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Numerical simulations of atomic decay in cavities and material media
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Starting from first principles we simulate numerically the dynamics of a system of two-level atoms inter-
acting with a multimode electromagnetic field in a one-dimensional cavity. In particular, we investigate the
spontaneous emission of an excited two-level atom in the cavity. We show how the decay depends on the mode
spectrum and on the position of the atom in the cavity. We study how the spontaneous emission is modified
when the initially excited atom is surrounded by a material medium modeled as a system of two-level atoms.
We also study the propagation of photon wave packets emitted by the atom within the material media. Our
microscopic model provides us with a deeper understanding of the atom-field interaction and offers us a
framework for a systematic investigation of the transition from a microscopic to a macrogpbpitomeno-
logical) description of the spontaneous decay in material méslg, dielectrics [S1050-294{@9)04307-3

PACS numbe(s): 42.50.Ct, 32.80-t, 32.90+a

I. INTRODUCTION This approach gives in the first approximation correct results
(exponential decay of the excited level of the ajoffihe
Quantum electrodynami¢QED) lies at the heart of mod- interaction of a two level atom with discreteavity) modes
ern quantum theory. QED is a well established and experihas been described systematically by Hamil{d2] who
mentally confirmed theor},2] but even fifty years after its solved the emission and scattering problems exactly for a
foundation many features of the atom-field interaction re-cubic box by diagonalization of the total atom-field Hamil-
main of interest. In particular, the character of the atom-fieldtonian. Later this approach was utilized for a detailed inves-
interaction can be substantially modified éonfined spaces tigation of the spontaneous emission of two-level at¢ses,
(e.g., within the high® cavity of a micromasgrdue to the for instance, papers by Davidson and KoZ4RB] and Swain
fact that local properties of the electromagndtdM) field  [14]). In all these papers devoted to the spontaneous decay of
depend on space boundaries. The radiative properties of a- two-level atom in a cavitybox), the coupling constant
oms and the EM field in confined spaces have been investbetween the atom and the cavity modes was taken to be
gated for various cavity QED systerf3-9]. position independent. This argument is perfectly justified in
Quantum electrodynamics is a local theory, which meangree space, when translational invariance is valid. On the
that the dynamics of atoms and electrons depend on locather hand, when the atom interacts with discrete cavity
properties of the electromagnetic field with which they inter-modes in a confined space the position dependence of the
act. But local properties of the electromagnetic field dependoupling can play a significant e The investigation of this
also on conditions imposed by the boundaries of the spacgroblem is not only of theoretical interest. Recent advances
region in which the field is confinedl0]. These conditions in experimental techniques have allowed one to study funda-
are reflected in the quantization of the field. Specifically, wemental processes in cavity quantum electrodynarfuasity
can either quantize the electromagnetic field in a free spac@ED) [3—9] and to verify various effects of the atom-field
or in a “quantization box™ of linear dimensioh. Physically, interaction in confined spaces as predicted by Schelkunoff
guantum electrodynamics in a box describes an idealizatiofiL5], Purcell[16], Barton[17] and others.
of effects associated with processes inside high-qugligy- One of the fundamental processes of cavity QED is the
fect) cavities. In addition, quantization in a box can be con-spontaneous decay of a two-level atom. It is well known that
sidered as an approximation to the free-space quantizatioine spontaneous emission from an atom positioned very
and the two theories must give the same results in the limitlose to a cavity mirror can be significantly suppressed. This
L—oo, effect is called inhibition of spontaneous emiss[dn. The
In their pioneering quantum-mechanical description of thedeviation from the exponential Weisskopf-Wigner decay of
spontaneous decay of a two-level atom in free space, Weisan atom in free spadd 8] has been demonstrated in a num-
kopf and Wignel{11] started their calculations with the cav- ber of experimentd9]. Many other interesting questions
ity modes quantized in a box, and then at a certain stage cfrise for these QED systems. For example, one could ask
the calculation, the limit of a continuum of modes was takenwhat is the influence of cavity mirrors on the dynamics of the
atom and the role of the position of the atom on the appear-
ance of Poincareecurrencegi.e., reexcitations of the atom
*Permanent address: Korea Atomic Energy Research Institutdgy the radiation reflected by the cavity mirrpfd9]. While
Laboratory for Quantum Optics, P.O. Box 105, Yusong, Taejeonthe exponential-like character of the decay during the first
South Korea. stage of the time evolutiofsee below is not affected by
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variations in the position of the atom around the center of thalescribe the effect of the inhibition of spontaneous emission
cavity (providing the density of the cavity modes is largein Sec. IV. In Sec. V we analyze the decay of a two-level
enough, Poincaraecurrences depend very sensitively on theatom in a material medium modeled as a set of two-level
position of the atom inside the cavity. Variation in the posi-atoms. Finally, in Sec. VI we present the convolutionless
tion of the atom within a wavelength of the resonant atomicmaster equation describing the dynamics of the initially ex-
frequency can result in an almost complete suppression dfited atom within the material medium. We summarize our
the first Poincareecurrence of the excited level of the atom results in Sec. VILI.
[19]. This means that the atom effectively does not “feel”
wave packets reflected from cavity mirrors for times much Il. THE MODEL
longer than the time necessary for the emitted light to
“travel” to the mirrors and back to the atom. Another ex-  We consider a simple one-dimensional model of a cavity
amp|e is that of the atom positioned close to one of thén which two-level atoms interact with the cavity modes in
mirrors. In general one may expect to see inhibition of thethe dipole and the rotating-wave approximations. To sim-
radiation. Nevertheless, taking into account the position dePlify the model, we neglect all mechanical effects of the
pendence of the field-atom interaction it turns out that forcavity field on the atonti.e., the mass of the atom is as-
some specific distances from the mirterg., one quarter of sumed to be infinite This 1D model not only reflects the
the resonant Wave|ength of the radiation fjekﬂ]e atom de- main features of atom-field interaction but also can be
cays even faster than in free spdas. mapped onto an isotropic 3D model.

