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Numerical simulations of atomic decay in cavities and material media
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Starting from first principles we simulate numerically the dynamics of a system of two-level atoms inter-
acting with a multimode electromagnetic field in a one-dimensional cavity. In particular, we investigate the
spontaneous emission of an excited two-level atom in the cavity. We show how the decay depends on the mode
spectrum and on the position of the atom in the cavity. We study how the spontaneous emission is modified
when the initially excited atom is surrounded by a material medium modeled as a system of two-level atoms.
We also study the propagation of photon wave packets emitted by the atom within the material media. Our
microscopic model provides us with a deeper understanding of the atom-field interaction and offers us a
framework for a systematic investigation of the transition from a microscopic to a macroscopic~phenomeno-
logical! description of the spontaneous decay in material media~e.g., dielectrics!. @S1050-2947~99!04307-3#

PACS number~s!: 42.50.Ct, 32.80.2t, 32.90.1a
-
er

re
el

f
s

an
oc
er
n
a

w
a

tio

n
ti

im

th
is
-

e
en

ults

r a
il-
es-

y of
t

be
in

the
ity
the

ces
da-

d
noff

the
hat
ery
his

of
-

s
ask
he
ar-

rst
tu
on
I. INTRODUCTION

Quantum electrodynamics~QED! lies at the heart of mod
ern quantum theory. QED is a well established and exp
mentally confirmed theory@1,2# but even fifty years after its
foundation many features of the atom-field interaction
main of interest. In particular, the character of the atom-fi
interaction can be substantially modified inconfined spaces
~e.g., within the high-Q cavity of a micromaser! due to the
fact that local properties of the electromagnetic~EM! field
depend on space boundaries. The radiative properties o
oms and the EM field in confined spaces have been inve
gated for various cavity QED systems@3–9#.

Quantum electrodynamics is a local theory, which me
that the dynamics of atoms and electrons depend on l
properties of the electromagnetic field with which they int
act. But local properties of the electromagnetic field depe
also on conditions imposed by the boundaries of the sp
region in which the field is confined@10#. These conditions
are reflected in the quantization of the field. Specifically,
can either quantize the electromagnetic field in a free sp
or in a ‘‘quantization box’’ of linear dimensionL. Physically,
quantum electrodynamics in a box describes an idealiza
of effects associated with processes inside high-quality~per-
fect! cavities. In addition, quantization in a box can be co
sidered as an approximation to the free-space quantiza
and the two theories must give the same results in the l
L→`.

In their pioneering quantum-mechanical description of
spontaneous decay of a two-level atom in free space, We
kopf and Wigner@11# started their calculations with the cav
ity modes quantized in a box, and then at a certain stag
the calculation, the limit of a continuum of modes was tak
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This approach gives in the first approximation correct res
~exponential decay of the excited level of the atom!. The
interaction of a two level atom with discrete~cavity! modes
has been described systematically by Hamilton@12# who
solved the emission and scattering problems exactly fo
cubic box by diagonalization of the total atom-field Ham
tonian. Later this approach was utilized for a detailed inv
tigation of the spontaneous emission of two-level atoms~see,
for instance, papers by Davidson and Kozak@13# and Swain
@14#!. In all these papers devoted to the spontaneous deca
a two-level atom in a cavity~box!, the coupling constan
between the atom and the cavity modes was taken to
position independent. This argument is perfectly justified
free space, when translational invariance is valid. On
other hand, when the atom interacts with discrete cav
modes in a confined space the position dependence of
coupling can play a significant roˆle. The investigation of this
problem is not only of theoretical interest. Recent advan
in experimental techniques have allowed one to study fun
mental processes in cavity quantum electrodynamics~cavity
QED! @3–9# and to verify various effects of the atom-fiel
interaction in confined spaces as predicted by Schelku
@15#, Purcell@16#, Barton@17# and others.

One of the fundamental processes of cavity QED is
spontaneous decay of a two-level atom. It is well known t
the spontaneous emission from an atom positioned v
close to a cavity mirror can be significantly suppressed. T
effect is called inhibition of spontaneous emission@4#. The
deviation from the exponential Weisskopf-Wigner decay
an atom in free space@18# has been demonstrated in a num
ber of experiments@9#. Many other interesting question
arise for these QED systems. For example, one could
what is the influence of cavity mirrors on the dynamics of t
atom and the role of the position of the atom on the appe
ance of Poincare´ recurrences~i.e., reexcitations of the atom
by the radiation reflected by the cavity mirrors! @19#. While
the exponential-like character of the decay during the fi
stage of the time evolution~see below! is not affected by

te,
,
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variations in the position of the atom around the center of
cavity ~providing the density of the cavity modes is larg
enough!, Poincare´ recurrences depend very sensitively on t
position of the atom inside the cavity. Variation in the po
tion of the atom within a wavelength of the resonant atom
frequency can result in an almost complete suppressio
the first Poincare´ recurrence of the excited level of the ato
@19#. This means that the atom effectively does not ‘‘fee
wave packets reflected from cavity mirrors for times mu
longer than the time necessary for the emitted light
‘‘travel’’ to the mirrors and back to the atom. Another e
ample is that of the atom positioned close to one of
mirrors. In general one may expect to see inhibition of
radiation. Nevertheless, taking into account the position
pendence of the field-atom interaction it turns out that
some specific distances from the mirror~e.g., one quarter o
the resonant wavelength of the radiation field!, the atom de-
cays even faster than in free space@19#.

A first insight into the modification of the spontaneo
emission of the two-level atom can be obtained with the h
of the Fermi golden rule@1#

Ga5
2p

\2 uVf i u2r~va!. ~1!

The spontaneous emission rateGa is directly proportional to
the density of the field modesr(va) at the atomic transition
frequencyva ; Vf i is the matrix element of the correspon
ing transition. The presence of boundaries~e.g., in the case
when the atom is inserted into a high-Q cavity! changes the
local density of field modes and thereby the spontane
emission can be suppressed or enhanced. However, it is
necessary to change the boundary conditions of the EM fi
in order to modify the spontaneous emission rate. This g
can be achieved when we assume that the excited ato
embedded in a material medium~e.g., a dielectric!. In this
paper we will model material media as a collection of tw
level atoms initially prepared in their ground state.

