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Abstract.  Within the framework of a two-dimensional microscopic, purely
quantum mechanical model, we analyse the dynamics of single-photon wave
packets interacting with optical elements (beam splitters, mirrors), modelled as
systems of two-level atoms. That is, we utilize a two-dimensional cavity to
simulate the quantum behaviour of simple optical components and networks
made thereof. The field is quantized using the canonical procedure, and only
the basis states with one unit of excitation are included. TEis, however, covers
linear optical phenomena. The field is taken to interact with localized atoms
through a dipole interaction. Using different configurations of atoms, and
choosing their frequencies to be resonant or off-resonance, we can model
mirrors, beam splitters, focusing devices and multicomponent systems. Thus
we can model arbitrary linear networks of optical components. We show the
time evolution of a photon wave packet in an interferometer as an example. As
the state of the field is known at each instant, spectral properties and spatial
coherence can immediately be obtained from the simulations. We also know the
states of the two-level atoms constituting the components, which allows us to
consider their quantum behaviour. Here the decay of an excited atom into the
Vac(lllllélclll state of the electromagnetic field in the two-dimensional cavity is
studied.

1. Introduction

It 1s well understood that the electromagnetic fields giving rise to all optical
phenomena have ultimately to be represented by quantum operators. These couple
to the degrees of freedom of matter, and their modification due to this interaction
constitutes the quantum counterpart of the action of optical components. Ordinary
optical devices operate in the linear regime of interaction, but the important area of
nonlinear optics is based on higher order effects of the field-matter coupling. In
most situations, optical phenomena can be described entirely in terms of classical
fields, but many recent investigations require that the quantum character of the
field 1s accounted for. Such research constitutes the topics of quantum optics [ 1-3].
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However, many quantum effects are of interest even in the linear regime of
operation: quantum noise [4] sets the limit to communication by optical channels
and amplifiers, quantum interference shows up in precision measurements and
tests of fundamental issues and also in reading and writing quantum information.
Manipulation of quantum information such as quantum computations usually
requires the inclusion of higher order effects, i.e. nonlinear interactions between
the qubits [5].

In this paper, we are going to discuss the dynamics of single-photon wave
packets in various two-dimensional atomic configurations. These are taken to be
models of optical networks, where we explicitly include the atomic nature of the
optical components distributed over the volume under investigation. This ap-
proach provides us with a completely microscopic quantum-mechanical picture of
how photon wave packets interact with optical elements represented as collections
of two-level atoms. For practical reasons, we have to restrict our work to one-
photon states, but this is not such a serious limitation as it may seem. All linear
optical effects are based on a single photon interacting with material structures,
and consequently we have a general description of quantum optics phenomena in
the linear regime. The need to consider multi-photon effects arises only in
connection with the quantum treatment of nonlinear optics.

There are two basic ways to approach the quantization of optical systems. In
the conventional one, we determine a complete set of eigenmodes of the total
universe, and express the fields of interest in terms of these. Any matter present is
described through its interaction with the fields, and the coupled field-matter
problem is then solved to the best of our ability. This is the approach utilized in
traditional quantum electrodynamics (QED), and its development is found in
many standard texts. The alternative approach, designed for quantum optics
applications, is to determine the eigenmodes of the system at the classical level,
and the matter involved is then treated as boundary conditions on the field modes.
Especially the new area of cavity QED research [6] utilizes this point of view, and
it provides the basis both for quantum communication theories and many funda-
mental investigations.

In the field of optics, the components are usually treated as boundary con-
ditions only, and the complete optical device is considered to be an optical
network. This approach has been discussed thoroughly in the classical regime of
operation [7]. For linear devices, the classical treatment can be taken over into the
quantum regime by the use of suitable quantum optics tools [8-10]. In principle,
any device understood classically, can be treated quantum mechanically with such
an approach. The specific quantum features manifest themselves in the initial
conditions and the restrictions on observability imposed by quantum theory [11].

Another specifically quantum mechanical effect is the occurrence of sponta-
neous decay. Within a one-dimensional model of the modes of the universe, this is
discussed in [12], where both free Weisskopf—~Wigner decay and cavity modified
decay are discussed. Such phenomena have been the object of much interest within
QED research: for an extensive list of references see [ 12]. Within the model chosen
there, one can see the emergence of the exponential law and the inhibition of decay
observed in a photonic band gap structure. In general, the model provides insight
into the role of atomic media in the irreversible transfer of excitation energy into
the field modes of the universe.
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In this paper we combine the two views discussed above: we retain a descrip-
tion in terms of a complete set of two-dimensional eigenmodes of the universe.
The optical components are described in terms of their atomic constituents. All
atomic structures are represented by spatially localized two-level atoms. These are
treated as point-like particles in accordance with the dipole approximation which is
assumed to be valid. The state of the field is taken to be a single-photon wave
packet with a narrow energy distribution. In this case, the state can be described
by a truncated expansion in terms of modes of the universe. The spatially
distributed two-level atoms describing the structures are taken to be initially in
their ground states. The atoms can be chosen to resonate with the central
frequency of the photon wave packet or be well off resonance; various effects
can be modelled in this way. When the single photon is absorbed, only one of the
atoms 1s excited, and the field is reduced to its ground state. Such a choice limits
the Hilbert space needed in the calculations to a manageable size, but allows us to
investigate many simple networks of significance in linear optics. All such effects
are, in principle, describable at the single photon level; only nonlinear optics
effects require more photons, which would make the Hilbert space expand beyond
the limits of available computer resources.

