we would like to do is see how close we can come.
this point we can consider two scenarios. The first one
based on the measurement of input qubit~s! — using the
results of an optimal measurement we can manufacture
orthogonal qubit, or any desired number of them. Obvious
the fidelity of the NOT operation in this case is equal to t
fidelity of the estimation of the state of the input qubit~s!.
The second scenario would be to approximate an antiuni
transformation on a Hilbert space of the input qubit~s! by a
unitary transformation on a larger Hilbert space that d
scribes the input qubit~s!, blank qubits that are to become th
complements, and the quantum device playing the role of
gate. We demand that the gate perform equally well for a
~unknown! pure input state, so it is natural to focus onuni-
versalgates ‘‘U-NOT,’’ i.e., gates that treat every state ve
tor in the same way in the sense of a unitary symmetry
what follows we shall address both scenarios.
R2626 ©1999 The American Physical Society
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In order to state our problem precisely, letH5C2 denote
the two-dimensional Hilbert space of a single qubit. Then
input state ofN systems prepared in the pure stateuC& is the
N-fold tensor productuC& ^ NPH ^ N. The corresponding
density matrix isr[s ^ N, where s5uC&^Cu is the one-
particle density matrix. An important observation is that t
vectors uC& ^ N are invariant under permutations of allN
sites, i.e., they belong to the symmetric, or ‘‘Bose’’ subspa
H 1

^ N,H ^ N. Thus as long as we consider only pure inp
states we can assume all the input states of the device u
consideration to be density operators onH 1

^ N . We will de-
note byS(H) the density operators over a Hilbert spaceH.
Then the U-NOT gate must be a completely positive tra
preserving mapT:S(H 1

^ N)→S(H). Our aim is to designT
in such a way that for any pure one-particle statesPS(H)
the outputT(s ^ N) is as close as possible to the orthogon
qubit states'512s. In other words, we are trying to mak
the fidelity FªTr@s'T(s ^ N)#512D of the optimal
complement with the result of the transformationT as close
as possible to unity for an arbitrary input state. This cor
sponds to the problem of finding the minimal value of t
error measureD(T) defined as

D~T!5 max
s,pure

Tr@sT~s ^ N!#. ~2!

Note that this functionalD is completely unbiased with
respect to the choice of input state. More formally, it is
variant with respect to unitary rotations~basis changes! in H:
WhenT is any admissible map, andU is a unitary rotation on
H, the mapTU(r)5U* T(U ^ NrU* ^ N)U is also admissible,
and satisfiesD(TU)5D(T). We will show later on that one
may look for optimal gatesT, minimizing D(T), among the
universalones, i.e., the gates satisfyingTU5T for all U. For
such U-NOT gates, the maximization can be omitted fr
the definition~2!, because the fidelity Tr@sT(s ^ N)# is inde-
pendent ofs.

Measurement-based scenario.An estimation device by
definition takes an input staterPS(H 1

^ N) and produces, in
every single experiment, an ‘‘estimated pure state’’s
PS(H). As in any quantum measurement this will not a
ways be the sames, even with the same input stater, but a
random quantity. The estimation device is therefore
scribed completely by the probability distribution of pu
states it produces for every given input. Still simpler, we w
characterize it by the corresponding probability density w
respect to the unique normalized measure on the pure s
~denoted ‘‘dF ’’ in integrals!, which is also invariant unde
unitary rotations~for more details see Ref.@3#!. For an input
staterPS(H 1

^ N), the value of this probability density at th
pure stateuF& is

p~F,r!5~N11!^F ^ N,r F ^ N&. ~3!

To check the normalization, note that*dF p(F,r)
5Tr@Xr# for a suitable operatorX, because the integral de
pends linearly onr. By unitary invariance of the measur
‘‘ dF ’’ this operator commutes with all unitary rotations o
the formU ^ N, and since these operators, restricted toH 1

^ N ,
form an irreducible representation of the unitary group ofH
@for d52, it is just the spin-N/2 irreducible representation o
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SU~2!#, the operatorX is a multiple of the identity. To deter
mine the factor, one insertsr51, and uses the normalizatio
of ‘‘ dF ’’ to verify that X51.

Note that the density~3! is proportional tou^F,C&u2N,
whenr5uC ^ N&^C ^ Nu is the typical input to such a device
N systems prepared in the same pure stateuC&. In that case
the probability density is clearly peaked sharply at statesuF&
that are equal touC& up to a phase.

Suppose now that we combine the state estimation w
the preparation of a new state, which is some function of
estimated state. The overall result will then be the integra
the state valued function with respect to the probability d
tribution just determined. In the case at hand the des
function is f (F)5(12uF&^Fu). So the result of the whole
measurement-based~‘‘classical’’! scheme is

s (out)5T~r!5E dF p~F,r!~12uF&^Fu!. ~4!

The fidelity required for the computation ofD from Eq.~2! is
then equal to~see also@3#!