The main goal of our investigation is the numerical sim
lation of the atom-field interaction in confined geometrie
Starting from first principles, we simulate the dynamics o
system of atoms in a one-dimensional~1D! cavity. In par-
ticular, we investigate the spontaneous emission of an
cited two-level atom in the cavity. We show how the dec
depends on the mode spectrum and on the position of
atom in the cavity. We study how the spontaneous emiss
is modified when the initially excited atom is surrounded
a material medium, modeled as a system of two-level ato
We also study the propagation of photon wave packets e
ted by the atom. Our microscopic model provides us wit
deeper understanding of the atom-field interaction and of
a framework to study systematically the transition from t
microscopic to macroscopic~phenomenological! description
of the spontaneous decay in a material medium~e.g., dielec-
trics!. In particular, this will allow us to study dynamics o
atoms in photonic band gap structures@20–22#.

The paper is organized as follows. We describe the mo
in Sec. II. In Sec. III we study the position dependence of
decay of a single two-level atom and analyze the spectrum
the emitted radiation. In addition we discuss specific tech
cal questions such as the role of the frequency cutoff.
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describe the effect of the inhibition of spontaneous emiss
in Sec. IV. In Sec. V we analyze the decay of a two-lev
atom in a material medium modeled as a set of two-le
atoms. Finally, in Sec. VI we present the convolutionle
master equation describing the dynamics of the initially e
cited atom within the material medium. We summarize o
results in Sec. VII.

II. THE MODEL

We consider a simple one-dimensional model of a cav
in which two-level atoms interact with the cavity modes
the dipole and the rotating-wave approximations. To si
plify the model, we neglect all mechanical effects of t
cavity field on the atom~i.e., the mass of the atom is as
sumed to be infinite!. This 1D model not only reflects the
main features of atom-field interaction but also can
mapped onto an isotropic 3D model.

Under the assumption of perfectly reflecting mirrors, t
operator of the electric field inside the cavity in the Coulom
gauge can be expressed as@1,23,24#

EW ~r !5(
n,l
EneWl~ ân,l1ân,l

† !sin~knr !, ~2!

where kn5vn /c5np/L and En5A\vn /e0L. The two or-
thogonal polarization vectorseWl (l51,2) lie in the plane
perpendicular to the cavity axis;ân,l and ân,l

† are annihila-
tion and creation operators of thenth mode.

The Hamiltonian describing the free cavity field can
expressed as

ĤF5\(
l

(
n51

N

vnân,l
† ân,l , ~3!

where we have omitted the zero-point contribution\(nvn/2.
Summation over discrete modes in Eq.~3! is performed only
up to n5N, which means that in our model we assume
cutoff for the cavity modes~for more discussion see below!.

The Hamiltonian describing a set ofM noninteracting
~‘‘free’’ ! two-level atoms with transition frequenciesva

( j )

can be expressed as

ĤA5
\

2 (
j 51

M

va
( j )ŝz

( j ) , ~4!

whereŝz
( j )5ue& j^eu2ug& j^gu;ue& j and ug& j denote the upper

and lower atomic states of the atom at the positionr j , re-
spectively.

When the radius of the atom is much smaller than
wavelength of the resonant electromagnetic radiation t
the atom-field interaction can be described within t

electric-dipole approximation, i.e.,Ĥ int52d̂W •ÊW . For sim-
plicity we neglect all polarization effects and then the resu
ing interaction Hamiltonian in the rotating-wave approxim
tion ~RWA! reads

Ĥ int52\(
j 51

M

(
n51

N

gn
( j )@ ânŝ1

( j )1ân
†ŝ2

( j )#, ~5!
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where the Pauli spin-flip operators areŝ1
( j )5ue& j^gu and

ŝ2
( j )5ug& j^eu. The position-dependent coupling constan

gn
( j ) are given by the expression

gn
( j )5S vn

\e0L D 1/2

deg
( j ) sin~knr j !, ~6!

where the parametersdeg
( j ) denote the dipole matrix elemen

of the atoms. The position dependence of the atom-field c
pling constant~6! given by space-mode functionsf n(r )
5sin(knr) may significantly affect the atomic dynamics.

The total Hamiltonian of the form

Ĥ tot5ĤF1ĤA1Ĥ int ~7!

describes the system ofM two-level atoms interacting withN
discrete field modes in a 1D cavity. This model can
solved exactly, because the total number of excitations

R̂5
1

2 (
j 51

M

~ ŝz
( j )11!1 (

n51

N

ân
†ân ~8!

is an integral of motion, i.e.,@R̂,Ĥ tot#50.

A. Solution of the model

In this paper we will consider situations when just one
the atoms is initially excited while the other atoms are
their ground state. The electromagnetic field will be cons
ered to be initially in the vacuum state. In this case we c
write the initial state vector in the form

uC~ t0!&5ue&1ug& jWu0&kW , ~9!

whereue&1 describes the excited state of the initially excit
atom, whileug& jWªug&2^ •••^ ug&M describes the rest of th
M atoms which are initially in the ground state. The vec
u0&kW denotes the vacuum of the multimode cavity field. B
cause the model HamiltonianĤ tot ~7! is chosen so that the
number of excitations given by Eq.~8! in the system is an
integral of motion, we can express the state vector of
atom-field system at timet as

uC~ t !&5c1~ t !ue&1ug& jWu0&kW1(
j 52

M

cj~ t !ug&1uej& jWu0&kW

1(
k

dk~ t !ug&1ug& jWu1k&kW , ~10!

whereuej& jW describes the state vector of a set ofM21 atoms
out of which thej th atom is excited, whileu1k&kW describes
the state of the cavity field with thekth mode in the Fock
stateu1& and all other modes in the vacuum state.