A first insight into the modification of the spontaneous Under the assumption of perfectly reflecting mirrors, the
emission of the two-level atom can be obtained with the helgperator of the electric field inside the cavity in the Coulomb

of the Fermi golden rul¢l] gauge can be expressed[4s23,24
27 . - e e
Fa=F|Vfi|2P(wa)- (1) E<r)—% Ener(antap )sin(kpr), 2

The spontaneous emission rdtgis directly proportional to  Wherek,=wp/c=nz/L and &=Vho,/el. The two or-

the density of the field modgsw,) at the atomic transition thogonal polarization vectors, (A=1,2) lie in the plane

frequencyw,; Vy; is the matrix element of the correspond- perpendicular to the cavity axis;, , anda/ , are annihila-

ing transition. The presence of boundariesy., in the case tion and creation operators of tim¢h mode.

when the atom is inserted into a high<avity) changes the The Hamiltonian describing the free cavity field can be

local density of field modes and thereby the spontaneousxpressed as

emission can be suppressed or enhanced. However, it is not

necessary to change the boundary conditions of the EM field - R

in order to modify the spontaneous emission rate. This goal He=%2 X wndh,an,, 3
. . . N n=1

can be achieved when we assume that the excited atom is

embedded in a material mediufa.g., a dielectrig In this

paper we will model material media as a collection of two-

level atoms initially prepared in their ground state.

The main goal of our investigation is the numerical simu-
lation of the atom-field interaction in confined geometries.
Starting from first principles, we simulate the dynamics of a
system of atoms in a one-dimensiorfdD) cavity. In par-
ticular, we investigate the spontaneous emission of an e
cited two-level atom in the cavity. We show how the decay M
depends on the mode spectrum and on the position of the o] :i E oD gh (4)
atom in the cavity. We study how the spontaneous emission A2 TR T
is modified when the initially excited atom is surrounded by
a material medium, modeled as a system of two-level atomswhere ol = [e);(e|—|g);(g|;|e); and|g),; denote the upper
We also study the propagation of photon wave packets emilgnd lower atomic states of the atom at the position re-
ted by the atom. Our microscopic model provides us with aspectively.
deeper understanding of the atom-field interaction and offers \when the radius of the atom is much smaller than the
a framework to study systematically the transition from thewayvelength of the resonant electromagnetic radiation then
microscopic to macroscopi@henomenologicaldescription  the atom-field interaction can be described within the
of the spontaneous decay in a material mediem., dielec- - L L~ = :

electric-dipole approximation, i.eH;,,=—d-E. For sim-

trics). In particular, this will allow us to study dynamics of ~ .~ o
) P y ay plicity we neglect all polarization effects and then the result-

atoms in photonic band gap structui@9-232. e . e . .
The paper is organized as follows. We describe the mod g interaction Hamiltonian in the rotating-wave approxima-
lon (RWA) reads

in Sec. Il. In Sec. lll we study the position dependence of the
decay of a single two-level atom and analyze the spectrum of M N

the emitted radiation. In addition we discuss specific techni- T 0ra. o+ ated 5
cal questions such as the role of the frequency cutoff. We nt 121 nzl O (800 + ano ), 2

N

where we have omitted the zero-point contribution,, /2.
Summation over discrete modes in E8) is performed only
up to n=N, which means that in our model we assume a
cutoff for the cavity modesfor more discussion see belpw

The Hamiltonian describing a set &fl noninteracting
(“free” ) two-level atoms with transition frequenciesg”
can be expressed as
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where the Pauli spin-flip operators agél):|e>j<g| and (7). Here we assume that the Hilbert space of the cavity

fr(,j)=|g>]-(e|. The position-dependent coupling constantsmOdes can be truncatdde., we eff(_act|vely apply t_he fre_-
i ) . quency cutoff so that the Hamiltonian under consideration
gy’ are given by the expression

can be represented as a finite matrix. Then we find eigenval-

. w, \¥? ues E; and eigenvector$d;) of H,,. The state vector
M= " | b sink 6 y )
"= hel) Yes sin(k,rj), (6)  |W(t)) can then be written as
where the parametet{)) denote the dipole matrix elements W ()= exd —iE(t—to)]|® )P (ty)). (11)
]

of the atoms. The position dependence of the atom-field cou-

pling constant(6) given by space-mode functionf,(r)

=sin(k,r) may significantly affect the atomic dynamics.
The total Hamiltonian of the form

This method is conceptually very simple, except it is not

very efficient in many cases. Therefore, in some cases we

transform the Schudinger equation for the state vectdrO)

@) with the Hamiltonian(7) into a set of coupled linear differ-
ential equations for the amplitudeg(t) and di(t) (here

describes the system bf two-level atoms interacting with 29ain the frequency cutoff is appliedrhe solutions for the
discrete field modes in a 1D cavity. This model can bedmplitudes are then found by standard Runge-Kutta methods

solved exactly, because the total number of excitations

Hior=He+Ha+Hin

N

M
g ~pn B. Observables
2, (e +1)+ 2, andy ®)

R=

N| -

Using the numerical solutions of the model we analyze
the time evolution of the mean values of the following ob-
is an integral of motion, i.e[[R,H]=0. servables.