Our approach based on a complete set of eigenmodes allows us to investigate
the dynamic performance of many linear systems. In order to illustrate the
method, we select the simplest optical components: mirrors, beam splitters,
focusing devices and interferometers. The overall performance of the components
follows directly from their classical theory, but our approach allows us to
investigate the microscopic (quantum) behaviour of the set-up. Quantum coher-
ence between various spatial regions in the device is directly visible in the states
calculated, and the time and space scales of the various interferometric structures
can be read off the results. Combined with various models of measurements, our
calculations contain considerably more information than a simple classical com-
putation. Here we only discuss the measurement of frequency and the possible
occurrence of a filtering action in the atomic structures, which does not in itself
depend too much on the quantum nature of the fields. By modelling the frequency
detection by atomic absorption, we utilize the full character of the model, which
allows further extension to quantum correlation measurements if we so desire.

Our work is based on a model put forward in [13] which we extend to two
dimensions. The quantized modes of the universe are introduced in section 2
together with their interaction with the spatially distributed atoms. In section 3 we
specify the details of the model and indicate how the calculations have been carried
out. Section 4 presents the various simple components analysed in this paper. We
describe how they are modelled and show the results of the detailed solution of the
time evolution. Finally in section 5 we present our conclusions and discuss possible
extensions and applications of the work.

2. Operators for the free field in two dimensions
The field 1s enclosed inside a two-dimensional cavity determined by the
relations

_§SXJS
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: (1)
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The periodic boundary conditions restrict the allowed values in k-space to a
discrete set

2 .
ki = > =% (2)
In computer simulations, the k values must be restricted by giving some upper
limit for the integer n which corresponds to a specific frequency cut-off. The
electric and magnetic field can be expanded [3] using the mode functions

I%(r) - %%: (%S) UZ(&kSeks exp(ik - r) —h.c) (3)

&o:%%;Q_E{y”@akx@g@m@ko—hg, @)

2E() ks

where the summation Y, is over all k values (2) and two polarization indices
s =1,2. The frequency «x, is the same for both polarizations

axs = dk|. (5)
The general k vector in two dimensions can be written
k = k&1 + kyés = |k|(cos (§)) + sin(¢)&). (6)
The polarization vectors which obey the usual right hand rule conventions are
€1 = —&3, (7)
€ = —sin(¢)é; + cos(§)é. (8)
The k vector and polarization indices satisfy the relations [3]
€i - € = 5, )
PICHERES] (10)
k x &1 = —kyer + ke, (11)
k x € = |k|&3. (12)
The energy-density operator is
H(r) = %GOI%Z(r) + ok IA32<r). (13)

Using (3) and (4) gives

16k <>= 4 T3 Z(akwk) (aks&k/s, exp(ik-r+ik’-r)
kk'ss’

— by, exp(ik - r—ik’-r)

—bj by exp(—ik - r+ik’ - r) +aar,, exp(—ik-r—ik’-r),  (14)
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1 2 h 1 A A : L/
2—110]? (r)= VR kkzss <wkwk,>1/2 lucsti i exp(ik - r+ik’ -r)

— i, exp(ik -r —ik’-r)
— Oy Gy exp(—ik-r+ik’ r) + 4 4l exp(—ik-r—ik’ )]
X [<k‘€k:( + kyk}l,>55155’1 + |k||kl|5s255’2] <15>

In our simulations, we have restricted the polarization of the field to €. The
modes with s = 2 are taken to have zero amplitudes. In addition to that we restrict
the number of excitations of our basis vectors to one. For these kind of basis
vectors the terms disd  and 4, @, ., donot give any contribution. These terms can
be omitted from the expressions. For the states described above, the expectation
values are obtained by replacing the operators with the coefficients of the
corresponding statevectors dx — « and & — ¢. The normally-ordered terms in
the energy density become (normal ordering is indicated by colons)

h

k(). = R, (19
1 2 h . .
:mﬂ (r): = =375 IJO<S St+8,83), (17)
where
R=Y" o a exp(ik-r), (18)
K
:Z 7 sacexp(iker), i=xy. (19)
<ol

The two-fold summation over the k-space 1s seen to factorize and the formulas for
R and S; are Fourier transforms of two different functions. For numerical
simulations these two properties are essential as will be seen later. We note that
if the polarization is such that the modes VVlth s=1 age taken to have zero
amplitudes, then the two terms : 46 (r ( r): and : (1/24)B7(r) : in the expression
for the energy density are equal.

Integrating (13) over the spatial coordinates and using the integral

L/2 & led 5
ik —k") r| = L6, 20
J—le Jle yexp[1< ) r] B < )

gives the familiar form

=13 ol + ) = 3 o, +9). (21)

k k

which in the normally ordered form reads : Ar:= 3, Frox il ik
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3. The general Hamiltonian and the states

In the previous section the formulas for the field in the vacuum were derived.
In this section we add an assembly of two-level atoms to the cavity and give the
corresponding Hamiltonians. The general form of the statevector with one
excitation is also given. The material presented here is based on the similar
simulations in one dimension done by Buzek et al. [12]. The simulations in two
dimensions are numerically more demanding, but we have been able to develop
efficient numerical methods which make these simulations possible.