In general it is impossible to find a closed analytical s
lution of the Schro¨dinger equation for the system under co
sideration except in a few cases, such as the Jay
Cummings model@25# which describes the dynamics of
two-level atom interacting with asingle mode cavity field.
Therefore we will study the dynamics of our system nume
cally. We will use two approaches. The first one is based
the straightforward diagonalization of the total Hamiltoni
s

u-

e

f

-
n

r
-

e

-

s-

-
n

~7!. Here we assume that the Hilbert space of the cav
modes can be truncated~i.e., we effectively apply the fre-
quency cutoff! so that the Hamiltonian under consideratio
can be represented as a finite matrix. Then we find eigen
ues Ej and eigenvectorsuF j& of Ĥ tot . The state vector
uC(t)& can then be written as

uC~ t !&5(
j

exp@2 iE j~ t2t0!#uF j&^F j uC~ t0!&. ~11!

This method is conceptually very simple, except it is n
very efficient in many cases. Therefore, in some cases
transform the Schro¨dinger equation for the state vector~10!
with the Hamiltonian~7! into a set of coupled linear differ
ential equations for the amplitudescj (t) and dk(t) ~here
again the frequency cutoff is applied!. The solutions for the
amplitudes are then found by standard Runge-Kutta meth
@26#.

B. Observables

Using the numerical solutions of the model we analy
the time evolution of the mean values of the following o
servables.

~i! The occupation of the upper level of thej th atom

P̂e
( j )5

ŝz
( j )11

2
5ue& j^eu. ~12!

~ii ! The amplitude of the electric field

Ê~r !5 (
n51

N S \vn

e0L D 1/2

@ ân1ân
†#sin~knr !. ~13!

~iii ! The number of excitations of thekth mode

Ŝ~k!5âk
†âk , ~14!

which are used to study the time-dependent spectrum of
electromagnetic radiation in the cavity.

~iv! To analyze the space-time propagation of radiat
wave packets, we evaluate mean values of the norma
ordered operator for the energy density, which in our c
can be written as

Î ~r !5:e0Ê2~r !:. ~15!

Here normal ordering~indicated by the colons above! is
adopted to eliminate the vacuum-state contribution to
energy density of the emitted radiation.

In what follows we demonstrate the main features of
atom-field interaction in confined geometries. In particul
we will concentrate our attention on two main problems.

~a! Modification of the spontaneous emission of the ato
in the cavity due to the position dependence of the atom-fi
interaction. A partial reexcitation of the atom caused by
back reflected radiation~Poincare´ recurrences!.

~b! Decay of the two-level atom in a ‘‘material media:
modification of the spontaneous emission due to the prese
of other atoms, which are initially in their ground states~the
decaying atom can be considered as being embedded
dielectric ‘‘crystal’’ which is formed by other atoms!.
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III. DECAY AND REEXCITATION OF ATOM

From the Weisskopf-Wigner theory@11# it follows that
the initially excited atom coupled to a continuum of th
vacuumfield modes in free space decays exponentially to
ground state. Representing the usual 1D continuum by a
crete model~5! for a large cavity (L→`), we find that the
population of the excited atomic levelPe decays exponen
tially with a rateGa given by the Fermi golden rule~1!

Pe~ t !5exp~2Gat !, Ga5
vaudegu2

e0\c
. ~16!

In the 1D ‘‘free’’ space model (L→`) the decay process i
accompanied by the emission of two wave packets~repre-
senting the one-photon state! propagating to the left and to
the right from the atom. In the case of the ‘‘left-right’’ sym
metry of atomic-wave functions in 1D~this corresponds to
spherical symmetry in the 3D problem! each of the two emit-
ted wave packets carries half of the atomic initial excitatio
This process is irreversible, as the energy cannot be r
sorbed by the atom~which is reflected by the exponentia
decay of the atomic excitation!.

In confined geometries we have a different picture. Fi
the density of thediscrete modes is changed due to th
boundary conditions. The translational symmetry is lost a
the coupling between the atom and the field is positi
dependent. In particular, when the atom is positioned at
center of the cavity it is coupled only to the odd modes of
field @for even modes the coupling constant~6! is equal to
zero#. Secondly, the two wave packets are reflected back
the cavity mirrors and can be~partially! reabsorbed by the
atom. This partial restoration of the initial state of the ato
the so-called Poincare´ recurrence, can be viewed as a con
quence of constructive quantum interference~see below!.

In Fig. 1 we show the time evolution of the probability o
the atomic excitation for four different values of the positi
of the atom around the center of the cavity, namelyDr 1
[r 12 L/2 50,6la/16,6la/8,6la/4. From this figure we
see that the first ‘‘exponential’’ stage of the decay is~almost!
position independent. Providing the atom is ‘‘far’’ from th
cavity mirrors, i.e., min(r1,L2r1)@c/Ga , the reflected wave
packets do not influence the exponential decay.

We note that the initially excited atom which is position
in the cavity center~dotted line! interacts only with the odd
modes and thus the effective density of modes equal
L/2pc. Using the Fermi golden rule~1! we find that in this
case the corresponding decay rate is exactly the same a
free-space decay rateGa given by Eq.~16!. We note that the
density of interacting modes is doubled when the atom
shifted from the cavity center. On the other hand the stren
of the interaction with the odd modes is weaker@see Eq.~6!#.
Specifically, the effective squared interaction constant, eq
to the average of the coupling of the atom to the two nei
boring ~odd and even! cavity modes, is equal to one half o
the squared coupling constant between the atom in the ce
of the cavity and the odd modes. Consequently, even tho
the atom is shifted from the cavity center the Fermi gold
rule ~1! with the effective squared interaction constant a
doubled density of modes leads to the same decay rate~16!.
This is nicely illustrated in Fig. 1, from which we see th
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during the first stage of the time evolution the decay r
does not depend on the position of the atom located aro
the center of the cavity.

