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Optimal manipulations with qubits: Universal-NOT gate
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Quantum information processing is usually associated with a specific computational basis. Nevertheless, for
a deeper understanding of the fundamental principles of quantum computing, it is essential to investigate what
is the fidelity ofuniversaloperations that are basis independent; i.e., the task is to perform optimally a specific
operation on a qubit or a quantum register that is in an unknown state. In this paper we introduce the
universal-NOT gate that takes as an input a qubit in an arbitrary |SE3teind generates an output that is as
close as possible to the orthogonal stake ). [S1050-29479)51110-4

PACS numbsdis): 03.67.Lx, 03.65.Bz

Classical information consists of bits, each of which canthe U-NOT operation is of the latter kind, and an antiunitary
be either 0 or 1. Quantum information, on the other handpperator® (unique up to a phagémplementing it is
consists of qubits which are two-level quantum systems
(spin-1/2 particleswith one level labeled0) and the other . —ak|O\_ %
|1). Quantum two-level systems cannot only be in one of the O(al0)+ 1)) =£7[0)—a|1). @)
two levels, but in any superposition of them as well. This
fact makes the properties of quantum information quite dif- The difficulty with antiunitarily implemented symmetries
ferent from that of its classical counterpart. For example, it igs that they are not completely positive; i.e., they cannot be
not possible to construct a device that will perfectly copy an@pplied to a small system, leaving the rest of the world alone.
arbitrary (unknown state of a spin-1/2 particlel,2], while (The ftensor produpt of an antilinear and a linear operator is
the copying of classical information presents no difficulties.lll-defined) Thus time reversal, perhaps the best known op-
Another difference between classical and quantum informa€ration of this kind, can only be a global symmetry, but
tion is as follows: It is not a problem to complement a clas-Makes no sense when applied only to a subsystem. By defi-
sical bit, i.e., to change the value of a bit, a0 toa 1 and vicd'ltion, a “gate’"is an operation applied to only a part of the

L . . world, so must be represented by a completely positive op-
versa. This is accomplished by a NOT gate. Complementin . ) : o 7 .
a qubit(i.e., inverting the state of the spin-1/2 particleow- @ratlon. By the Stinespring dilation theorem this is equivalent

. . to saying that any gate must have a realization by coupling
ever, 1s fmother_ matter. The complement of a Juiteis the the given system to a larger of®me ancillag performing
state|¥*) that is orthogonal to it. The question we want to

/ _ ) . ) ; a unitary operation on the large system, and subsequently
address is: Is it possible to build a device that will take aMrestricting it to a subsystem. Hence an ideal U-NOT gate
arbitrary (unknown qubit and transform it into the qubit goes not exist. The same is true, of course, for other antiuni-
orthogonal to it? tarily implemented operations like the complex conjugation
The best intuition for this problem is obtained by looking (or equivalently the transpositipmf the density matrix.
at the desired operation as an operation on the Poincare Because we cannot design a perfect universal-NOT gate,
sphere, which represents the set of pure states of a quhithat we would like to do is see how close we can come. At
system. Thus every state, pure or mixed, is represented bythis point we can consider two scenarios. The first one is
vector in a three-dimensional space, whose components akmsed on the measurement of input gigit— using the
the expectations of the three Pauli matrices. The full stateesults of an optimal measurement we can manufacture an
space is thereby mapped onto the unit ball, whose surfacerthogonal qubit, or any desired number of them. Obviously,
represents the set of pure states. In this picture the ambiguitye fidelity of the NOT operation in this case is equal to the
of choosing an overall phase fpW) is already eliminated. fidelity of the estimation of the state of the input quit
The points corresponding {&#) and|¥+) are antipodes of The second scenario would be to approximate an antiunitary
each other. The desired universal-N@J-NOT) operation is  transformation on a Hilbert space of the input q(iby a
therefore nothing but thmversion of the Poincarsphere unitary transformation on a larger Hilbert space that de-
Note that the inversion preserves angleslated in a scribes the input qulii), blank qubits that are to become the
simple way to the scalar produft®,¥)| of ray9, so by complements, and the quantum device playing the role of the
Wigner’s theorem the ideal U-NOT operation is just imple- gate. We demand that the gate perform equally well for any
mented either by a unitary or by an antiunitary operation(unknown pure input state, so it is natural to focus oni-
Unitary operations correspond to proper rotations of theversalgates “U-NOT,” i.e., gates that treat every state vec-
Poincaresphere, whereas antiunitary operations correspontbr in the same way in the sense of a unitary symmetry. In
to orthogonal transformations with determinant. Clearly,  what follows we shall address both scenarios.
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In order to state our problem precisely, 1ét=C? denote  SU(2)], the operatoiX is a multiple of the identity. To deter-
the two-dimensional Hilbert space of a single qubit. Then themine the factor, one inseris=1, and uses the normalization
input state ofN systems prepared in the pure stgi® is the  of “d®” to verify that X=1.