3.1. The Hamiltonian .
The total Hamiltonian A can be divided into three parts
FI:[:\IF'F[:\IA'F[SII, <22>

where the field Hamiltonian is given by equation (21). The atomic Hamiltonian is
the sum over all one-atom Hamiltonians

A NA .
=t 23

where o is the transition frequency of the jth atom and & is Pauli’s spin matrix. In
the interaction Hamiltonian the dipole approximation is used. For simplicity the
dipole operator 1s taken to be

D, = (D;&, + Di&.)és, (24)

1.e. it has a component in the &; direction only. The general dipole vector would
have components in the x and y directions too. The interaction Hamiltonian has
the form

Hy=— 6j . é(ly), <25>

where E(rj) is the electric field operator (3) at the position of the atom. The rotanng
wave approximation (RWA) is to be used, and we neglect the &4 - and &4
terms. In addition to that we replace the mode frequency in the electric field
operator by the atomic frequency and use the dot products & - € = —1 and
&3 €n =0 to get

A A A NA 7 7
Bi=Hy+ Ho= 3 (sl kS + 2 (7.k)5.4, ), (26)
j=l k

in what follows we omit the polarization index in subscripts of field operators. The
coupling constant is

g>k) =~ o Dj exp(ik 1)) (27)

Only those modes whose resonance frequency is close to the atomic frequency
interact significantly with the atom, so we can replace the mode frequency «, by
the atomic frequency «; in equation (27).
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3.2. The statevector
In all simulations we have restricted the total number of excitations to one.
Consequently, the most general statevector of the atom-field system has the form

|#) = Z(cml H>|O ®H|O +H|OK®Z<CJ|1 ﬁ >,-,>

k k' =k J=Lj#
=> all, {0h + chl{O}, 1. (28)
k Jj=1

The first sum contains all the basis vectors where the excitation is in one of the
field modes and all the atoms are in the ground state. In the second sum the field
modes are in the vacuum state and one of the atoms is excited. The complex
numbers ¢ and ¢ are the probability amplitudes of the corresponding basis
vectors. We have dropped the polarization indices because in our simulations
only the basis vectors with the polarization vector €; are excited as was discussed
earlier.
The general Gaussian one-photon statevector is of the form

= zk:Ckllk, {0}, (29)

where the mode coefficient ¢ 1s

— 2 2
—&p(ik ro) exp< 2 (e~ ko) — S (k ~ )2

- <4Tl',21\/[>1/4 aM AM\Y
A X,
# S e~ o)y k) ). (30)
The parameters M and A7 exky A€
M=%, = (834)% (31)
Ay = thky) = (k) (k). (32)

If the cross-variance A7, 1y Vanishes the formula for ac reduces to two independent
Gaussian distributions

- - : ks —kx)® _ (ky —kyo)’
= (2maz,) V4 (2ma2,) M4 exp(—ik - ro) exp ! ’4A]%"O> - y4A]%yyo> . (33)

All initial distributions used in our simulations are of the form (33). The distri-
bution (33) in k- -Space 1s oentred around (k@, kyo) with the correspondmg central
frequency ey. If A7 =4}, the distribution is symmetric. If A7, < A,ZW the distri-
bution is wider in the y direction (and vice versa). The variances in k-space and
configuration space are inversely proportional. If A7, is small, the energy density
distribution in configuration space is wide in the x direction. The normally ordered
energy distribution associated with the state (30) or (33) is well localized near point
ro in configuration space. Essential for this is the phase part exp(—ik - ro) of the
coefficient ¢. If the form of the phase was different the intensity profile would not
be Gaussian.
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The time evolution of the Gaussian wave packet inside an empty cavity is
determined by the Hamiltonian A (21) with the corresponding evolution operator
exp [~(i/ %) Hr1|. Applying this to state (28) gives for the time-evolution of the
coefficients a(7) = a(0) exp(—iaxt). The absolute value of the coefficients remains
the same, only the phase changes. For the phase part we get

exp (—ik - ro —iax?) = exp[—ik - (ro + crex )], (34)

where k =|k|ex. The time evolution inside the empty cavity reduces to the time
evolution of the parameter r(7) =ro + ctex. We remember that the phase factor
determines the shape of the normal ordered intensity profile. Because the time
evolution of the phase is different for different modes, the normal ordered intensity
does not preserve its original Gaussian shape. If the direction of the vector ey is
more or less the same for all basis vectors which have non-zero coefficients, the
shape of the energy density distribution remains approximately the same longer.
The situation is like this when the statevector in k-space is centred around some k
value far from the origin and the variances are small.

3.3. Transformation to the interaction picture

It turned out to be faster to carry out the numerical integration in the
interaction picture. The transformation Hamiltonian is Hy = Ha + Hr. The
interaction Hamiltonian in the rotating frame is

AY = exp it/ 1) By exp(=iHotl 1), (35)
which is obtained by the following replacement
b — i exp(—laxt),
ai, — & exp(iox?), (39
& — & exp(—iw),
&, — &, exp(ioj)
in equation (26), and we get

11 = )+ 8 =32 56l explir— on)
+ ¢.K) explil — o) ) =)

The statevectors in the interaction picture become
Ny

1y () = exp (ifot/ 1) w) =" a exp(ioxt) 1, {0} + Z ¢ exp(ioyt) {0}, 1),

. (38)

and the Schrodinger equation for the wavefunction is

o .,
& d zi H%I) ) (I <39>
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Integration of the Schrodinger equation in the interaction picture is faster than the
original equation because only the interaction Hamiltonian is present.