For times large enough, the total excitation energy of
atom is transferred to the field, which in turn is effectively
a one photon~one excitation! state represented by two wav
packets propagating towards the cavity mirrors. For fin
cavities, at time approximatelyL/2c the wave packets are
reflected by the mirrors and attR.L/c they approach the
atom which starts to re-absorb the energy from the field.
observe the reexcitation of the atom~i.e., a Poincare´ recur-
rence!. In contrast to the ‘‘exponential’’ stage of the atom
decay, Poincare´ recurrences are very sensitive to small po
tion shifts of the atom within a wavelength of the resona
atomic transition. In Fig. 1 we clearly see that if the atom
positioned at the cavity center (r 15L/2) then at timetR
.L/c a very well pronounced Poincare´ recurrence of the
atomic inversion takes place. One can say that at the mom
when the Poincare´ recurrence appears the atom ‘‘sees’’ t
cavity mirrors@27#. On the other hand, with a small shift o
the atom from the cavity center toDr 156la /8, the first
atomic recurrence is almost completely suppressed. To
derstand this effect let us consider the two emitted wa
packets~one to the left and one to the right! as monochro-
matic plane waves~at the atomic transition frequency an
with the group velocityc). The difference of their geometri
cal paths is equal tola/2. This path difference results in
destructive interference due to the accumulated phase di
ence ofp. In other words, the atom does not ‘‘see’’ the wa
packets reflected from the cavity mirrors. Obviously, wh

FIG. 1. The time evolution of the populationPe(t) of the ex-
cited atomic level. The atom is shifted from the cavity center
Dr 150 ~dotted line!, Dr 156la /4 ~dashed line!, Dr 156la /8
~dashed-dotted line!, and Dr 156la /16 ~solid line!. The atom is
initially prepared in its excited state and the multimode cavity fie
is in the vacuum. The choice of the cavity length~in dimensionless
units! L52p, the squared coupling constant with space-mode fu
tion ga

251/2 ~for space-mode function equal to unity!, and the
atomic transition frequencyva5100 lead toGa5p andla5L/50.
The first Poincare´ recurrences appear at the timetR52p. The upper
cutoff on frequencies is set tovcut5200; i.e., in the present simu
lation we use 400 modes of the electromagnetic field with the f
damental mode having the frequencyv150.5. In the figures pre-
sented in the paper we chose units such that the considered phy
parameters are dimensionless.
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the two wave packets propagate further, then after the sec
reflection they accumulate a phase difference of 2p so the
corresponding Poincare´ recurrence can then be seen~i.e., in
this case the atom needs time twice as long to ‘‘see’’
cavity mirrors!.

When the atom is positioned atDr 156la/4 the evolu-
tion of the atomic inversion is almost indistinguishable fro
the case whereDr 150. At the time of appearance of the fir
Poincare´ recurrence there is a constructive interference of
wave packets. The trivial phase shift 2p results from the
difference of the geometrical paths which is then equa
la . With the atom at the positionDr 156la/16 the path
difference of the two wave packets is equal tola/4 and the
first Poincare´ recurrence is intermediate between the extre
cases (Dr 150,6la/8) considered above. Dephasing of t
wave packets byp/2 results in a partially reduced reabsor
tion. We note that a more rigorous analysis should take
account the multimode structure of the wave packets as
additional source of dephasing, due to the different~Rabi!
frequencies of the modes.

The second Poincare´ recurrence, associated with the se
ond reflection of the wave packets from the cavity mirro
starts in all cases shown in Fig. 1 at time.2tR . This is due
to the fact that the optical paths of the wave packets are e
and they constructively interfere at the position of the ato

We conclude that while the ‘‘exponential’’ character
the decay of the excited atom inside a large cavity is
influenced by small shifts of the atomic position, the fi
Poincare´ recurrence is a position-dependent interference
fect. This behavior can be explained using a simple ar
ment: the phase-matching conditions necessary for the
pearance of Poincare´ recurrences can be associated with
phase factorse2 i tEk of the contributing eigenstatesuFk& of
the total Hamiltonian~7!. Specifically, a Poincare´ recurrence
can appear at timetR such that the relationEktR.2p is valid
for many values ofk ~for more details, see@28#!.

In Fig. 2 we present a stroboscopic set of plots describ
the space-time evolution of the energy density of the ca
field. We assume the same situation as in Fig. 1. The ato
considered to be in the center of the cavity. We see two w
packets propagating to the right and to the left. Reflection
the wave packets from the cavity mirrors~at timet.L/2c) is
nicely demonstrated and the subsequent reexcitation of
atom is synchronized with the interference of the wave pa
ets in the center of the cavity~compare with Fig. 1!. These
wave packets have ‘‘sharp’’ fronts propagating with t
group velocity c. We note that the larger the number
modes coupled to the atom, the sharper the fronts are.
length of the tails of the wave packets depend on the lifet
of the atom.

Spectrum of the cavity field

Within the framework of cavity QED when the field in
teracting with the atoms is confined within ideal mirror
there is nothing like a stationary regime which is necess
for the derivation of a time-independent spectrum of
field. The spectrum is intrinsically time dependent. In th
case an operational definition of time-dependent spect
can be given by the excitation probabilities of the cav
modes@see Eq.~14!#.
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The spectrum of the cavity field is affected by the positi
of the atom. In particular, if the atom is located in the cav
center then the even modes are completely decoupled f
the atom and only the odd modes can become excited@see
Eq. ~6!# establishing in this way oscillations in the spectru
of modes. However, at the point when the total excitat
energy of the atom is transferred to the field, theenvelopeof
the spectrum is ‘‘Lorentzian’’ irrespective of the position
the atom~providing that the decay is exponential!.

On the other hand, it should be stressed that the spec
of the interacting modes is highly transient even during
exponential decay period. It undergoes a gradual narrow
from a broad flat spectrum~initially all modes are in the
vacuum state with the same probability! towards a
Lorentzian-like line of widthGa . The narrowing is accom-
panied by transient oscillations of the spectral envelope. T
transient behavior is illustrated in Fig. 3 which shows t
spectral envelopes at different time moments during the
ponential decay of the atomic excitation. At the timet'2 the
envelope of the cavity-field spectrum reaches its quasi
tionary shape, being very close to the corresponding~Lorent-
zian! emission spectrum usually associated with the fr
space emission@1#.