(i) The occupation of the upper level of thith atom

A. Solution of the model SO
Aoy Oy F

In this paper we will consider situations when just one of Pl = 22 =|e)i(el. (12
the atoms is initially excited while the other atoms are in
their ground state. The electromagnetic field will be consid-
ered to be initially in the vacuum state. In this case we can

write the initial state vector in the form
V(o)) =]e)1]9)il0)k, 9

where|e); describes the excited state of the initially excited (i) The number of excitations of theh mode

atom, while|g);:=[g),® - - - ®|g)u describes the rest of the R R

M atoms which are initially in the ground state. The vector S(k)=aja, (14)
|0) denotes the vacuum of the multimode cavity field. Be-

cause the model Hamiltonia,, (7) is chosen so that the
number of excitations given by E@8) in the system is an
integral of motion, we can express the state vector of th?/v
atom-field system at timeas

(i) The amplitude of the electric field

1/2

N
é(r)=n21 (@ [a,+alTsin(kar). (13)

GoL

which are used to study the time-dependent spectrum of the
electromagnetic radiation in the cavity.

(iv) To analyze the space-time propagation of radiation
ave packets, we evaluate mean values of the normally-
ordered operator for the energy density, which in our case
can be written as

M
W ()=cvle):la)iO)it 2, ¢i(hlg)le)lo) )= e 15

41\ - Here normal orderingindicated by the colons aboyes
+2k dk(t)|g>1lg>j|lk>k' (10 adopted to eliminate the vacuum-state contribution to the
energy density of the emitted radiation.
where|e;); describes the state vector of a sebbf- 1 atoms In what follows we demonstrate the main features of the
out of which thejth atom is excited, whilél,); describes atom-field interaction in confined geometries. In particular,
the state of the cavity field with thieth mode in the Fock we will concentrate our attention on two main problems.
state|1) and all other modes in the vacuum state. (a) Modification of the spontaneous emission of the atom
In general it is impossible to find a closed analytical so-in the cavity due to the position dependence of the atom-field
lution of the Schrdinger equation for the system under con- interaction. A partial reexcitation of the atom caused by the
sideration except in a few cases, such as the Jayneback reflected radiatioPoincarerecurrences
Cummings mode[25] which describes the dynamics of a  (b) Decay of the two-level atom in a “material media:”
two-level atom interacting with aingle mode cavity field. modification of the spontaneous emission due to the presence
Therefore we will study the dynamics of our system numeri-of other atoms, which are initially in their ground stattse
cally. We will use two approaches. The first one is based omlecaying atom can be considered as being embedded in a
the straightforward diagonalization of the total Hamiltoniandielectric “crystal” which is formed by other atoms
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Ill. DECAY AND REEXCITATION OF ATOM 1.0

From the Weisskopf-Wigner theoryl 1] it follows that T A4
the initially excited atom coupled to a continuum of the - ijﬁﬁ
vacuumfield modes in free space decays exponentially to its
ground state. Representing the usual 1D continuum by a dis-
crete model5) for a large cavity [—x), we find that the
population of the excited atomic levél, decays exponen-

tially with a ratel’, given by the Fermi golden rul€l)

Ar=0, A /4

0.5 i
!

~
=

~—

[+

P

_ (Ua|deg|2

Po(t)=exp(—T'ah), T'a=— 52

(16)

I
t
i
1
!
1
i
1
!
!
1
i
i

In the 1D “free” space modell(— =) the decay process is 0.0
accompanied by the emission of two wave pacKetpre-

senting the one-photon stateropagating to the left and to

the right from the atom. In the case of the “left-right” sym- FIG. 1. The time evolution of the populatid?,(t) of the ex-
metry of atomic-wave functions in 1[this corresponds to cited atomic level. The atom is shifted from the cavity center by
spherical symmetry in the 3D problg@mach of the two emit- Ar,=0 (dotted ling, Ary;==*\,/4 (dashed ling Ary==*\,/8
ted wave packets carries half of the atomic initial excitation.(dashed-dotted ling and Ar;=*X\,/16 (solid ling). The atom is
This process is irreversible, as the energy cannot be realjtially prepared in its excited state and the multimode cavity field

sorbed by the atonfwhich is reflected by the exponential is in the vacuum. The choice of the cavity lengih dimensionless
decay of the atomic excitation units) L =24, the squared coupling constant with space-mode func-

. 2_ . .
In confined geometries we have a different picture. Firstfion 9a=1/2 (for space-mode function equal to unityand the