3.4. Numerical methods

3.4.1. Integration of the Schridinger equation

QOur choice for the integration method of the time dependent Schrodinger
equation is a classical four stage fourth order Runge-Kutta method. If the
wavefunction at time ¢ is |¥(7)) the wavefunction at a later time ¢+ Az (At
small) is given by the following algorithm [14]

k) = AtH (1)),

ko) = AtH(|w(2)y + 0.5k1)),

sy = AtH() (1)) + 0.5/k2)), (40)
\ka) = AtH(| (1)) + 0.5k3)),

k1) | tka) | k3) | Ka)
ottt o).
The timestep At 1s a fixed constant.

The essential part of the integration from a numerical point of view is how to
evaluate the right hand part of equation (39) as efficiently as possible. The first
term in equation (37) gives

(e + Ar)y = (1)) +

A h NA . g N
Hi| 1, {0} = —kl—()LZZ w}/sz exp(ik’ - r;) exp [i( 0y — ax)]d i1 1, {O})
j=1 x’

260 I: Z o?D; exp ik - r;) exp [i(0 — @)1 {0}, 1), (41)
and the second one
Ay, {0}) =0, (43)

A i A . :
Hi {0}, 1) :261_0[,212&)}/ "Dj exp(ik 1) exp ~i(ey — ex)oldi {0} 1
2.2

= %OLZ wI/ZD* exp(—ik - r;) exp [~ @ — ax)]I1k, 0). (44)

Hence the new coefficients for the atomic (¢/) and field () basis vectors become
1%

G =%l }/ZD exp (iw?) T(r;, ), (45)
i
=% exp (iax?) U(k, 1), (46)

where



1352 M. Havukainen et al.

T(r, 1) = (o exp(—iexr)) exp(ik - r), (47)

k

Ulk,0)=>" <§; w}/szcjé(r —r;) exp(—iwjl)> exp(—ik -r). (48)

r

Both T(r, ) and U(k, ) are two-dimensional Fourier transforms, so in numerical
calculations the fast Fourier transform (FFT) can be used. The speed increase
obtained by using FFT instead of the direct summation is enormous especially in
simulations with a large number of atoms. In some simulations it can be said that
only this method makes these simulations possible.

There are several natural checks for the numerical simulations. First of all the
norm of the wavefunction has to remain unity for all times. The system is closed so
the total energy of the system must be constant all the time. The field energy can
be calculated using either formula (21) or integrating the energy density over the
whole cavity. The two methods should give the same results.

3.4.2. A method to detect a local time dependent spectrum

In the following simulations the spectrum is detected using the so-called
analyser atoms [15]. Many atoms with a very small dipole coupling constant are
put into specific locations in the cavity. All the atoms have different transition
frequencies in between omin and omax

© = onin tAo(j— 1), Ap=2D2_2mn- G_15 N (49)

N-—1
Also the dipole constants are all different and very small
C
D;= o (50)

where C'is a very small constant, typically C = 0.0001 or so. The form (50) of D;
gives the same decay constant r~ for all the atoms because in two dimensions " is
directly proportional to the product D2a>2 Because the dipole coupling is small, the
atoms have very small decay constants and linewidths and only the radiation which
1s exactly on resonance with the atom can excite it. Therefore the excitation of the
atoms as afunction of  can be interpreted as a spectrum of the field at the position
of the atoms. Because the interaction between the radiation and the atoms is small,
the state of the field does not change appreciably. The method can be used to
detect the local time dependent spectrum. Two-time averages, usually used in
spectrum calculations, are not needed. A more detailed description of the method
and comparisons with the time dependent spectra defined using two-time averages
[16] can be found in the paper by Havukainen and Stenholm [15], where it was
used to detect the spectrum of radiation emitted by a laser driven three-level atom.

4. Simulations

In this section the results of several simulations are presented. First we show
that the energy density profile of the free photon does not preserve its shape if oy 1s
small, as explained earlier. In the second and third simulation, atoms are used as
mirrors and beam splitters. Using these components it is possible to build many
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Initial state

0.04..

Figure 1. The probabilities |¢|* of the Gaussian initial state in k-space. The parameters
in equation (33) are xp=—80, y0=0.0, ko =25, ko=0.0, A,Z{x =10 and
A ,2@, = 1.0. Here we consider the size of the cavity to be L =10% and we take into
account 256 x 256 modes of the electromagnetic field. Only one polarization (s = 1)

is taken into account.

optical systems. We present an interferometer as an example. We also present a
simulation of a two-slit experiment. Finally, we also briefly study a spontaneous
decay of a two-level atom into the vacuum of electromagnetic modes in a two-
dimensional cavity.

4.1. A free photon

In the first simulation the time evolution of the free photon wave packet is
studied. The initial wave packet is Gaussian (33) with parameters xp = —8.0,
0 = 0.0, kvo =40, kyo = 0.0 and A%, =47, = 1.0. The probabilities |a* of the
field modes are shown in figure 1. The central frequency of the photon wave packet
is so small that the k vectors of the modes with non-zero amplitudes are not
parallel. We would expect this to be observed, as explained earlier. The time
evolution of the energy density at two time values is shown in figure 2. The initial
Gaussian photon wave packet has an energy density centred at x =—8.0, y = 0.0.
The wave packet is moving to the right. During the free evolution energy density
becomes delocalized. From the figure we see that at # =20.0 the width in the y
direction is much larger than the initial value. This spread of the width of the
original wave packet is a standard quantum-mechanical effect.