N-fold tensor product|¥)*NeH ®N. The corresponding Note that the density3) is proportional to|(®,¥)|2N,
density matrix isp=c®N, where o=|¥)(¥| is the one- whenp=|¥*Ny(¥*N| is the typical input to such a device:
particle density matrix. An important observation is that theN systems prepared in the same pure stitg. In that case
vectors | W)®N are invariant under permutations of &l  the probability density is clearly peaked sharply at stades
sites, i.e., they belong to the symmetric, or “Bose” subspacehat are equal t¢¥') up to a phase.

HENCH®N. Thus as long as we consider only pure input  Suppose now that we combine the state estimation with
states we can assume all the input states of the device unddve preparation of a new state, which is some function of the
consideration to be density operatorsﬁr?;’\‘_ We will de-  estimated state. The overall result will then be the integral of
note byS(H) the density operators over a Hilbert spage  the state valued function with respect to the probability dis-
Then the U-NOT gate must be a completely positive tracdribution just determined. In the case at hand the desired
preserving mag:S(H M) —S(H). Our aim is to desigim  function is f(®)=(1—[®)(d|). So the result of the whole

in such a way that for any pure one-particle stateS(7) ~ Measurement-basetclassical”) scheme is

the outputT(o®V) is as close as possible to the orthogonal

qubit _stat_ealzl—a. In other words, we are trying to make U(out):-r(p):f dd p(P,p)(1— | DN D|). (4)

the fidelity F:=Tr[o"T(c®N)]=1—A of the optimal

complement with the result of the transformatibras close
as possible to unity for an arbitrary input state. This corre
sponds to the problem of finding the minimal value of the
error measuré\ (T) defined as

The fidelity required for the computation Affrom Eq.(2) is
then equal tqsee alsd3])

1
A=(N+1) | do(@ W) [2NL— (D, ¥)[) =~
A(T)= maxToT(cM)]. @ (41 [[awlco @ = g o
o,pure

Note that this functionalA is completely unbiased with Where we have used that the two integrals have exactly the
respect to the choice of input state. More formally, it is in-Same form(differing only in the choice oN), and that the
variant with respect to unitary rotatiofisasis changesn 7:  firstintegral is just the normalization integral. Since this ex-
WhenT is any admissible map, andlis a unitary rotation on ~Pression does not depend onwe can drop the maximiza-

H, the mapTy(p) =U* T(U®NpU* ®N)U is also admissible, tion in the definition(2) of A, and find A(T)=1/(N+2),
and satisfies\ (T,)=A(T). We will show later on that one from which we find that the fidelity of the creation of a
may look for optimal gated, minimizing A(T), among the ~complement to the original staie is 7=(N+1)/(N+2).
universalones, i.e., the gates satisfyifig =T for all U. For ~ Finally, we note that the result of the operatie$ can be
such U-NOT gates, the maximization can be omitted fron€XPressed in the form

the definition(2), because the fidelity ToT(a®N)] is inde-
pendent ofo.

Measurement-based scenaridn estimation device by
definition takes an input stajee S(H ") and produces, in
every single experiment, an “estimated pure state”  with the “scaling” parametes =N/(N+2). From here it is
e S(H). As in any quantum measurement this will not al- seen that, in the limiN— o, a perfect estimation of the input
ways be the same, even with the same input stagebut a  state can be performed, and, consequently, the perfect
random quantity. The estimation device is therefore decomplement can be generated. For filitéhe mean fidelity
scribed completely by the probability distribution of pure is always smaller than unity. The advantage of the
states it produces for every given input. Still simpler, we will measurement-based scenario is that once the input(gjubit
characterize it by the corresponding probability density withmeasured and its state estimated an arbitrary nurkbef
respect to the unique normalized measure on the pure statgientical (approximately complemented qubits can be pro-
(denoted ‘d®” in integrals), which is also invariant under duced with the same fidelity, simply by replacing the output
unitary rotationgfor more details see Reff3]). For an input  function f(®) = (1—| P} ®|) by fy(P)=(1—|P)(D|)=M.
statep e S(H $V), the value of this probability density atthe ~ Quantum scenario: U-NOT gatéet us assume we have