D5~N11!E dFu^F,C&u2N~12u^F,C&u2!5
1

N12
,

~5!

where we have used that the two integrals have exactly
same form~differing only in the choice ofN), and that the
first integral is just the normalization integral. Since this e
pression does not depend ons, we can drop the maximiza
tion in the definition~2! of D, and findD(T)51/(N12),
from which we find that the fidelity of the creation of
complement to the original states is F5(N11)/(N12).
Finally, we note that the result of the operation~4! can be
expressed in the form

s (out)5s
N
s'1

12s
N

2
1, ~6!

with the ‘‘scaling’’ parameters
N
5N/(N12). From here it is

seen that, in the limitN→`, a perfect estimation of the inpu
state can be performed, and, consequently, the per
complement can be generated. For finiteN the mean fidelity
is always smaller than unity. The advantage of t
measurement-based scenario is that once the input qubit~s! is
measured and its state estimated an arbitrary numberM of
identical ~approximately! complemented qubits can be pro
duced with the same fidelity, simply by replacing the outp
function f (F)5(12uF&^Fu) by f M(F)5(12uF&^Fu) ^ M.

Quantum scenario: U-NOT gate.Let us assume we hav
N input qubits in an unknown stateuC& and we are looking
for a transformation that generatesM qubits at the output in
a state as close as possible to the orthogonal stateuC'&. The
universality of the proposed transformation has to guaran
that an arbitrary input state is complemented with the sa
fidelity. If we want to generateM approximately comple-
mented qubits at the output, the U-NOT gate has to be r
resented by 2M qubits~irrespective of the numberN of input
qubits!, M of which will only serve as ancilla, andM of
which become the output complements. We will indica
these subsystems by subscriptsa ~input!, b ~ancilla!, and c
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~prospective output!. The U-NOT gate transformationUNM
acts on the tensor product of all three systems. The ga
always prepared in some stateuX&bc , independently of the
input stateuC&. The transformation is determined by the fo
lowing explicit expression, valid for every unit vectoruC&
PH:

UNMuNC&a^ uX&bc

5(
j 50

M

g j uXj~C!&ab^ u$~M2 j !C'; j C%&c ,

g j5~21! j S N1M2 j

N D 1/2 S N1M11

M D 21/2

, ~7!

whereuNC&a5uC& ^ N is the input state consisting ofN qu-
bits in the same stateuC&. On the right-hand side of Eq.~7!
u$(M2 j )C'; j C%&c denotes symmetric and normalize
states with (M2 j ) qubits in the complemented~orthogonal!
stateuC'& and j qubits in the original stateuC&. Similarly,
the vectorsuXj (C)&ab consist ofN1M qubits, and are given
explicitly by

uXj~C!&ab5u$~N1M2 j !C; j C'%&ab . ~8!

Here the coefficientsg j were chosen so that the scalar pro
uct of the right-hand side with a similar vector written out f
uF& becomeŝ C,F&N. This implies at the same time tha
UNM is linear and that it is unitary after suitable extension
the orthogonal complement of the vectoruX&bc .

Each of theM qubits at the output of the U-NOT gate
described by the density operator~6! with s

N
5N/(N12),

irrespectiveof the number of complements produced. T
fidelity of the U-NOT gate depends only on the number
inputs. This means that this U-NOT gate can be thought o
producing an approximate complement and then cloning
with the quality of the cloning independent of the number
clones produced. The universality of the transformation
directly seen from the ‘‘scaled’’ form of the output operat
~6!.

We stress that the fidelity of the U-NOT gate~7! is ex-
actly the same as in the measurement-based scenario. M
over, it also behaves as a classical~measurement-based! gate
in a sense that it can generate an arbitrary number of com
ments with the same fidelity. We have also checked t
these cloned complements are pairwise separable.

The N1M qubits at the output of the gate that do n
represent the complements are described individually in
state by the density operator

s j
(out)5ss1

12s

2
1, j 51, . . . ,N1M , ~9!

with the scaling factor s5N/(N12)12N/@(N1M )(N
12)#; i.e., these qubits are theclonesof the original state
with a fidelity of cloning larger than the fidelity of estima
tion. This fidelity depends on the numberM of clones pro-
duced out of theN originals, and in the limitM→` the
fidelity of cloning becomes equal to the fidelity of estim
tion. These qubits represent the output of theoptimal N
→N1M cloner introduced by Gisin and Massar@4# and also
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discussed by Brusset al. @5#. This means that the U-NOT
gate, as presented by the transformation in Eq.~7!, serves
also as a universal cloning machine.

At this point the question arises whether the transform
tion ~7! represents theoptimal U-NOT gate via the quantum
scenario. If this is so, then it would mean that t
measurement-based and the quantum scenarios realiz
U-NOT gate with the same fidelity.

Theorem.Let H be a Hilbert space of dimensiond52.
Then among all completely positive trace preserving m
T:S(H 1

^ N)→S(H), the measurement-based U-NOT sc
nario ~4! attains the smallest possible value of the error m
sure defined by Eq.~2!, namelyD(T)51/(N12).

