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Abstrac t. Within the framework of a two-dimensional microscopic, purely
quantum mechanical model, we analyse the dynamics of single-photon wave
packets interacting with optical elements (beam splitters, mirrors), modelled as
systems of two-level atoms. That is, we utilize a two-dimensional cavity to
simulate the quantum behaviour of simple optical components and networks
made thereof. The ® eld is quantized using the canonical procedure, and only
the basis states with one unit of excitation are included. This, however, covers
linear optical phenomena. The ® eld is taken to interact with localized atoms
through a dipole interaction. Using di� erent con® gurations of atoms, and
choosing their frequencies to be resonant or o� -resonance, we can model
mirrors, beam splitters, focusing devices and multicomponent systems. Thus
we can model arbitrary linear networks of optical components. We show the
time evolution of aphoton wave packet in an interferometer as an example. As
the state of the ® eld is known at each instant, spectral properties and spatial
coherence can immediately be obtained fromthe simulations. We also know the
states of the two-level atoms constituting the components, which allows us to
consider their quantum behaviour. Here the decay of an excited atom into the
vacuum state of the electromagnetic ® eld in the two-dimensional cavity is
studied.

1. In trod uc tion
It is well understood that the electromagnetic ® elds giving rise to all optical

phenomenahave ultimately tobe represented by quantumoperators. These couple
to the degrees of freedom of matter, and their modi® cation due to this interaction
constitutes the quantumcounterpart of the action of optical components. Ordinary
optical devices operate in the linear regime of interaction, but the important areaof
nonlinear optics is based on higher order e� ects of the ® eld± matter coupling. In
most situations, optical phenomena can be described entirely in terms of classical
® elds, but many recent investigations require that the quantum character of the
® eld is accounted for. Such researchconstitutes the topics of quantumoptics[1± 3].
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However, many quantum e� ects are of interest even in the linear regime of
operation: quantum noise [4] sets the limit to communication by optical channels
and ampli® ers, quantum interference shows up in precision measurements and
tests of fundamental issues and also in reading and writing quantum information.
Manipulation of quantum information such as quantum computations usually
requires the inclusion of higher order e� ects, i.e. nonlinear interactions between
the qubits [5].

In this paper, we are going to discuss the dynamics of single-photon wave
packets in various two-dimensional atomic con® gurations. These are taken to be
models of optical networks, where we explicitly include the atomic nature of the
optical components distributed over the volume under investigation. This ap-
proach provides us with acompletely microscopic quantum-mechanical picture of
how photon wave packets interact with optical elements represented as collections
of two-level atoms. For practical reasons, we have to restrict our work to one-
photon states, but this is not such a serious limitation as it may seem. All linear
optical e� ects are based on a single photon interacting with material structures,
and consequently we have a general description of quantum optics phenomena in
the linear regime. The need to consider multi-photon e� ects arises only in
connection with the quantum treatment of nonlinear optics.

There are two basic ways to approach the quantization of optical systems. In
the conventional one, we determine a complete set of eigenmodes of the total
universe, and express the ® elds of interest in terms of these. Any matter present is
described through its interaction with the ® elds, and the coupled ® eld± matter
problem is then solved to the best of our ability. This is the approach utilized in
traditional quantum electrodynamics (QED), and its development is found in
many standard texts. The alternative approach, designed for quantum optics
applications, is to determine the eigenmodes of the system at the classical level,
and the matter involved is then treated as boundary conditions on the ® eld modes.
Especially the new area of cavity QED research[6] utilizes this point of view, and
it provides the basis both for quantum communication theories and many funda-
mental investigations.

In the ® eld of optics, the components are usually treated as boundary con-
ditions only, and the complete optical device is considered to be an optical
network. This approach has been discussed thoroughly in the classical regime of
operation[7]. For linear devices, the classical treatment can be taken over into the
quantum regime by the use of suitable quantum optics tools [8± 10]. In principle,
any device understood classically, can be treated quantum mechanically with such
an approach. The speci® c quantum features manifest themselves in the initial
conditions and the restrictions on observability imposed by quantum theory [11].