the density of thediscrete modes is changed due to the &toMic transition frequency, =100 lead tol'y= andA,=L/50.
boundary conditions. The translational symmetry is lost and " first Poincareecurrences appear at the fitye= 2. The upper
the coupling between the atom and the field is position—lchOff on frequ4e0noc'es ('js SEtfth“t_lzoo’ €. In t.hef.plrgse.n:] Sr']ml:[
dependent. In particular, when the atom is positioned at thé’mon we use 400 modes of the electromagnetic field with the fun-
center of the cavity it is coupled only to the odd modes of the amem.al mode having the frquemxfo's' In the f'gures pre-
. - - sented in the paper we chose units such that the considered physical
field [for even modes the coupling constdf) is equal to : :
parameters are dimensionless.
zerqg|. Secondly, the two wave packets are reflected back by
the cavity mirrors and can bgartially) reabsorbed by the during the first stage of the time evolution the decay rate
atom. This partial restoration of the initial state of the atom,does not depend on the position of the atom located around
the so-called Poincanmecurrence, can be viewed as a consethe center of the cavity.
qguence of constructive quantum interfererisee below. For times large enough, the total excitation energy of the
In Fig. 1 we show the time evolution of the probability of atom is transferred to the field, which in turn is effectively in
the atomic excitation for four different values of the position a one photorfone excitation state represented by two wave
of the atom around the center of the cavity, namaly, packets propagating towards the cavity mirrors. For finite
=r,;— L/2=0,£)\,/16,=\,/8,= )\, /4. From this figure we cavities, at time approximateli/2c the wave packets are
see that the first “exponential” stage of the decayabnosy  reflected by the mirrors and ag=L/c they approach the
position independent. Providing the atom is “far” from the atom which starts to re-absorb the energy from the field. We
cavity mirrors, i.e., min(;,L—r;)>c/T',, the reflected wave observe the reexcitation of the atdiire., a Poincareecur-
packets do not influence the exponential decay. rence. In contrast to the “exponential” stage of the atomic
We note that the initially excited atom which is positioned decay, Poincareecurrences are very sensitive to small posi-
in the cavity centefdotted ling interacts only with the odd tion shifts of the atom within a wavelength of the resonant
modes and thus the effective density of modes equals tatomic transition. In Fig. 1 we clearly see that if the atom is
L/27rc. Using the Fermi golden rulél) we find that in this  positioned at the cavity center(=L/2) then at timetg
case the corresponding decay rate is exactly the same as the_/c a very well pronounced Poincarecurrence of the
free-space decay ratg, given by Eq.(16). We note that the atomic inversion takes place. One can say that at the moment
density of interacting modes is doubled when the atom isvhen the Poincareecurrence appears the atom “sees” the
shifted from the cavity center. On the other hand the strengtlsavity mirrors[27]. On the other hand, with a small shift of
of the interaction with the odd modes is weaksge Eq(6)].  the atom from the cavity center thr;==*\,/8, the first
Specifically, the effective squared interaction constant, equattomic recurrence is almost completely suppressed. To un-
to the average of the coupling of the atom to the two neighderstand this effect let us consider the two emitted wave
boring (odd and evencavity modes, is equal to one half of packets(one to the left and one to the rights monochro-
the squared coupling constant between the atom in the centaratic plane wavesat the atomic transition frequency and
of the cavity and the odd modes. Consequently, even thoughith the group velocityc). The difference of their geometri-
the atom is shifted from the cavity center the Fermi goldercal paths is equal ta,/2. This path difference results in
rule (1) with the effective squared interaction constant anddestructive interference due to the accumulated phase differ-
doubled density of modes leads to the same decay(téie  ence ofw. In other words, the atom does not “see” the wave
This is nicely illustrated in Fig. 1, from which we see that packets reflected from the cavity mirrors. Obviously, when

time
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the two wave packets propagate further, then after the seconc
reflection they accumulate a phase difference of  the
corresponding Poincamecurrence can then be se@®., in
this case the atom needs time twice as long to “see” the
cavity mirrors.

When the atom is positioned &tr;= =\, /4 the evolu-
tion of the atomic inversion is almost indistinguishable from
the case wherar;=0. At the time of appearance of the first
Poincarerecurrence there is a constructive interference of the
wave packets. The trivial phase shiftr2results from the
difference of the geometrical paths which is then equal to
Na. With the atom at the positior;=*\,/16 the path

| )
difference of the two wave packets is equal\ig4 and the h i I A
first Poincara@ecurrence is intermediate between the extreme
cases Ar,;=0,=\,/8) considered above. Dephasing of the \V/ o

wave packets byr/2 results in a partially reduced reabsorp-
tion. We note that a more rigorous analysis should take into
account the multimode structure of the wave packets as an, T o
additional source of dephasing, due to the differéRabi
frequencies of the modes.

The second Poincamecurrence, associated with the sec-

10

time

position

d reflecti fh Kets f th it . FIG. 2. A stroboscopic set of plots describing the space-time
ond retiection ot the wave packets from the cavity m'rrors’propagation of the mean energy density of the cavity field given by

starts in all cases sho_vvn in Fig. 1 at time2tg. This is due Eg. (15). We assume the same configuration and parameters as in
to the fact that the optical paths of the wave packets are equg|y 1 with the atom in the center of the cavity. We see that at the

and they constructively interfere at the position of the atomgs; stage of the time evolution the two wave packets are emitted
We conclude that while the “exponential” character of 4ng they propagate towards the cavity mirrors.

the decay of the excited atom inside a large cavity is not

influenged by small shifts of the atomic position, the first ¢ spectrum of the cavity field is affected by the position
Poincarerecurrence is a position-dependent interference efyf the atom. In particular, if the atom is located in the cavity
fect. This behavior can be explained using a simple argugenter then the even modes are completely decoupled from
ment: the phase—rr)atchmg conditions necessary for the apre stom and only the odd modes can become exgited
pearance of Pngcarrecurrenceg can be associated with thegq (6)] establishing in this way oscillations in the spectrum
phase factore "= of the contributing eigenstatd®y) of  of modes. However, at the point when the total excitation
the total Hamilt'oniar(7). Specifically, a Poincarﬁec'urren.ce energy of the atom is transferred to the field, émvelopeof
can appear at timig, such that the relatio,tr=2 isvalid  the spectrum is “Lorentzian” irrespective of the position of
for many values ok (for more details, sef28]). _ the atom(providing that the decay is exponential

In Fig. 2 we present a stroboscopic set of plots describing  op, the other hand, it should be stressed that the spectrum
the space-time evolution of the energy density of the cavityyf the interacting modes is highly transient even during the

field. We assume the same situation as in Fig. 1. The atom igyponential decay period. It undergoes a gradual narrowing
considered to be in the center of the cavity. We see two wavgom a broad flat spectruninitially all modes are in the

packets propagating to the right an_d to thg left. Reflec’Fion ofacuum state with the same probabilittowards a
the wave packets from the cavity mirrdi timet=L/2c) is | grentzian-like line of widthl',. The narrowing is accom-
nicely demonstrated and the subsequent reexcitation of thesnieq by transient oscillations of the spectral envelope. This
atom is synchronized with the mterferenc_e Of_the wave packyransient behavior is illustrated in Fig. 3 which shows the
ets in the center of the cavitcompare with Fig. L These  gpectral envelopes at different time moments during the ex-
wave packets have “sharp” fronts propagating with the hsnential decay of the atomic excitation. At the titre2 the
group velocityc. We note that the larger the number of ¢nyelope of the cavity-field spectrum reaches its quasista-
modes coupled to the atom, the sharper the fronts are. Thtﬁ)nary shape, being very close to the correspondingent-
length of the tails of the wave packets depend on the Iifetimezian) emission spectrum usually associated with the free-
of the atom. space emissiofil].