We have already shown@see Eq. ~5!# that for the
measurement-based strategy the errorD attains the minimal
value 1/(N12). The more difficult part, however, is to sho
that no other scheme~i.e., quantum scenario! can do better.
Here we will largely follow the arguments in@6,7#.

Recall first the rotation invariance of the functionalD,
noted after Eq.~2!. Moreover,D is defined as the maximum
of a collection of linear functions inT, and is therefore con-
vex. Putting these observations together we get

D~ T̂!<E dU D~TU!5D~T!, ~10!

whereT̂5*dU TU is the average of the rotated operatorsTU
with respect to the Haar measure on the unitary group. T
T̂ is at least as good asT, and is auniversal-NOT gate (T̂U

5T̂). Without loss we will therefore assume from now o
that TU5T for all U.

An advantage of this step is that a very explicit gene
form for universal operations is known from the ‘‘covaria
form’’ of the Stinespring dilation theorem~see@7# for a ver-
sion adapted to our needs!. The form ofT is further simpli-
fied in our case by the fact that both representations invol
are irreducible: the defining representation of SU~2! on H,
and the representation by the operatorsU ^ N restricted to the
symmetric subspaceH 1

^ N . ThenT can be represented as
convex combinationT5( jl jTj , with l j>0, ( jl j51, and
Tj universal gates in their own right, but of an even simp
form. The universality ofT already implies that the maxi
mum can be omitted from the definition~2! of D, because the
fidelity no longer depends on the pure state chosen. I
convex combination of universal operatorsTj we therefore
get

D~T!5(
j

l jD~Tj !. ~11!

Minimizing this expression is obviously equivalent to min
mizing with respect to the discrete parameterj.

We write the general form of the extremal gatesTj in
terms of expectation values of the output state for an obs
ableX on H:

Tr@T~r!X#5Tr@rV* ~X^ 1!V#, ~12!

whereV:H 1
^ N→H^ C2 j 11 is an isometry intertwining the

respective representations of SU~2!, namely the restriction of
the operatorsU ^ N to H 1

^ N ~which has spinN/2), on the one
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hand, and the tensor product of the defining representa
~spin-1/2) with the irreducible spin-j representation. By the
triangle inequality for Clebsch-Gordan reduction, this im
plies j 5(N/2)6(1/2), so only two terms appear in the d
composition ofT. It remains to computeD(Tj ) for these two
values. Omitting the details of the calculations~these follow
closely the arguments presented in Ref.@7#!, we find that

D~T!5H 1 for j 5N/21 1
2 ,

1/~N12! for j 5N/22 1
2 .

~13!

The first value corresponds to getting the states from a set
of N copies ofs. The fidelity 1 is expected for this trivia
task, because taking any one of the copies will do perfec
On the other hand, the second value is the minimal erro
the optimal U-NOT gate, which we were looking for. Thi
clearly coincides with the value~5!, so the theorem is
proved.

Role of a priori knowledge.If the input stateuC&5au0&
1bu1& is restricted to the case where the coefficientsa and
b are real, then it is possible to construct a perfect quant
NOT gate. A measurement-based strategy in this case
not do as well. Specifically, the mean fidelity of an optim
estimation in the present case increases as a function of i
qubits as~see@3#!

F5
1

2
1

1

2N11 (
j 50

N21 AS N
j D S N

j 11D ,

and it attains a value equal to unity only in the limitN→`.
on
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This means that witha priori knowledge of the set of inputs
the quantum-NOT gate can perform better than
measurement-based strategy.

Summarizing our conclusions, we have shown that th
is another difference between classical and quantum in
mation: classical bits can be complemented, while arbitr
qubits cannot. It is, nonetheless, possible to construct
proximate quantum-complementing devices, the quality
whose output is independent of the state of their input. Th
devices we called U-NOT gates. They are closely related
quantum cloners, and exploiting this connection it is possi
to find an explicit transformation for anN-qubit input and
M-qubit output U-NOT gate. When there is noa priori in-
formation available about the state of input qubits then th
U-NOT gates do not do better than a measurement-ba
strategy. On the other hand, as we have shown, partia
priori information can dramatically improve the performan
of the U-NOT gate.

Note added.Recently, a very interesting work by Gisi
and Popescu@8# has been posted in the LANL e-print a
chive. These authors have introduced the so-called spin
operators in their analysis of encoding of quantum inform
tion into pairs of spins. The spin-flip operator is in fa
equivalent to the one-input qubit realization of our U-NO
gate.
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@2# V. Bužek and M. Hillery, Phys. Rev. Lett.81, 5003~1998!.
@3# R. Derka, V. Buzˇek, and A. Ekert, Phys. Rev. Lett.80, 1571

~1998!.
@4# N. Gisin and S. Massar, Phys. Rev. Lett.79, 2153~1997!.
@5# D. Bruss, A. Ekert, and C. Macchiavello, Phys. Rev. Lett.81,
2598 ~1998!.

@6# R.F. Werner, Phys. Rev. A58, 1827~1998!.
@7# M. Keyl and R.F. Werner, e-print quant-ph/9807010.
@8# N. Gisin and S. Popescu, e-print quant-ph/9901072.