4.2. A mirror
It is possible to ‘build’ mirrors and beam splitters using two-level atoms. In the
next simulation many atoms with large dipole constants were arranged into a slab
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time= 0.0 time= 20.0
10 10
- 0 E > 0
~10 ~10
-10 0 10 -10 0 10
X X

Figure 2. The time evolution of the energy density of the initial Gaussian photon in
free space. The parameters are the same as in figure 1. We see that the initial wave
packet () is nicely localized in the configuration space while at later times it does
not preserve its initial shape—we see () the spreading of the original wave packet in
the y direction.

configuration. We take a 45° angle between the slab and the x axis. We assume all
atoms to have the same transition frequencies and dipole constants. The initial
photon wave packet has a Gaussian distribution (33) with parameters k.o = 5.0,
ky =00 and A, = A,%y =0.125. The atoms 1in the slab are exactly on resonance
with the incoming photon wave packet (i.e. the central frequency of the wave
packet ap = 5.0 is equal to the transition frequency of the atoms). The dipole
constant is large D = 0.5. We assume that the mirror is composed of eight layers of
atoms as close to each other as possible. In our case we assume that the distance
between neighbouring layers of atoms coincides with the grid in configuration
space (the grid spacing is Ax and for the given orientation of the mirror the
distance between the different atomic layers is chosen to be AX = 2Y2Ax =0.17).
The central wavelength of the incoming photon wave packet is A = 1.26 so the
difference between the neighbouring atoms is much shorter than the wavelength of
the incoming wave packet.

We plot the energy density of the one-photon wave packet reflected by the
mirror in figure 3. Firstly we plot the initial wave packet at 7 = 0.0 (figure 3(«)).
The photon is coming towards the atoms of the mirror. These atoms become
excited by the incoming wave packet. The ‘secondary’ radiation which 1s emitted
by the atoms interfere with the incoming wave packet. This secondary radiation
can formally be expressed as a sum of the two terms—the first destructively
interfere with the incoming wave packet. As a consequence of this interference the
incoming wave packet is ‘destroyed’ (i.e. becomes extinct). The other part of the
radiation which is ‘collectively’ radiated by the atoms of the mirror represents the
reflected wave packet. In fact, the process of reflection of the wave packet by atoms
of the mirror represents a purely quantum (microscopic) version of the Ewald—
Oseen extinction theorem [17]. In figure 3(b) we have chosen conditions such that
at t = 20.0 all the radiation 1s reflected by the atoms. The direction of propagation
of the reflected wave packet is the same as expected in classical theory. The energy
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time= 0.0 time= 20.0

10 10

>-0* > 0

-10 0 10 -10 0 10
X X

Figure 3. The energy density of the one-photon wave packet reflected by a mirror
composed of two-level atoms. The initial ghoton is Gaussian (33) with parameters
x0 =80, yo =0.0, kg = 5.0, kyo = 0.0, a7, =0.125 and A}, = 0.125. The atoms of
the mirror are exactly on resonance with the central frequency of the photon wave
packet (@ = 5.0). The dipole constant of the atom is chosen to be D = 0.5. The total
number of atoms considlg:red in this simulation was 1584. The number of modes is
the same as in the simulation presented in figure 2.

density compared to the incoming wave packet is changed but is still clearly
localized. Note that the energy density is not perfectly symmetrical. The reason is
the same as in the simulation with a free photon, 1.e. the distribution in k-space is
broad and near the origin so the spread of the wave packet is clearly seen.
Additionally, the interference between components of radiation emitted by differ-
ent atoms of the mirror plays a role. In the left part of figure 4 we see the energy
density of the photon wave packet close to the surface of the mirror. We see that
the incoming and reflected parts interfere. We also see that no energy is trans-
mitted by the atomic slab. In this sense the atoms serve as a mirror. Nevertheless,
one has to remember that the atoms during the process of reflection of the original
wave packet become excited, that is the mirror under consideration has its own
‘internal’ (quantum) degrees of freedom, so the part of the original energy can be
(transiently) absorbed by the mirror. This also results in the fact that this quantum
mirror might become entangled with the reflected wave packet.

We note that the parameters of the atoms in this simulation were carefully
chosen in such a way that the atoms really form a mirror. If the parameters are
changed then part of the radiation can be transmitted, that is the collection of the
atoms can play the rdle of a beam splitter.

4.3. A beam splitter

In the previous simulation we have shown that it is possible to build an almost
perfect mirror using two-level atoms, assuming the parameters are chosen cor-
rectly. Using slightly different parameters, we find that the atoms can behave as a
beam splitter. There are several ways to modify the ‘mirror’ configuration to
obtain a beam splitter—for instance, we can consider a smaller number of atoms,
or we can decrease the dipole constants, or change the resonance frequencies of the
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Photon at the mirror Photon at the beamsplitter

4 4
2 2
> 0 > 0
2 , 2

-4 -4

-4 -2 0 2 4 -4 -2 0 2 4
X X

Figure 4 The energy density of the electr etic field at the moment when the
incoming wave packet interfere with the rgﬁation re-emitted by the atoms of the
mirror (left) and the beam splitter (right). The central wavelength of the photon
wave packet in the case of the mirror simulations is taken to be longer compared to
the case of the beam splitter simulations. The interference pattern in the two cases is
different. We see that in the case of the beam splitter part of the radiation is
transmitted. The parameters of the simulations are specified in the previous figures.