It is worth noticing that there is a close relation betwe
the emission spectrum and the ‘‘spectrum’’ of squared sc
products~overlaps! between eigenvectorsuFk& of the total
Hamiltonian~7! and the given initial stateuC(t0)&, i.e.,

Se~k!5 z^C~ t0!uFk& z2. ~17!

From Fig. 3 it is evident that the ‘‘spectrum’’ of overlap
~shown asd) resembles the emission spectrum of the co
pletely deexcited atom. In other words, the ‘‘spectrum’’
overlaps offers an important time-independent character

FIG. 2. A stroboscopic set of plots describing the space-ti
propagation of the mean energy density of the cavity field given
Eq. ~15!. We assume the same configuration and parameters a
Fig. 1 with the atom in the center of the cavity. We see that at
first stage of the time evolution the two wave packets are emi
and they propagate towards the cavity mirrors.
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FIG. 3. Populations of cavity modes~i.e., the spectrum! at timest50.3,0.7,1,3 for the atom located at the cavity center. The atom
initially prepared in its excited state and the cavity field is in the vacuum~for other conditions, see Fig. 1!. For comparison purposes we sho
the overlaps of the eigenstates of the total Hamiltonian~7! with the initial state~these overlaps are denoted by the symbold). The ordering
of eigenstates is given by their eigenvalues on the frequency axis. The even modes do not interact with the atom~see oscillations in the
function u^C0zFk& z2).
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tion of the system under consideration. If there exists a q
sistationary spectrum of the cavity modes, it should mim
the ‘‘spectrum’’ of overlaps. In addition, a shift of the atom
transition frequency in the spectrum of eigenvalues can
associated with the energy shift.

Concluding this section, we note that our numerical c
culations have been performed in the broadband approx
tion for the interaction constants given by Eq.~6!, i.e., we
have neglected the frequency dependence of the coup
constants replacingvn by va . This approximation is valid
only for large enough cavities withL@la and ‘‘weak’’ in-
teraction regimes withGa!va .

A rather subtle point is the choice of the frequency cuto
Strictly speaking, the model interaction Hamiltonian~5! with
the interaction constants~6! within the broadband approxi
mation leads in the second-order perturbation theory tologa-
rithmically divergent energy shifts forvcut→` @24#. ~Note
that in our numerical calculations we have eliminated
shift of the excited atomic level by choosing a symmetri
frequency cutoffvcut52va .) Without the broadband ap
proximation, when the frequency dependence of the inte
tion constants~6! is taken into account, the energy shif
divergelinearly. It is well known @1,2# that if instead of the

dipole approximation Ĥ int52d̂W •ÊW we start with Ĥ int

52 p̂W •ÂW then after the RWA is applied one obtains the
teraction Hamiltonian~5! but with a different frequency de
pendence of the interaction constant, i.e.,

gn
( j )5Ava

vn
S va

\e0L D 1/2

deg
( j ) sin~knr j !. ~18!
a-
c

e

l-
a-

ng

.

e
l

c-

In the broadband approximation the interaction consta
given by Eq.~6! and Eq.~18! are identical and the results d
not depend on the choice of the interaction Hamiltonian.
the other hand, without the broadband approximation the
sults are biased by the choice of the frequency dependenc
the atom-field coupling. From the mathematical point
view, the coupling given by the expression~18! does not lead
in second-order perturbation theory to divergent ene
shifts for vcut→`. Obviously at the point when the two ef
fective Hamiltonians considered above lead to different
sults, one has to be careful whether the model is physic
relevant~for more details, see Ref.@2#!.

IV. INHIBITION OF SPONTANEOUS EMISSION

In the previous section we have considered the situa
when the atom is ‘‘far’’ from the cavity mirrors@i.e.,
min(r1,L2r1)@c/Ga# and the wave packets reflected by t
mirrors do not directly affect the initial spontaneous decay
the atom. On the other hand, for distances between the a
and one of the cavity mirrors smaller thanc/Ga ~here 1/Ga is
the spontaneous decay time in a free space! deviations from
exponential decay should be expected@4–6#. In particular,
the decay of a two-level atom which is positioned very clo
to the cavity mirror can be significantly suppressed. T
effect is called the inhibition of spontaneous emission@4#.
The inhibition of spontaneous emission is a positio
dependent effect which is related to the position depende
of the atom-field coupling constant~6!. In Fig. 4 we present
numerical simulations for the time evolution of the popu
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tion of the upper level of the atom described by the mo
interaction Hamiltonian~5!. The atom is assumed to be in
tially in its excited state and the field in the vacuum. W
consider several typical physical configurations. First,
reference, we plot the atomic decay of the atom positione
r 15la/8 ~solid line! which is indistinguishable from the ex
ponential decay of the atom at the cavity center~i.e., Pe

'e2Gat for t<tR). For other atomic positionsr 15la/16 and
r 15la/32 ~herela5L/50) we clearly see that, the closer th
atom is to the mirror, the slower the spontaneous decay
The inhibition of spontaneous radiation is transparent for
considered positions of the atom. On the other hand, fo
very specific atomic position close to the cavity mirror, t
opposite effect—anenhancementof spontaneous emission—
takes place. Namely, for the distancer 15la/4 of the atom
from the cavity mirror, the atom decays asPe'e22Gat, i.e.,
it radiates twice as fast compared with the free-space ca