It is worth noticing that there is a close relation between
the emission spectrum and the “spectrum” of squared scalar
products(overlaps between eigenvectorisb,) of the total

Within the framework of cavity QED when the field in- Hamiltonian(7) and the given initial statg¥ (ty)), i.e.,
teracting with the atoms is confined within ideal mirrors,
there is nothing like a stationary regime which is necessary Se(K) = (W (to)| D). 17)
for the derivation of a time-independent spectrum of the
field. The spectrum is intrinsically time dependent. In thisFrom Fig. 3 it is evident that the “spectrum” of overlaps
case an operational definition of time-dependent spectrurtshown as®) resembles the emission spectrum of the com-
can be given by the excitation probabilities of the cavitypletely deexcited atom. In other words, the “spectrum” of
modes[see Eq(14)]. overlaps offers an important time-independent characteriza-

Spectrum of the cavity field
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FIG. 3. Populations of cavity moddse., the spectrumat timest=0.3,0.7,1,3 for the atom located at the cavity center. The atom is
initially prepared in its excited state and the cavity field is in the vac(fonother conditions, see Fig).JFor comparison purposes we show
the overlaps of the eigenstates of the total Hamiltorf@rwith the initial state(these overlaps are denoted by the syn®dl The ordering
of eigenstates is given by their eigenvalues on the frequency axis. The even modes do not interact with tseeattsuillations in the

function | (W |® ) [?).

tion of the system under consideration. If there exists a quan the broadband approximation the interaction constants
sistationary spectrum of the cavity modes, it should mimicgiven by Eq.(6) and Eq.(18) are identical and the results do

the “spectrum” of overlaps. In addition, a shift of the atomic

not depend on the choice of the interaction Hamiltonian. On

transition frequency in the spectrum of eigenvalues can bene other hand, without the broadband approximation the re-

associated with the energy shift.

sults are biased by the choice of the frequency dependence of

Concluding this section, we note that our numerical calthe atom-field coupling. From the mathematical point of
culations have been performed in the broadband approximgjiew, the coupling given by the expressit8) does not lead

tion for the interaction constants given by H@), i.e., we

in second-order perturbation theory to divergent energy

have neglected the frequency dependence of the couplingyifts for o, . Obviously at the point when the two ef-

constants replacing,, by w,. This approximation is valid
only for large enough cavities with>\, and “weak” in-
teraction regimes with ;< w, .

A rather subtle point is the choice of the frequency cutoff.

Strictly speaking, the model interaction Hamiltoni@n with
the interaction constant®) within the broadband approxi-
mation leads in the second-order perturbation theotgda-
rithmically divergent energy shifts fow.,— [24]. (Note
that in our numerical calculations we have eliminated th

shift of the excited atomic level by choosing a symmetrical

frequency cutoffw.,=2w,.) Without the broadband ap-

proximation, when the frequency dependence of the intera

tion constants(6) is taken into account, the energy shifts
divergelinearly. It is well known[1,2] that if instead of the

dipole approximation H;,,=—d-E we start with Hy

= —65\ then after the RWA is applied one obtains the in-

teraction Hamiltonian(5) but with a different frequency de-
pendence of the interaction constant, i.e.,
()= [ 28 _©a_
n wn

ﬁE()L (18)

1/2 .
) d4) sin(k,r;).

e

fective Hamiltonians considered above lead to different re-
sults, one has to be careful whether the model is physically
relevant(for more details, see Ref2]).

IV. INHIBITION OF SPONTANEOUS EMISSION

In the previous section we have considered the situation
when the atom is “far” from the cavity mirrorgi.e.,
min(r,,L—r;)>c/l";] and the wave packets reflected by the
mirrors do not directly affect the initial spontaneous decay of

dhe atom. On the other hand, for distances between the atom

and one of the cavity mirrors smaller thefl', (here 1I', is

the spontaneous decay time in a free spaewiations from
exponential decay should be expec{dd-6]. In particular,

the decay of a two-level atom which is positioned very close
to the cavity mirror can be significantly suppressed. This
effect is called the inhibition of spontaneous emissidh

The inhibition of spontaneous emission is a position-
dependent effect which is related to the position dependence
of the atom-field coupling consta(#). In Fig. 4 we present
numerical simulations for the time evolution of the popula-
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FIG. 4. The time evolution of the populatidd(t) of the ex- FIG. 5. The time evolution of the populatidp(t) of the ex-

cited atomic level for the atom very close to the cavity mirror. The cited atomic level for the atom at the following positiomg=\,

atom is considered at the following positions;=\,/2 (dotted ~ (dashed ling ry=A,+\,/4 (dotted ling; and ry=\,+\./8
line), ry=X\./4 (dashed ling r;=\,/8 (solid line), r;=\,/16 (dashed-dotted linewhich are compared with the exponential de-

(dashed-dotted lineandr,=\,/32 (dotted lind. The “reference”  Cay of the aton{solid line). Other settings are the same as in Fig. 1.
exponential decay of the atom at the cavity cemtgrL/2 coin- The suppression and the stimulation of the emission caused by the
cides with the case;=\./8. The initial conditions and other pa- reflected wave packet are clearly seen.

rameters are as in Fig. 1.

valueT, equal to the case when the atom is in the center of
he cavity.

When the atomic distance from the cavity mirror is equal
to one half of the atomic transition wavelength, i.e;,
=\a/2, then all cavity modes aroung, are essentially de-
oupled from the atorfnow sink,r1)~0] which results in a
ramatic inhibition of the spontaneous emissisae Fig. 4.