atoms. We have tried all the possibilities and the most satisfactory results were
obtained by detuning the atoms. The frequencies of the atoms are now taken to be
o = 10.4. The centre frequency of the incoming photon wave packet is wy = 15.0,
1.e. the detuning is really large. The time evolution of the energy density of the
electromagnetic field in this case is shown in figure 5. The line in the middle
represents the positions of the detuned atoms. There is only one layer of atoms
instead of eight as in the mirror simulation. At # = 0.0 the photon is propagating
towards the atoms. Here again the incoming wave packet excites the atoms. Now
the quantum interference between the incoming and emitted radiation is such that
part of the original wave packet is transmitted by a layer of atoms. The other part is
reflected. In figure 5 we clearly see that at # = 20.0 the original wave packet is split
into two parts propagating up and to the right. The energy is divided equally, that
1s the atoms form a 50: 50 beam splitter for the incoming photon. Here we stress
that the beam splitter under consideration has its own internal degrees of freedom
and transiently becomes excited. Nevertheless, after a while the atoms completely
emit the excitation energy and the beam splitter is in a ground state—at this point
it is completely disentangled from the one-photon radiation field which is now in a
pure superposition state with two macroscopically distinguishable components
(reflected and transmitted).

In the right hand part of figure 4 the energy density of the photon wave packet
1s shown close to the ‘surface’ of the beam splitter. To the left of the atoms the
incoming and reflected wave packets interfere. We also see that a fraction of the
original radiation is able to ‘pass’ the atoms and to continue to propagate to the
right. The wavelength of the photon was chosen to be shorter than in the mirror
simulation, which can be seen from the interference structure.
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Figure 5. The energy density of the photon wave packet which is split by a quantum
beam splitter composed of a set of two-level atoms composing a one-dimensional
crystal—the quantum beam splitter. The initial photon 1s Gauss1an (33) with
parameters xp = —10.0, yo = 0.0, kyo = 15.0, kyo = 0.0, A,C_OIZSand 0.125.
The transition frequency o =104 of the ‘atoms is detuned from tlfle central
frequency of the incoming photon wave packet wy =15.0. The total number of
atoms is equal to 881, while the number Ip modes is the same as in the simulation
prese(r)lted in figure 2. Here we again assume the dipole constant of the atoms to be
D =0.5.

We have also studied the spectral properties of reflected and transmitted parts
of the original wave packet. In this situation 200 atoms were used to detect the time
dependent spectra of the two outgoing parts of the photon by applying the method
described earlier. Both spectra were identical to the spectrum of the incoming
photon. This means that our quantum beam splitters and mirrors are linear
devices, which is important if we want to build optical networks out of the
considered optical elements.

4.4. Parabolic mirror

Another illustration of the power of our microscopic model of optical elements
is the parabolic mirror. In fact, it is possible to ‘build’ out of two-level atoms
mirrors of arbitrary shape. In the next simulation, the photon wave packet is
propagating towards a parabolic mitror, the shape of which is described by the
equation x = xy + (1/2p)y? =2 —(1/18)). The focus of the parabola is at the
point x = x + (p/2) = —2.5, y =0. The time evolution of the energy density is
shown in figure 6. At 7 =0.0 the Gaussian photon is propagating towards the
parabola. The little circle in between the photon and the parabola shows the
position of the focus. At r = 8.0 we see the photon wave packet being reflected
from the parabola. We see the interference between the incoming and the re-
emitted radiation. We note that at 7 = 12.8 most of the radiation goes through the
focus. In the last figure (¢ = 18.0) the photon wave packet propagates to the
left.
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Figure 6. The time evolution of the energy density of the one-photon wave packet
reflected by a parabolic mirror composed of two-level atoms. At time # =0 the wave
packet is localized to the left of the focus of the mirror (a little circle in the figure)

ropagates towards it. At time # =8.0 we see an interference pattern due to
1nte erence between the incoming wave packet and the re-emitted radiation. At
time ¢ = 12.8 the original wave packet is completely reflected by the mirror and is
localized around the focus. ﬁe spatial dependence of the energy density is
determined by the shape of the mirror. We can observe a reduction of the width of
the reflected wave packet in the y direction. At time ¢ =18.0 the wave packet is
significantly spread. We see that the maximal energy density is now smaller than in
the original wave packet (compare with figure for # =0.0). The number of atoms
from which the parabolic mirror is composed is Nao =1100. The parameters of the
atoms are the same as in figure 3. The initial photon is Gaussian (33) with
parameters xo = —6.0, yo = 0.0, ky _50 k0 =00, Akx—O 125 andAky =0.125.