In the context of our model the origin of the inhibition a
well as the enhancement of spontaneous emission lies in
position dependence of the atom-field coupling~6!. In par-
ticular, for r 15la/4 the spatial-mode function sin(knr1)'1
for all modes close to the resonant frequencyva irrespective
of whethern is even or odd. This means that the density
modes is increased by a factor of two compared with the c
of the atom at the cavity centerr 15L/2 @in this case, the
modes with evenn are decoupled from the atom, i.e
sin(knL/2)50 for evenn and sin(knL/2)51 for oddn#. The
increased density of modes implies an enhancement of
spontaneous emission. In a similar way, whenr 15la/8 the
spatial-mode function is sin(knr1)'1/A2 for all n around the
atomic transition frequency. This means that the coupl
between the atom and the field mode is weaker. On the o
hand, the density of the field modes is larger. The net ef
in this case is that the spontaneous emission rate has

FIG. 4. The time evolution of the populationPe(t) of the ex-
cited atomic level for the atom very close to the cavity mirror. T
atom is considered at the following positions:r 15la/2 ~dotted
line!, r 15la/4 ~dashed line!, r 15la/8 ~solid line!, r 15la/16
~dashed-dotted line!, andr 15la/32 ~dotted line!. The ‘‘reference’’
exponential decay of the atom at the cavity centerr 15L/2 coin-
cides with the caser 15la/8. The initial conditions and other pa
rameters are as in Fig. 1.
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valueGa equal to the case when the atom is in the cente
the cavity.

When the atomic distance from the cavity mirror is equ
to one half of the atomic transition wavelength, i.e.,r 1
5la/2, then all cavity modes aroundva are essentially de-
coupled from the atom@now sin(knr1)'0# which results in a
dramatic inhibition of the spontaneous emission~see Fig. 4!.
In Fig. 4 (r 15la/16,la/32) the suppression of the spontan
ous emission is clearly seen. The decay rate in these c
can be expressed asG(r 1)'Ga@12cos(2kar1)#. We note that
in the caser 15la/16 the atom decays completely while fo
r 15la/32 the exponential decay law is interrupted by t
Poincare´ recurrence at 2tR .

For distances of the atom from the cavity mirror larg
than the wavelength of the resonant transition wavelengthla
the interference with the reflected wave packet can eit
stimulate or suppress the emission of the atom. To be s
cific we show in Fig. 5 the time evolution of the populatio
of the upper level of the atom, which is positioned at thr
distancesr 15la ~dashed line!; r 15la1la/4 ~dotted line!;
and r 15la1la/8 ~dash-dotted line!. For comparison pur-
poses we plot also the usual exponential decay line.
phase accumulated by the wave packet during the round
from the atom to the neighboring mirror and back is in t
caser 15la equal approximately to 5p ~here the additional
contribution ofp is due to the reflection from the mirror!,
i.e., there is a destructive interference between the w
packet and the atom which results in the suppression of
radiation. On the other hand, whenr 15la1la/4 the accu-
mulated phase is approximately 6p, which leads to construc
tive interference. In this case the reflected wave packet, w
it arrives at the position of the atom, starts to stimulate
atomic emission. In the units used in this simulation, t
arrival time of the reflected wave packet is approximatelt
.0.16 which coincides with the deviation from the initia
exponential decay of the atom as seen in Fig. 5. When

FIG. 5. The time evolution of the populationPe(t) of the ex-
cited atomic level for the atom at the following positions:r 15la

~dashed line!; r 15la1la/4 ~dotted line!; and r 15la1la/8
~dashed-dotted line! which are compared with the exponential d
cay of the atom~solid line!. Other settings are the same as in Fig.
The suppression and the stimulation of the emission caused by
reflected wave packet are clearly seen.



e

e
is
n

O
r
ve
ce

n
on
a

th

to
w
ice
y.
e
t

of

gle
-
er-

the
e

the
b-
eme

. In
ea-
w

av-
ifi-

ach
the
gi-
ra-
tain
s,
om

of
si-

any

the
vi

lev
.
ar

e

ich
gu-

PRA 60 589NUMERICAL SIMULATIONS OF ATOMIC DECAY IN . . .
position of the atom isr 15la1la/8, the accumulated phas
of the reflected wave packet is 11p/2 which gives rise to a
partial suppression of radiation.

V. SPONTANEOUS EMISSION IN MATERIAL MEDIA

Atomic radiation can be significantly modified by th
presence of other atoms in the cavity. Obviously, if the d
tance between the atoms is large enough then the expone
decay of the originally excited atom is not affected much.
the other hand, when the atoms are placed close togethe
situation is different~one of the consequences is a collecti
behavior of the atoms which might result in super-radian
see, for instance,@29#!.

In this section we consider a specific initial conditio
when the initially excited atom is surrounded by a collecti
of two-level atoms in the ground state. These additional
oms are considered as a material medium~e.g., a linear
‘‘crystal’’ composed of two-level atoms!. By changing the
density of the atoms we can also model systems such
atomic structures embedded in optical lattices~for inter-
atomic distances comparable with the wavelength of
atomic transition! or dielectrics.

The modification of the spontaneous emission of the a
embedded in the material media modeled as a set of t
level atoms is shown in Fig. 6. The regular crystal latt
built of M5101 atoms fills the central part of the cavit
Initially the excited atom is in the center of the cavity. Th
modification of the spontaneous emission depends on
interatomic distancea. When the ‘‘lattice’’ constant isa
5la/2 ~long dashed line! we observe strong suppression
the spontaneous emission while fora5la/4 ~short dashed

FIG. 6. The time evolution of the atomic excitation. We see
modification of the spontaneous emission of the atom at the ca
center surrounded by material media modeled as a set of two-
atoms~linear crystal lattice! initially prepared in the ground state
The cavity field is initially in the vacuum state. The regular line
crystal which fills the central part of the cavity is composed ofM
5101 atoms with the interatomic distancesa5la/2 ~long dashed
line!, a5la/4 ~short dashed line!, a5la/8 ~solid line!, and a
5la/16 ~dot-dashed line!. In the casea50 ~dotted line! all atoms
are positioned in the center of the cavity. The single atom expon
tial decayM51 ~sparse dotted line! is shown for reference.
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line! an enhancement of radiation compared with the sin
atom system~dotted line! takes place. The origin of this be
havior is related to either destructive or constructive interf
ence effects, respectively. From other examples, fora
5la/8 ~solid line! anda5la/16 ~dot-dashed line! it is seen
that by increasing the density of the atoms of the medium
initially excited atom radiates more slowly. Moreover, th
de-excitation is incomplete. That is, an increasing part of
excitation is captured by the initially excited atom. This su
radiant behavior has already been analyzed for the extr
case when all atoms are located at the same position~e.g., the
cavity center! @30#. The initial excitation is captured in the
asymmetric atomic state and only a small part;1/M is ra-
diated into the cavity field.