. . ) In Fig. 4 (ry=\,/16)\,/32) the suppression of the spontane-
ponferr1t|al decay of the atom at the cavity cenfiee., Pe (¢’ emission is cleae;ly seen. The decay rate in these cases
~e~ la for t<tg). For other atomic positions, =\ ,/16 and can be expressed &¢r,)~T [ 1—cos(X.r,)]. We note that
r1=N\4/32 (herex ,=L/50) we clearly see that, the closer the , the case ;=\ ,/16 the atom decays completely while for

atom is to the mirror, the slower the spontaneous decay i§. —)_/32 the exponential decay law is interrupted by the
The inhibition of spontaneous radiation is transparent for thepgincarerecurrence at 8.

considered positions of the atom. On the other hand, for a For distances of the atom from the cavity mirror larger

very specific atomic position close to the cavity mirror, thethan the wavelength of the resonant transition wavelergth
opposite effect—aenhancementf spontaneous emission— the interference with the reflected wave packet can either
takes place. Namely, for the distance=\,/4 of the atom stimulate or suppress the emission of the atom. To be spe-
from the cavity mirror, the atom decays Bs~e 2", i.e.,  cific we show in Fig. 5 the time evolution of the population
it radiates twice as fast compared with the free-space caseof the upper level of the atom, which is positioned at three
In the context of our model the origin of the inhibition as distances ;=\, (dashed ling r,;=A,+\,/4 (dotted ling;
well as the enhancement of spontaneous emission lies in trend r,=\,+\ /8 (dash-dotted line For comparison pur-
position dependence of the atom-field coupli®y. In par- poses we plot also the usual exponential decay line. The
ticular, for ry=\,/4 the spatial-mode function siyf;)=1  phase accumulated by the wave packet during the round trip
for all modes close to the resonant frequengyirrespective  from the atom to the neighboring mirror and back is in the
of whethern is even or odd. This means that the density ofcaser ;=\, equal approximately to & (here the additional
modes is increased by a factor of two compared with the caseontribution of 7 is due to the reflection from the mirngr
of the atom at the cavity center=L/2 [in this case, the i.e., there is a destructive interference between the wave
modes with evenn are decoupled from the atom, i.e., packet and the atom which results in the suppression of the
sin(k,L/2)=0 for evenn and sink,L/2)=1 for oddn]. The radiation. On the other hand, whep=\,+ \,/4 the accu-
increased density of modes implies an enhancement of th@ulated phase is approximatelyréwhich leads to construc-
spontaneous emission. In a similar way, whiges \ ,/8 the  tive interference. In this case the reflected wave packet, when
spatial-mode function is sik{r;)~1/,/2 for all n around the it arrives at the position of the atom, starts to stimulate the
atomic transition frequency. This means that the couplingatomic emission. In the units used in this simulation, the
between the atom and the field mode is weaker. On the otherrival time of the reflected wave packet is approximately
hand, the density of the field modes is larger. The net effect=0.16 which coincides with the deviation from the initial
in this case is that the spontaneous emission rate has tlexponential decay of the atom as seen in Fig. 5. When the

tion of the upper level of the atom described by the modef
interaction Hamiltonian(5). The atom is assumed to be ini-
tially in its excited state and the field in the vacuum. We
consider several typical physical configurations. First, for
reference, we plot the atomic decay of the atom positioned ag
r1=X\,/8 (solid line) which is indistinguishable from the ex-
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FIG. 6. The time evolution of the atomic excitation. We see the FIG. 7. The time evolution of the populatidp(t) of the ex-
modification of the spontaneous emission of the atom at the cavitgited atomic level for the atom surrounded by identical atoms which
center surrounded by material media modeled as a set of two-levébrm a random linear structure. Averages over 100 random configu-
atoms(linear crystal latticg initially prepared in the ground state. rations with one atom within the lattice constafa)=X\./8 (tri-

The cavity field is initially in the vacuum state. The regular linear angles, (a)=X\,/4 (circles, and{a)=X\,/2 (squaresare compared
crystal which fills the central part of the cavity is composedvbf  with the corresponding regular lattices far\,/8 (dotted ling,
=101 atoms with the interatomic distances \,/2 (long dashed a=\,/4 (dashed ling anda=\,/2 (dot-dashed ling Settings are
line), a=\,/4 (short dashed line a=\,/8 (solid line), and a as in Fig. 6. The single-atomM=1) exponential decagsolid line)
=\,/16 (dot-dashed line In the casea=0 (dotted ling all atoms is shown for reference.

are positioned in the center of the cavity. The single atom exponen-

tial decayM =1 (sparse dotted lings shown for reference.