Another speci® cally quantum mechanical e� ect is the occurrence of sponta-
neous decay. Within aone-dimensional model of the modes of the universe, this is
discussed in [12], where both free Weisskopf± Wigner decay and cavity modi® ed
decay are discussed. Such phenomenahave been the object of much interest within
QEDresearch: for an extensive list of references see[12]. Within the model chosen
there, one can see the emergence of the exponential lawand the inhibition of decay
observed in aphotonic band gap structure. In general, the model provides insight
into the role of atomic media in the irreversible transfer of excitation energy into
the ® eld modes of the universe.
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In this paper we combine the two views discussed above: we retain a descrip-
tion in terms of a complete set of two-dimensional eigenmodes of the universe.
The optical components are described in terms of their atomic constituents. All
atomic structures are represented by spatially localized two-level atoms. These are
treated as point-like particles in accordance with the dipole approximation which is
assumed to be valid. The state of the ® eld is taken to be a single-photon wave
packet with a narrow energy distribution. In this case, the state can be described
by a truncated expansion in terms of modes of the universe. The spatially
distributed two-level atoms describing the structures are taken to be initially in
their ground states. The atoms can be chosen to resonate with the central
frequency of the photon wave packet or be well o� resonance; various e� ects
can be modelled in this way. When the single photon is absorbed, only one of the
atoms is excited, and the ® eld is reduced to its ground state. Such a choice limits
the Hilbert space needed in the calculations toamanageable size, but allows us to
investigate many simple networks of signi® cance in linear optics. All such e� ects
are, in principle, describable at the single photon level; only nonlinear optics
e� ects require more photons, which would make the Hilbert space expand beyond
the limits of available computer resources.

Our approach based on a complete set of eigenmodes allows us to investigate
the dynamic performance of many linear systems. In order to illustrate the
method, we select the simplest optical components: mirrors, beam splitters,
focusing devices and interferometers. The overall performance of the components
follows directly from their classical theory, but our approach allows us to
investigate the microscopic (quantum) behaviour of the set-up. Quantum coher-
ence between various spatial regions in the device is directly visible in the states
calculated, and the time and space scales of the various interferometric structures
can be read o� the results. Combined with various models of measurements, our
calculations contain considerably more information than a simple classical com-
putation. Here we only discuss the measurement of frequency and the possible
occurrence of a ® ltering action in the atomic structures, which does not in itself
depend toomuch on the quantumnature of the ® elds. By modelling the frequency
detection by atomic absorption, we utilize the full character of the model, which
allows further extension to quantum correlation measurements if we so desire.

Our work is based on a model put forward in [13] which we extend to two
dimensions. The quantized modes of the universe are introduced in section 2
together with their interaction with the spatially distributed atoms. In section 3 we
specify the details of the model and indicate howthe calculations have been carried
out. Section 4 presents the various simple components analysed in this paper. We
describe how they are modelled and show the results of the detailed solution of the
time evolution. Finally in section 5 wepresent our conclusions and discuss possible
extensions and applications of the work.

2. Ope rators for th e free ® e ld in tw o d im e nsion s
The ® eld is enclosed inside a two-dimensional cavity determined by the

relations

- L
2 x, y

L
2 . (1)
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The periodic boundary conditions restrict the allowed values in k-space to a
discrete set

ki =
2p ni

L
, i =x, y. (2)

In computer simulations, the k values must be restricted by giving some upper
limit for the integer n which corresponds to a speci® c frequency cut-o� . The
electric and magnetic ® eld can be expanded [3] using the mode functions

^
E(r) =

i
L ks

hx ks

2²0

1/2
(âks²ks exp(ik r) - h.c) (3)

^
B(r) =

i
L

ks

h
2²0x ks

1/2
(âks(k ²ks) exp(ik r) - h.c), (4)

where the summation ks is over all k values (2) and two polarization indices
s = 1, 2. The frequency x ks is the same for both polarizations

x ks = cjkj. (5)
The general k vector in two dimensions can be written

k = kxê1 + kyê2 = jkj(cos ( u )ê1 + sin ( u )ê2). (6)
The polarization vectors which obey the usual right hand rule conventions are

²k1 = - ê3, (7)
²k2 = - sin( u )ê1 + cos ( u )ê2. (8)

The k vector and polarization indices satisfy the relations [3]

²ki ²kj = d ij , (9)

ss0

²ks ²ks0 = 2, (10)

k ²k1 = - kyê1 + kxê2, (11)
k ²k2 = jkjê3. (12)

The energy-density operator is
^H(r) = 1

2²0
^
E2(r) + 1

2¹0

^
B2(r). (13)

Using (3) and (4) gives

1
2²0Ê

2(r) =- h
4L 2

kk 0ss0

( x k x k 0 )1/2(âksâk 0s0 exp(ik r + ik 0 r)

- âksâ
y
k 0s0 exp(ik r - ik 0 r)