The regular crystal lattice represents an idealized case
fact, positions of the atoms can fluctuate due to various r
sons~for example in the case of optical lattices with shallo
wells formed from optical potentials!. To simulate the situa-
tion when the atoms are not regularly distributed in the c
ity we consider random configurations of the atoms. Spec
cally, the atoms are placed randomly such that within e
lattice constant there is just one atom. Depending on
particular positions of the atoms, the dynamics of the ori
nally excited atom can change dramatically. The atomic
diation can be either enhanced or suppressed. To ob
some effective ‘‘macroscopic’’ picture from our simulation
we have averaged our results over many rand
configurations—see Fig. 7. The dashed~dotted! line in this
figure shows the time evolution of the atomic population
the initially excited atom when the atoms are regularly po
tioned with the lattice constanta5la/4 (a5la/8), repre-
senting enhancement~suppression! of radiation with respect
to the ‘‘free-space’’ decay~solid line!. The results of the
numerical simulations corresponding to averaging over m

ty
el

n-

FIG. 7. The time evolution of the populationPe(t) of the ex-
cited atomic level for the atom surrounded by identical atoms wh
form a random linear structure. Averages over 100 random confi
rations with one atom within the lattice constant^a&5la/8 ~tri-
angles!, ^a&5la/4 ~circles!, and^a&5la/2 ~squares! are compared
with the corresponding regular lattices fora5la/8 ~dotted line!,
a5la/4 ~dashed line!, anda5la/2 ~dot-dashed line!. Settings are
as in Fig. 6. The single-atom (M51) exponential decay~solid line!
is shown for reference.
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~100! random configurations of atoms are presented for
average distance between atoms^a&5la/4 (s) and ^a&
5la/8 (n). In both cases the radiation of the atom is su
pressed compared with the ‘‘free-space’’ decay. Anot
common feature of the dynamics in these cases is that
atom does not radiate away completely its initial excitat
energy.

With the increase of the density of the atoms in the lin
crystal lattice~e.g., for a5la/16) the differences betwee
the regular lattice and the corresponding random lattice c
rapidly disappear.

For completeness we included in Fig. 7 also the case
the regular lattice witha5la/2 (h) and the average ove
random configurations witĥa&5la/2. Here the destructive
interference which leads to the strong inhibition of the rad
tion in the case of the regular crystal, is deteriorated
random atomic configurations.

It is important to note that the modification of the spo
taneous emission is alocal effect, i.e., the atomic decay i
influenced only by neighboring atoms. To check this
have performed simulations with only 11 atoms~i.e., one
atom is excited and is surrounded by 10 atoms in the gro
state!. We have found that the radiation of the atom is ess
tially the same as in the case when the caseM5101 is con-
sidered. Differences between the two cases occur only o
long time scale. This close-neighbor behavior is also s
from Fig. 8 where we plot the sum of atomic excitatio
Ratoms5(Pe

( j )(t). We see that during the first decaying sta
of the time evolution the excitation of the atoms is ess
tially the same forM511, M521 as well as forM5101.
The oscillation patterns which we see reflect complex in
ference effects. Nevertheless one can trace a very gen
tendency in the picture—the linear lattice composed of tw
level atoms which surround the initially excited atom pl
the role of semitransparent mirrors placed very close to
atom. Therefore the results partially resemble the case o
single atom in the vicinity of a mirror~compare Fig. 6 with

FIG. 8. The total excitation of the atomsRatoms5(Pe
( j ) which

form a regular linear lattice~same as in Fig. 6!. We also consider
two other regular configurations with the interatomic distancea
5la/4 and the number of atomsM511 ~dotted line! and M521
~dashed line!, respectively.
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Fig. 4!. We study the microscopic model of mirrors an
beam splitters composed of two-level atoms elsewhere@31#.

VI. MASTER EQUATION FOR THE ATOM
IN MATERIAL MEDIA

The system of atoms and the field modes under consi
ation in an ideal cavity represents a closed system with u
tary dynamics governed by the Schro¨dinger equation. In this
section we will consider the decaying atom as an open s
tem in the environment represented by field modes and o
initially unexcited atoms. This analysis will provide us wit
a deeper insight into the problem of the emission of the at
in dielectrics. In general, an open systemS ~in our case the
atom which is initially excited! interacts with an environ-
ment E ~the other atoms surrounding the originally excit
atom and the cavity modes! @32#. Let HS denote a Hilbert
space of the systemS, andHE is the Hilbert space associate
with the environmentE. The HamiltonianĤSE5ĤS^ 1̂E

1Ĥ int11̂S^ ĤE of the composite systemS2E acts on
HS^HE. It is assumed thatS2E is a closed finite-
dimensionalsystem which evolves unitarily. The density o
erator r̂SE(t) of this composite system is governed by t
von Neumann equation with the formal solutionr̂SE(t)
5exp@2i(t2t0)ĤSE#r̂SE(t0)exp@i(t2t0)ĤSE#, where the initial
state isr̂SE(t0)5 r̂S(t0) ^ r̂E(t0) and\51. Thereduceddy-
namics of the systemS is then defined as

r̂S~ t !ªT̂~ t,t0!r̂S~ t0!5TrE@ r̂SE~ t !#. ~19!

By definition, T̂(t,t0) is a linear map which transforms th
input stater̂S(t0) onto the output stater̂S(t). In our recent
paper@33# we have addressed the questionhow to determine
(reconstruct) the master equation which governs the ti

evolution of the reduced density operatorr̂S(t). It has been
shown that this master equation can be written in theconvo-
lutionlessform ~we omit the subscriptS)

d

dt
r̂~ t !5L̂~ t,t0!r̂~ t !. ~20!