4.5. Interferometer

Using a quantum beam splitter and two quantum mirrors we can ‘construct’ a
single-photon interferometer (see figure 7). Here the one-photon wave packet
comes towards the beam splitter ( =0.0) and is divided into two parts which
propagate towards the mirrors (¢ = 18.0). The distances of the mirrors from the
beam splitter are exactly the same. The mirrors reflect the radiation back to the
beam splitter. At 7 =33.3 the two reflected parts reach the beam splitter. Each
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Figure 7. The time evolution of the energy density of the one-photon wave packet in an
interferometer. The distance of the two mirrors from the beam splitter 1s the same.
We see that the interference results in a wave packet propagating upwards. The
initial wave packet, the beam splitter and the mirrors have the same parameters as in
the figures considered above. Here the mirrors and the beam splitter are specified in
figures 3 and 5, respectively.

wave packet considered individually would be split by the beam splitter into
two parts going left and up (i.e. transmitted and reflected). On the other hand
due to the quantum interference between the components of the radiation
field coming from the two mirrors we can observe something completely different:
if the optical paths of the two components are equal then their relative phase
is such that quantum interference results in an emergence of a single-photon
wave packet travelling up (z =45.0). Conversely, if the distances of the two
mirrors from the beam splitter are not equal then the relative phase of the two
components which interfere on the beam splitter after being reflected by the
mirrors can result in a wave packet travelling left (see figure 8). Here the difference
of the optical paths is approximately one central wavelength of the original wave
packet. We see that in this case most of the energy travels in the form of a wave
packet to the left.
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Figure 8.  Same as in figure 7 except the distances of the mirrors from the beam splitter
differ by one wavelength. This difference leads to quantum interference which
results in a wave packet propagating to the left. The initial wave packet, the beam
splitter and the mirrors have the same parameters as in the figures considered above.

4.6. Two-slit experiment

The microscopic quantum model we study in this paper can also be used to
study the two-slit experiment. Let us assume a photon wave packet which has a
very broad energy density in the y direction, i.e. this wave packet models a plane
wave which approaches the mirror with two slits, see figure 9. On the left we have
placed another mirror. Without it, the part of the plane wave which is reflected
from the double slit mirror would disappear at the left and reappear on the right
because of the periodic boundary conditions we use in our simulations.

The original one-photon wave packet (¢ = 0.0) propagates towards the mirror
with twosslits. At ¢ = 5.0 the ‘plane’ wave packet is reflected from the mirror. Some
of the energy propagates through the slits (i.e. there is a non-zero probability that
the original one-photon wave packet can be transmitted through the mitror via the
slits). We see that through each slit a part of the energy propagates to the right—
the interference between these components of the electromagnetic field is clearly
seen (see ¢ =20.0 and 7 = 25.0).
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Figure 9.  The time evolution of the energy density of a photon wave packet in the two-
slit experiment. A ‘plane’ wave packet propagates towards the mirror with two slits.
The mirror is composed of two-level atoms as in previous figures except in this case
there are two slits now. Another quantum mirror is considered to be located to the
left of the two-slit mirror. This configuration is chosen to make sure that none of
the original energy passes to the right due to the periodic conditions we imposed on
the Schrodinger equation. To make the figure more transparent we use a
logarithmic scale for the energy density of the field. The number of modes in this
simulatigon2 is 512x 512. The total number of atoms used in the mirrors is
Np =7872.

The “plane’ wave packet which has been reflected by the mirror with twoslits is
then reflected by the left mirror and then again by the the double slit mirror. Here
part of the energy ‘goes’ through the slits again forming a second, more complex,
interference pattern (see ¢ = 20.0). This process of bouncing of the original wave
packet between two mirrors continues and each time a fraction of the energy passes
through the slits.

It is interesting to compare the interference structure with the theoretical
prediction derived within classical optics. The formula can be calculated using
Huygens’ principle [18]. According to this, every point at the slit can be considered
to be a source of secondary wavelets. The total intensity profile is a superposition
of these wavelets. Let us first consider a text book treatment of a one slit mirror,
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Figure 10. We show one slit in the mirror. The width of the slit is d. The optical
path difference of the radiation coming from two different points at the slit is Ax.

figure 10. The plane wave packet of frequency  is coming from the left towards a
slit of width d. The field strength on the right coming from a specific point at the
slit is proportional to the phase factor exp [i(kx — wf)]. The phase difference of the
radiation coming from two different spatial points in the slit is Ax = y sin 6, if the
distance from the mirror is long enough. According to Huygens’ principle the total
radiation is a superposition

a2
E o« exp [i(kx — ot)] J ,S5P (iky sin 0) dy
—d/2

= exp [i(kx — wlﬂWznG sin (%d sin 9). (51)

For two slits of width d and a separation @ we have two integrals

dl2 —atd]2
E o« exp [i(kx — ot)] <J ,S5P (iky sin 6) dy + J 1, P (iky sin 6) dy)
—~d2 —a—d|2
a\ 1 €% (k_za sin 9) sin (%d sin 9)
= exp (kx or + )] A , (52)

which gives for the intensity
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Figure 11.  We present the intensity of the radiation field at the region behind the two-
slit mirror. The dashed line corresponds to the intensity derived from a classical
model (see equation (54) while the solid line is obtamed from our numerical
simulations based on a purely quantum description of the process. We see a very
good agreement between the two results for small 6.

cos? (k_za sin 9) sin? (%d sin 9)
Ix E'E= s d) : (53)

On the other hand, we can use the results of our numerical simulations and
evaluate the intensity of the radiation which has been created to the right of the
two-slit mirror during the first reflection of the original wave packet:

L2
109)=| " 1(rg)dr (54)