- ây
ksâk 0s0 exp(- ik r + ik 0 r) + ây

ksâ
y
k 0s0 exp(- ik r - ik 0 r), (14)
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1
2¹0

B̂
2(r) =- h

4L 2¹0²0 kk 0ss0

1
( x k x k 0 )1/2[âksâk 0s0 exp(ik r + ik 0 r)

- âksâ
y
k 0s0 exp(ik r - ik 0 r)

- ây
ksâk 0s0 exp(- ik r + ik 0 r) + ây

ksâ
y
k 0s0 exp(- ik r - ik 0 r)]

[(kxk 0
x + kyk 0

y) d s1d s01 + jkjjk 0 j d s2d s02]. (15)

In our simulations, we have restricted the polarization of the ® eld to ²k1. The
modes with s = 2 are taken tohave zero amplitudes. In addition to that we restrict
the number of excitations of our basis vectors to one. For these kind of basis
vectors the terms âksâk 0s0 and ây

ksâ
y
k 0s0 donot give any contribution. These terms can

be omitted from the expressions. For the states described above, the expectation
values are obtained by replacing the operators with the coe� cients of the
corresponding statevectors âk ! ck and ây

k
! ck. The normally-ordered terms in

the energy density become (normal ordering is indicated by colons)

: 1
2²0Ê

2(r) : =
h

2L 2 RR , (16)

:
1

2¹0
B̂

2(r) : =
h

2L 2²0¹0
(SxSx + SySy), (17)

where

R =
k

x
1/2
k ck exp(ik r), (18)

S i =
k

ki

x
1/2
k

ck exp(ik r), i =x, y. (19)

The two-fold summation over the k-space is seen to factorize and the formulas for
R and Si are Fourier transforms of two di� erent functions. For numerical
simulations these two properties are essential as will be seen later. We note that
if the polarization is such that the modes with s = 1 are taken to have zero
amplitudes, then the two terms : 1

2²0Ê
2(r) : and : (1/2¹0)B̂

2(r) : in the expression
for the energy density are equal.

Integrating (13) over the spatial coordinates and using the integral

L /2

- L /2
dx

L /2

L /2
dy exp[i(k - k 0) r]= L 2d kk 0 , (20)

gives the familiar form

^HF = 1
2

k

hx k(ây
kâk + âkây

k) =
k

hx k(ây
kâk + 1

2), (21)

which in the normally ordered form reads :
^HF := k hx kây

kâk.
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3. Th e ge ne ral Ham ilton ian an d th e state s
In the previous section the formulas for the ® eld in the vacuum were derived.

In this section we add an assembly of two-level atoms to the cavity and give the
corresponding Hamiltonians. The general form of the statevector with one
excitation is also given. The material presented here is based on the similar
simulations in one dimension done by BuzÏ ek et al. [12]. The simulations in two
dimensions are numerically more demanding, but we have been able to develop
e� cient numerical methods which make these simulations possible.

3.1. The Hamiltonian
The total Hamiltonian ^H can be divided into three parts

^H = ^HF + ^HA + ^HI, (22)
where the ® eld Hamiltonian is given by equation (21). The atomic Hamiltonian is
the sum over all one-atom Hamiltonians

^HA =
NA

j=1
hx j

^s j
z , (23)

where x j is the transition frequency of the jth atomand ^s j
z is Pauli’s spin matrix. In

the interaction Hamiltonian the dipole approximation is used. For simplicity the
dipole operator is taken to be

^
Dj = (Dj

^s j
+ + Dj

^s j
- )ê3, (24)

i.e. it has a component in the ê3 direction only. The general dipole vector would
have components in the x and y directions too. The interaction Hamiltonian has
the form

HI =-
NA

j=1

^
Dj

^
E(rj), (25)

where ^
E(rj) is the electric ® eldoperator (3) at the position of the atom. The rotating

wave approximation (RWA) is to be used, and we neglect the ^s j
+ây - and ^s j

- â
terms. In addition to that we replace the mode frequency in the electric ® eld
operator by the atomic frequency and use the dot products ê3 ²k1 =- 1 and
ê3 ²k2 =0 to get

^HI
^HI1 + ^HI2 =

NA

j=1 k

g(j, k) ^s j
+âk + g (j, k) ^s j

- ây
k , (26)

inwhat follows we omit the polarization index in subscripts of ® eld operators. The
coupling constant is

g(j, k) = - ih
2²0L

x
1/2
k Dj exp(ik rj). (27)

Only those modes whose resonance frequency is close to the atomic frequency
interact signi® cantly with the atom, so we can replace the mode frequency x k by
the atomic frequency x j in equation (27).
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3.2. The statevector
In all simulations we have restricted the total number of excitations to one.