line) an enhancement of radiation compared with the single
atom systenidotted ling takes place. The origin of this be-
havior is related to either destructive or constructive interfer-
ence effects, respectively. From other examples, dor
=\,/8 (solid line) anda= \ /16 (dot-dashed lingit is seen
that by increasing the density of the atoms of the medium the
V. SPONTANEOUS EMISSION IN MATERIAL MEDIA initially_ expite_d _atom radiates more slqwly. Mloreover, the
de-excitation is incomplete. That is, an increasing part of the
Atomic radiation can be significantly modified by the excitation is captured by the initially excited atom. This sub-
presence of other atoms in the cavity. Obviously, if the dis+adiant behavior has already been analyzed for the extreme
tance between the atoms is large enough then the exponent@dse when all atoms are located at the same poggign, the
decay of the originally excited atom is not affected much. Oncavity centey [30]. The initial excitation is captured in the
the other hand, when the atoms are placed close together tagymmetric atomic state and only a small pat/M is ra-
situation is differen{one of the consequences is a collectivediated into the cavity field.
behavior of the atoms which might result in super-radiance; The regular crystal lattice represents an idealized case. In
see, for instancd29)). fact, positions of the atoms can fluctuate due to various rea-
In this section we consider a specific initial condition sons(for example in the case of optical lattices with shallow
when the initially excited atom is surrounded by a collectionwells formed from optical potentigdlsTo simulate the situa-
of two-level atoms in the ground state. These additional attion when the atoms are not regularly distributed in the cav-
oms are considered as a material medi(erg., a linear ity we consider random configurations of the atoms. Specifi-
“crystal” composed of two-level atoms By changing the cally, the atoms are placed randomly such that within each
density of the atoms we can also model systems such dattice constant there is just one atom. Depending on the
atomic structures embedded in optical lattiodsr inter-  particular positions of the atoms, the dynamics of the origi-
atomic distances comparable with the wavelength of themally excited atom can change dramatically. The atomic ra-
atomic transition or dielectrics. diation can be either enhanced or suppressed. To obtain
The modification of the spontaneous emission of the atonsome effective “macroscopic” picture from our simulations,
embedded in the material media modeled as a set of twove have averaged our results over many random
level atoms is shown in Fig. 6. The regular crystal latticeconfigurations—see Fig. 7. The dashedtted line in this
built of M=101 atoms fills the central part of the cavity. figure shows the time evolution of the atomic population of
Initially the excited atom is in the center of the cavity. The the initially excited atom when the atoms are regularly posi-
modification of the spontaneous emission depends on thgoned with the lattice constare=\_,/4 (a=\,/8), repre-
interatomic distancea. When the “lattice” constant isa  senting enhancemefguppressionof radiation with respect
=\,/2 (long dashed linewe observe strong suppression of to the “free-space” decaysolid ling). The results of the
the spontaneous emission while far\./4 (short dashed numerical simulations corresponding to averaging over many