This is possible due to the fact that in thefinite-dimensional
Hilbert space, matrix elements of density operators are a
lytic functions. Consequently,T̂(t,t0) are nonsingular opera
tors ~except perhaps for a set ofisolated values of t) in
which case the inverse operatorsT̂(t,t0)21 exist and the Li-
ouvillian superoperator can be expressed as

L̂~ t,t0!ªF d

dt
T̂~ t,t0!G 21~ t,t0!. ~21!

We note thatT̂(t,t0) is uniquely specified byĤSE and by the
initial stater̂E(t0) of the environment.

In Ref. @33# a general algorithm how to reconstruct th
Liouvillian superoperatorL̂(t,t0) from the knowledge of the
unitary evolution of the compositeS2E system has been
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described. OnceL̂(t,t0) is known then the master equatio
~20! is uniquely determined. The dynamics of the open s
tem ~in our case the atom! is given exclusively in terms o
the system operators. Environmental degrees of freedom
completely eliminated from the reduced dynamics. Nevert
less, the state of the environment may change during the
evolution due to the interaction with the system. That
there is no need to employ the assumption that the envi
ment is a ‘‘big’’ reservoir which does not change under t
action of the system.

It turns out that we can express the master equation
the originally excited atom as@33#

]

]t
r̂5 i

d~ t !

2
@ r̂,ŝ1ŝ2#

1
G~ t !

2
@2ŝ2r̂ŝ12ŝ1ŝ2r̂2 r̂ŝ1ŝ2#, ~22!

where the time-dependent decay rateG(t) and the time-
dependent dynamical energy shiftd(t) can be expresse
through the probability amplitudec1(t) defined in Eq.~10!
as

G~ t !5Re@h~ t !#; d~ t !5Im@h~ t !#, ~23!

where

h~ t !522F 1

c1~ t !

dc1~ t !

dt G . ~24!

In general the parameterh cannot be derived in an analytica
form. In Fig. 9 we present results of numerical evaluatio
We assume the initially excited atom to be in the center
the cavity. In the chosen units we obtain from the Fer
golden rule@see Eq.~16!# the decay rateGa5p ~dashed
line!. We consider two cases: firstly, the case with jus
single excited atom in the cavity~dotted line!. Secondly, we
assume that the excited atom is surrounded by 100 at
~solid line! with regular spacing between atoms (a5la/8).
In the case of the single atomG(t) oscillates around the
valueGa . The amplitudes of these oscillations are relative
small. In fact, these oscillations become even smaller w
we increase the density of modes. For large enough den
of modes the decay rateG(t) is approximately constant dur
ing the process of emission of the radiation. Its value is eq
to the decay rate obtained from the Fermi golden rule@33#.
This is true until the recurrence when the decay rate ta
negative values~i.e., the atom starts to absorb energy fro
the field—compare with Fig. 1!.

In the second case which corresponds to the decay o
atom in material medium the time evolution ofG(t) is more
complex. At the initial stage of the time evolutionG(t) os-
cillates around the valueGa , but then it rapidly decreases
This corresponds to the suppression of radiation. From
figure we also see that at some stageG(t) takes negative
values—this is correlated with the absorption of energy fr
the wave packets reflected by surrounding atoms~see Fig. 6!.
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We see that the effect of suppression of radiation in mate
media cannot be described with a simple substitution of
decay rateGa with a smaller constant.

VII. CONCLUSIONS

In this paper we have presented a microscopic model
scribing dynamics of a two-level atom interacting with
multimode cavity field initially prepared in the vacuum sta
We have analyzed the decay and re-excitation of the atom
particular, we have shown that while the ‘‘exponentia
character of the decay of the excited atom inside a la
cavity is not influenced by small shifts of the atomic po
tion, the first Poincare´ recurrence is a position-dependent i
terference effect. We have also studied the time-depen
spectrum of the radiation emitted by the atom. We have
sociated the spectrum with the probabilities that cav
modes are excited. We have shown that this spectrum
pends on the position of the atom in the cavity. In the qu
sistationary regime~when the excitation energy is com
pletely transferred from the atom to the field! the spectrum
has a Lorentzian-like envelope.

We have shown that the dynamics of the atom is dram
cally changed when the atom is embedded in a material
dia modeled as a set of two-level atoms. Using this mic
scopic model we have shown that the spontaneous emis
of the atom is not even approximately exponential. The
oms of the medium play a role of an imperfect mirror whi
partially reflects the emitted radiation back to the initia
excited atom. The exponential decay in this case is altere
oscillations of the atomic population. The dynamics of t
initially excited atom is very sensitive to particular positio
of the ‘‘medium’’ atoms inside the cavity. In order to obta
an effective~macroscopic! picture, we have performed simu

FIG. 9. The time evolution of the time-dependent decay r
G(t). We assume the initially excited atom to be in the center of
cavity; other parameters are as in Fig. 1. In the chosen units
obtain from the Fermi golden rule the decay rateGa5p ~see dashed
line!. We consider two cases: first, when there is just a single
cited atom in the cavity~dotted line! and, second, when the excite
atom is surrounded by 100 atoms~solid line! which create a linear
crystal lattice with the regular spacing between atoms (a5la/8).
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lations with randomly distributed atoms and have avera
over many different configurations. We have shown that,
average the material medium causes the inhibition of ra
tion of the initially excited atom. We have derived the mas
equation describing the dynamics of the originally excit
atom.

In this model we have studied mainly the process of de
of a single excited two-level atom. Within the framework
the same model one can study propagation of photon w
packets in material media~again modeled as a set of two
level atoms!. The model can be generalized to two dime
ol.
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sions and then one can simulate various optical network
which optical elements are built up from two-level atoms a
light fields are represented by photon wave packets~for more
details, see Ref.@31#!.
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