Fmin

Toneglect the contribution of the second reflection we take the lower bound of the
integral over the polar coordinate r to be rmin = 10. The theoretical prediction (53)
and the intensity derived from our simulations (54) are shown in figure 11. Both
intensities are normalized in such a way that their maximum is equal to unity. Near
0 = 0 the agreement between the two results is very good. For larger values of 6
there 1s a difference between the two lines which is understandable because we are
comparing a classical result with a numerical simulation of a quantum model with
realistic features such as the non-zero width of a mirror composed of two-level
atoms or the wave packet which is not a plane wave, etc. Taking these differences
into account it is surprising that the two pictures coincide so well.
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Figure 12.  The exponential decay of an excited atom. The atomic transition frequency
and dipole constants are »=15.0 and D =0.05, respectively. The atom is
positioned in the centre of the square cavity of the linear dimension L = 10t We
consider 256 x 256 = 65536 modes of the electromagnetic field. The probability to
find the atom in the excited state is plotted on a logarithmic scale: the exponential
character of the decay is clearly seen. The corresponding decay rate is r =0.14.

4.7. Decay of a two-level atom

Until now we have considered in our simulations that the field has been initially
excited and all the atoms were initially in the ground state. Obviously, our model
can also be applied to a situation when one of the atoms 1s excited and the field is
initially in the vacuum state (i.e. we still restrict ourselves to the one-excitation
subspace of the total Hilbert space). In this section we briefly discuss the problem
of a spontaneous decay of a two-level atom in a two-dimensional cavity. We
consider the atomic transition frequency to be o = 15.0 and the dipole constant is
D =0.05. The atom is situated at the origin (x=0.0, y =0.0) of the two-
dimensional cavity. The number of field modes is 256 x 256 = 65536. In figure
12 we present the natural logarithm of the excitation probability of the atom as a
function of time. From here we can conclude that the decay of the atom is
approximately exponential with a decay constant r~ ~ 0.14. In figure 13 we present
probabilities of the excitation of the modes k. (k,= 0). Because the direction of the
constant dipole vector of the atom is chosen to be in the z direction, the amplitude
profile is the same on any line which goes through the origin of momentum space.
As expected for times large enough the modes with |ky| =15 are dominantly
excited. In fact the peaks are not exactly at the resonance frequency, there is a
small shift which is identified to be a Lamb shift (from the figures we cannot see
this but the shift can be determined from numerical values obtained in the
simulation).

We plot the energy density of the one-photon wave packet emitted by the
decaying atom in figure 14. Because of the rotational symmetry of the problem we
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Figure 13.  We present probabilities of the excitation of the modes with &, = 0. We see
that for times large enough the modes with |k,| = 15 are dominantly excited, i.e. the
field mod.eestda.lt frequencies close to the resonant transition frequency of the atom are
most excit

plot just one ‘cut’ (y =0) in the energy density as a function of x. The energy
density is presented for two times, # = 4.0 and 7 = 12.0. At both times there is a
peak in the centre where the atom is positioned. This means that at these two times
the atom still emits the radiation (which is in agreement with the chosen decay rate
r =0.14). We turn our attention to the fact that at # = 4.0 the energy density is
non-zero only for |x < 4.0. Analogously for the time 7 = 12.0 the energy density is
non-zero only for | < 12.0. This reflects the fact that the causality is preserved in
our simple quantum-mechanical treatment of the decay of the two-level atom in
the cavity. Here we have presented just a few features of the decay. The complete
description of the process deserves more detailed discussion. For instance, one
might be interested on how the decay depends on the mode spectra, the position of
the atom, what are the values of the Lamb shift, how the decay depends on the
frequency cut-off, etc. We will address these questions elsewhere.

5. Conclusion

‘We have shown the results of many quantum mechanical simulations with two-
level atoms and a one-photon wave packet inside a two-dimensional cavity. The
initial basis vectors are restricted to admit only one excitation. Because a rotating
wave interaction between the radiation and the atoms 1s used, basis vectors with
more excitations acquire no excitation. For these kinds of states the special
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Figure 14 We plot the energy density of the one-photon wave packet emitted by the
decaying atom. The parameters of the atom are the same as in figure 12.

numerical technique which utilizes FFT (fast Fourier transform) may be used.
Using FFT the simulations become orders of magnitude faster, allowing more
modes and atoms to be included.

The atoms are at fixed positions and it is possible to build complicated
structures with different kinds of atoms. Several layers of atoms which are on
resonance with the incoming radiation form a quantum mechanical mirror if the
density of the atoms is high enough. The mirror may have an arbitrary shape. In
our simulations both the usual flat and the parabolic mirror were used. One layer
of detuned atoms forms a beam splitter. We have shown that, using mirrors and
beam splitters, it is possible to build complicated optical networks. As an example
the time evolution of a photon in an interferometer was studied.

Usually the optical components are taken to be classical objects which give
boundary conditions to the quantum-mechanical time evolution or determine the
modes used in a quantization. In our simulations the whole system, including
beam splitters and mirrors, 1s in a well-defined quantum mechanical state. In
addition to the simulations shown in this paper it is possible to build more
complicated networks of beam splitters and mirrors. One interesting possibility
1s to build cavities of arbitrary shape and study the time evolution of the photon
intensity inside the cavity. It is also possible to use moving atoms in the
simulations allowing moving beam splitters and mirrors to be built. One extension
of the current model would be to take basis states with more than one-photon
excitation into account. However, the number of basis states with a given
excitation increases so rapidly that it is unlikely to be possible to use the methods
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of this paper for fields of higher intensity. Thus all the phenomena of nonlinear
optics require novel computational approaches.
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