position of the atom is; =\ ,+ \,/8, the accumulated phase
of the reflected wave packet is &2 which gives rise to a
partial suppression of radiation.
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1.0  Mel01asAJ4 Fig. 4. We study the microscopic model of mirrors and
- M=21,a=A/4 beam splitters composed of two-level atoms elsewhet¢
~~~~~ M=11,a=0/4

VI. MASTER EQUATION FOR THE ATOM
IN MATERIAL MEDIA

The system of atoms and the field modes under consider-

ation in an ideal cavity represents a closed system with uni-
tary dynamics governed by the ScHioger equation. In this

section we will consider the decaying atom as an open sys-
tem in the environment represented by field modes and other

- initially unexcited atoms. This analysis will provide us with
a deeper insight into the problem of the emission of the atom
' in dielectrics. In general, an open systé&hin our case the
_— atom which is initially excitedl interacts with an environ-

0 1 , 2 3 mentE (the other atoms surrounding the originally excited
time atom and the cavity mode$32]. Let Hg denote a Hilbert

FIG. 8. The total excitation of the atonRyeme=SPY) which ~ space of the syste® andHg is the Hilbert space associated
form a regular linear latticésame as in Fig.)6 We also consider with the environmentE. The HamiltonianHge=Hs®1e

two other regular configurations with the interatomic distaace +|:|im+ is®|:|E of the composite systenS—E acts on
=M\4/4 and the number of atomd =11 (dotted ling and M =21 He®Me. It is assumed thatS—E is a closed finite-

(dashed ling; respectively. dimensionakystem which evolves unitarily. The density op-

erator;)SE(t) of this composite system is governed by the
(100 randc_)m configurations of atoms are presented for th?/on Neumann equation with the formal solutiq?@E(t)
average distance between atof®=\,/4 (O) and (a) — exp —i(t—t) Pedpelto)exri(t—t) sl where the initial
=\,/8 (A). In both cases the radiation of the atom is sup- L o/MselPselto)t 0/ 'SEb
pressed compared with the “free-space” decay. AnotheStt€ iSpse(to) =ps(to) ® pe(to) andh=1. Thereduceddy-
common feature of the dynamics in these cases is that tHEAMICS of the systerS s then defined as
atom does not radiate away completely its initial excitation A A A A
energy. ps(t):=T(t,ty) ps(to) = Tre[ pse(t) ]. (19

With the increase of the density of the atoms in the linear

crystal lattice(e.g., fora=\,/16) the differences between Bsy definition, 7(t,to) is a linear map which transforms the

the regular lattice and the corresponding random lattice case ¢ statenc(t o th DUt State(t). | ¢
rapidly disappear. input statepg(ty) onto the output statpg(t). In our recen

For completeness we included in Fig. 7 also the case O?rzl?:grrggt?]ug)a ?ﬁgemaadsc:;erszeﬂét;gnql\ﬁghm“gsedr?];ertwénime
the regular lattice wita=\,/2 () and the average over q 9

random configurations witta) =\ ,/2. Here the destructive €Volution of the reduced density operajeg(t). It has been

interference which leads to the strong inhibition of the radia-Sh.Own that this master equation can be written indbwevo-
tion in the case of the regular crystal, is deteriorated foﬂutlonlessform (we omit the subscrips)
random atomic configurations.

It is important to note that the modification of the spon-
taneous emission is lacal effect, i.e., the atomic decay is
influenced only by neighboring atoms. To check this we

have performed simulations with only 11 atori®., one  Thjs is possible due to the fact that in tfisite-dimensional
atom is excited and is surrounded by 10 atoms in the groungjlbert space, matrix elements of density operators are ana-
statg. We have found that the radiation of the atom is essenrytic functions. Consequentlyi{t,t,) are nonsingular opera-

tiglly the same as in the case when the dilse 101 is con- {5, (except perhaps for a set ddolated values oft) in
sidered. Differences between the two cases occur only on a

long time scale. This close-neighbor behavior is also seeWh'?h case the inverse operatdit,to) " exist and the Li-
from Fig. 8 where we plot the sum of atomic excitations ouvillian superoperator can be expressed as
Raome = PY)(t). We see that during the first decaying stage
of the time evolution the excitation of the atoms is essen-
tially the same foM =11, M=21 as well as folM =101.
The oscillation patterns which we see reflect complex inter-
ference effects. Nevertheless one can trace a very gener, - . . o -

tendency in the picture—the linear lattice composedyo? t\Noj\l}_e_ note thatl(t, o) is unlque_ly specified byl se and by the
level atoms which surround the initially excited atom play initial statepg(to) of the environment.

the role of semitransparent mirrors placed very close to the In Ref.[33] a general algorithm how to reconstruct the
atom. Therefore the results partially resemble the case of thiiouvillian superoperato£(t,ty) from the knowledge of the
single atom in the vicinity of a mirroicompare Fig. 6 with  unitary evolution of the composit8—E system has been

0.5

d. R -
qP (O =L(tto)p(0). (20)

R d.
E(tato):{aﬂtato)} “Ht,to). (21
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4

described. Onceé(t,t,) is known then the master equation
(20) is uniquely determined. The dynamics of the open sys-
tem (in our case the atojris given exclusively in terms of 30
the system operators. Environmental degrees of freedom are
completely eliminated from the reduced dynamics. Neverthe- o
less, the state of the environment may change during the time
evolution due to the interaction with the system. That is, &
there is no need to employ the assumption that the environ-—
ment is a “big” reservoir which does not change under the
action of the system.

It turns out that we can express the master equation for

the originally excited atom &=33] -1y
— M=101, a=),/8
AREACTAP P 20 1 2 3
—p=1—F—|p,010_
I'(t) o FIG. 9. The time evolution of the time-dependent decay rate

+ T[ZU—P0'+ —o,0_p—poio_], (22) T(t). We assume the initially excited atom to be in the center of the
cavity; other parameters are as in Fig. 1. In the chosen units we
obtain from the Fermi golden rule the decay rBie= 7 (see dashed

where the time-dependent decay rdtét) and the time- line). We consider two cases: first, when there is just a single ex-
dependent dynamical energy shif(t) can be expressed cited atom in the cavitydotted ling and, second, when the excited
through the probability amplitude,(t) defined in Eq.(10)  atom is surrounded by 100 ator{solid line) which create a linear
as crystal lattice with the regular spacing between atoens X ,/8).

FO=R47(O]; oO)=Iml7(v)], 23 We see that the effect of suppression of radiation in material

media cannot be described with a simple substitution of the
where decay ratd", with a smaller constant.

1 dey(t)

o d | (24)

n(t)=—-2

VII. CONCLUSIONS

In this paper we have presented a microscopic model de-

In general the parameter cannot be derived in an analytical scribing dynamics of a two-level atom interacting with a
form. In Fig. 9 we present results of numerical evaluation.multimode cavity field initially prepared in the vacuum state.
We assume the initially excited atom to be in the center ofye have analyzed the decay and re-excitation of the atom. In
the cavity. In the chosen units we obtain from the Fel’miparticular, we have shown that while the “exponential”
golden rule[see Eq.(16)] the decay ratd ;= (dashed character of the decay of the excited atom inside a large
line). We consider two cases: firstly, the case with just acavity is not influenced by small shifts of the atomic posi-
single excited atom in the cavitglotted ling. Secondly, we tion, the first Poincareecurrence is a position-dependent in-
assume that the excited atom is surrounded by 100 atomegrference effect. We have also studied the time-dependent
(solid line) with regular spacing between atoms={\,/8).  spectrum of the radiation emitted by the atom. We have as-
In the case of the single atodi(t) oscillates around the sociated the spectrum with the probabilities that cavity
valueI',. The amplitudes of these oscillations are relativelymodes are excited. We have shown that this spectrum de-
small. In fact, these oscillations become even smaller whepends on the position of the atom in the cavity. In the qua-
we increase the density of modes. For large enough densitjistationary regimewhen the excitation energy is com-
of modes the decay rafé(t) is approximately constant dur- pletely transferred from the atom to the figlthe spectrum
ing the process of emission of the radiation. Its value is equahas a Lorentzian-like envelope.
to the decay rate obtained from the Fermi golden [GI&. We have shown that the dynamics of the atom is dramati-
This is true until the recurrence when the decay rate takesally changed when the atom is embedded in a material me-
negative valuegi.e., the atom starts to absorb energy fromdia modeled as a set of two-level atoms. Using this micro-
the field—compare with Fig.)1 scopic model we have shown that the spontaneous emission

In the second case which corresponds to the decay of thef the atom is not even approximately exponential. The at-
atom in material medium the time evolution B{t) is more  oms of the medium play a role of an imperfect mirror which
complex. At the initial stage of the time evolutidi(t) os-  partially reflects the emitted radiation back to the initially
cillates around the valuE,, but then it rapidly decreases. excited atom. The exponential decay in this case is altered by
This corresponds to the suppression of radiation. From thescillations of the atomic population. The dynamics of the
figure we also see that at some stdg) takes negative initially excited atom is very sensitive to particular positions
values—this is correlated with the absorption of energy fronof the “medium” atoms inside the cavity. In order to obtain
the wave packets reflected by surrounding at¢ses Fig. 6. an effective(macroscopigpicture, we have performed simu-
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lations with randomly distributed atoms and have averagedions and then one can simulate various optical networks in
over many different configurations. We have shown that, orwhich optical elements are built up from two-level atoms and
average the material medium causes the inhibition of radialight fields are represented by photon wave packetsmore
tion of the initially excited atom. We have derived the masterdetails, see Ref31]).
equation describing the dynamics of the originally excited
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