1-s

=g o+, ®)

pure statd®) is N input qubits in an unknown staé”) and we are looking
for a transformation that generatisqubits at the output in
P(P,p)=(N+1) (DN, p ©=N). (3)  astate as close as possible to the orthogonal paté. The

universality of the proposed transformation has to guarantee
To check the normalization, note thafd® p(®,p)  that an arbitrary input state is complemented with the same
=Tr[Xp] for a suitable operataX, because the integral de- fidelity. If we want to generatdl approximately comple-
pends linearly orp. By unitary invariance of the measure mented qubits at the output, the U-NOT gate has to be rep-
“d®” this operator commutes with all unitary rotations of resented by Bl qubits(irrespective of the numbe\ of input
the formU®N, and since these operators, restricteaitﬁ’\', qubitg, M of which will only serve as ancilla, ant of
form an irreducible representation of the unitary groug#f which become the output complements. We will indicate
[for d=2, it is just the spirN/2 irreducible representation of these subsystems by subscript$input), b (ancilla), andc
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(prospective outpuit The U-NOT gate transformatiotd y discussed by Brusst al. [5]. This means that the U-NOT
acts on the tensor product of all three systems. The gate gate, as presented by the transformation in &g, serves
always prepared in some stdt¢),., independently of the also as a universal cloning machine.
input state ¥'). The transformation is determined by the fol- At this point the question arises whether the transforma-
lowing explicit expression, valid for every unit vectp¥) tion (7) represents theptimal U-NOT gate via the quantum
eH: scenario. If this is so, then it would mean that the
measurement-based and the quantum scenarios realize the
UnmINT)a®[X)pe U-NOT gate with the same fidelity.
M Theorem.Let H be a Hilbert space of dimensiah=2.
:2 7j|Xj(‘1’)>ab®|{(M — WL, Then a®rrh1‘ong all completely positive trace preserving maps
j=0 T:S(H{")—S(H), the measurement-based U-NOT sce-
nario (4) attains the smallest possible value of the error mea-
e sure defined by Eq2), namelyA(T)=1/(N+2).
' (@) We have already showiisee Eg.(5)] that for the
measurement-based strategy the efxaattains the minimal

where|NW), = |\[r>®N is the input state consisting of qu- value 1/(N+2). The more difficult part, however, is to show
bits in the same staf@P'). On the right-hand side of E§7) ~ that no other schemg.e., quantum scenani@an do better.
{(M—j)¥*;j¥l), denotes symmetric and normalized Here we will largely follow the arguments {18, 7].

states with M —j) qubits in the complemente@rthogonal Recall first the rotation invariance of the functiona|
state| W) andj qubits in the original staté¥). Similarly, ~ noted after Eq(2). Moreover,A is defined as the maximum

the vectorgX;(¥)),p, consist ofN+M qubits, and are given of a collection of linear functions i, and is therefore con-
explicitly by vex. Putting these observations together we get

N+M+1
M

y=(-1)

N+M—j|?
N

IXj(¥))ap=[{(IN+M =)W jT-}) . () A('AI')$J’ dUA(Ty)=A(T), (10)

Here the coefficienty; were chosen so that the scalar prod- .
uct of the right-hand side with a similar vector written out for whereT= [dU T, is the average of the rotated operatd(s
|®) becomes(¥,®)N. This implies at the same time that with respect to the Haar measure on the unitary group. Thus

UNM is linear and that it is unitary after suitable extension tO"|\' is at least as good a5 and is auniversatNOT gate (i—U

the orthogonal complement of the vectdy.. =T). Without loss we will therefore assume from now on
Each of theM qubits at the output of the U-NOT gate is that)1.'U=T for all U.

described by the density operat®) with s =N/(N+2), An advantage of this step is that a very explicit general
irrespectiveof the number of complements produced. Theform for universal operations is known from the “covariant
fidelity of the U-NOT gate depends only on the number ofform” of the Stinespring dilation theorertsee[7] for a ver-
inputs. This means that this U-NOT gate can be thought of asion adapted to our neaddhe form of T is further simpli-
producing an approximate complement and then cloning itfied in our case by the fact that both representations involved
with the quality of the cloning independent of the number ofare irreducible: the defining representation of(2Uon H,
clones produced. The universality of the transformation isand the representation by the operatdf&" restricted to the
directly seen from the “scaled” form of the output operator symmetric SubspacﬁgN_ ThenT can be represented as a
(6). o ) convex combinatiol=X;\;T;, with \;=0, Z;\j=1, and

We stress that the fidelity of the U-NOT gat®) is ex- 1. yniversal gates in their own right, but of an even simpler
actly the same as in the measurement-based scenario. Moigyy, The universality ofT already implies that the maxi-
over, it also behaves as a classigabasurement-basedate  ym can be omitted from the definitig®) of A, because the
in a sense that it can generate an arbitrary number of Compl?rdelity no longer depends on the pure state chosen. In a

ments with the same fidelity. We have also checked that,nyex combination of universal operatdfs we therefore
these cloned complements are pairwise separable. get

The N+M qubits at the output of the gate that do not
represent the complements are described individually in the
state by the density operator A(T):zj: NA(T)). (13)

Jj(out):SUJr EL i=1,...N+M, (99  Minimizing this expression is obviously equivalent to mini-
mizing with respect to the discrete paramgter
We write the general form of the extremal gafgsin

with the scaling factors=N/(N+2)+2N/[(N+M)(N  terms of expectation values of the output state for an observ-
+2)]; i.e., these qubits are theonesof the original state  5p1e X on -

with a fidelity of cloning larger than the fidelity of estima-

tion. This fidelity depends on the numbkr of clones pro- T T(p)X]=Tr pV* (X1)V], (12
duced out of theN originals, and in the limitM —c the '

fidelity of cloning becomes equal to the fidelity of estima- WhereV:Hf’\‘—ﬂ{@Cz'+1 is an isometry intertwining the
tion. These qubits represent the output of thatimal N respective representations of @) namely the restriction of
—N-+M cloner introduced by Gisin and Masg4i and also  the operatort)®N to H 2N (which has spirN/2), on the one
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hand, and the tensor product of the defining representatiolhis means that witl priori knowledge of the set of inputs,
(spin-1/2) with the irreducible spiprepresentation. By the the quantum-NOT gate can perform better than the
triangle inequality for Clebsch-Gordan reduction, this im-measurement-based strategy.
plies j=(N/2)*+(1/2), so only two terms appear in the de-  Summarizing our conclusions, we have shown that there
composition ofT. It remains to computé (T;) for these two  is another difference between classical and quantum infor-
values. Omitting the details of the calculatioftisese follow  mation: classical bits can be complemented, while arbitrary
closely the arguments presented in Ré&f), we find that qubits cannot. It is, nonetheless, possible to construct ap-
proximate quantum-complementing devices, the quality of
whose output is independent of the state of their input. These
devices we called U-NOT gates. They are closely related to
quantum cloners, and exploiting this connection it is possible
The first value corresponds to getting the siatflom a set  to find an explicit transformation for aN-qubit input and
of N copies ofa. The fidelity 1 is expected for this trivial M-qubit output U-NOT gate. When there is @aopriori in-
task, because taking any one of the copies will do perfectlyformation available about the state of input qubits then these
On the other hand, the second value is the minimal error ilJ-NOT gates do not do better than a measurement-based
the optimal U-NOT gate, which we were looking for. This strategy. On the other hand, as we have shown, paatial
clearly coincides with the valug5), so the theorem is priori information can dramatically improve the performance
proved. of the U-NOT gate.

Role of a priori knowledgelf the input statg V)= «|0) Note addedRecently, a very interesting work by Gisin
+ B|1) is restricted to the case where the coefficientand  gng Popescli8] has been posted in the LANL e-print ar-
B are real, then it is possible to construct a perfect quantunchjve. These authors have introduced the so-called spin-flip
NOT gate. A measurement-based strategy in this case doggerators in their analysis of encoding of quantum informa-
not do as well. Specifically, the mean fidelity of an optimal o5 into pairs of spins. The spin-flip operator is in fact

estir_nation in the present case increases as a function of ianhuivalent to the one-input qubit realization of our U-NOT
gubits as(see[3])

1 for j=N/2+3,
A(T) (13

| 1UN+2) for j=N/2-1.

gate.
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