Consequently, the most general statevector of the atom± ® eld system has the form

j W i =
k

ckj1ik
k 0 6=k

j0ik 0

NA

j=1
j0ij +

k

j0ik

NA

j=1
cjj1ij

NA

j 0=1,j 0 6=j
j0ij 0

k

ckj1k, f0gi +
NA

j=1
cjjf0g, 1ji. (28)

The ® rst sum contains all the basis vectors where the excitation is in one of the
® eld modes and all the atoms are in the ground state. In the second sum the ® eld
modes are in the vacuum state and one of the atoms is excited. The complex
numbers ck and cj are the probability amplitudes of the corresponding basis
vectors. We have dropped the polarization indices because in our simulations
only the basis vectors with the polarization vector ²k1 are excited as was discussed
earlier.

The general Gaussian one-photon statevector is of the form

j W i =
k

ckj1k, f0gi , (29)

where the mode coe� cient ck is

ck =
exp(- ik r0)
(4p 2M)1/4 exp -

¢2
ky

4M
(kx - kx0)2 - ¢2

kx
4M

(ky - ky0)2

+
¢2

kx,ky

2M
(kx - kx0)(ky - ky0) . (30)

The parameters M and ¢2
kx,ky are

M= ¢2
kx¢2

ky - (¢2
kx,ky)2, (31)

¢2
kx,ky = hkxkyi - hkxihkyi. (32)

If the cross-variance ¢2
kx,ky vanishes the formula for ck reduces to twoindependent

Gaussian distributions

ck = (2p ¢2
kx)- 1/4(2p ¢2

ky)- 1/4 exp(- ik r0) exp - (kx - kx0)2
4¢2

kx
- (ky - ky0)2

4¢2
ky

. (33)

All initial distributions used in our simulations are of the form (33). The distri-
bution (33) in k-space is centred around (kx0, ky0) with the corresponding central
frequency x 0. If ¢2

kx = ¢2
ky the distribution is symmetric. If ¢2

kx < ¢2
ky the distri-

bution is wider in the y direction (and vice versa). The variances in k-space and
con® guration space are inversely proportional. If ¢2

kx is small, the energy density
distribution in con® gurationspace is wide in the xdirection. The normally ordered
energy distribution associated with the state (30) or (33) is well localizednear point
r0 in con® guration space. Essential for this is the phase part exp(- ik r0) of the
coe� cient ck. If the form of the phase was di� erent the intensity pro® le would not
be Gaussian.
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The time evolution of the Gaussian wave packet inside an empty cavity is
determined by the Hamiltonian ^HF (21) with the corresponding evolutionoperator
exp[- (i/h) ^HFt]. Applying this to state (28) gives for the time-evolution of the
coe� cients ck(t) = ck(0) exp(- ix kt). Theabsolutevalueof the coe� cients remains
the same, only the phase changes. For the phase part we get

exp(- ik r0 - ix kt) = exp[- ik (r0 + ctek)], (34)
where k = jkjek. The time evolution inside the empty cavity reduces to the time
evolution of the parameter r(t) = r0 + ctek. We remember that the phase factor
determines the shape of the normal ordered intensity pro® le. Because the time
evolution of the phase is di� erent for di� erent modes, the normal ordered intensity
does not preserve its original Gaussian shape. If the direction of the vector ek is
more or less the same for all basis vectors which have non-zero coe� cients, the
shape of the energy density distribution remains approximately the same longer.
The situation is like this when the statevector in k-space is centred around some k
value far from the origin and the variances are small.

3.3. Transformation to the interaction picture
It turned out to be faster to carry out the numerical integration in the

interaction picture. The transformation Hamiltonian is ^H0 = ^HA + ^HF. The
interaction Hamiltonian in the rotating frame is

^H(I)
I = exp(i ^H0t/h) ^HI exp(- i ^H0t/h), (35)

which is obtained by the following replacement

âk ! âk exp(- ix kt),

ây
k ! ây

k exp(ix kt),
^s j
- ! ^s j

- exp(- ix jt),
^s j
+ ! ^s j

+ exp(ix jt)

(36)

in equation (26), and we get

^H(I)
I = ^H(I)

I1 + ^H(I)
I2 =

NA

j=1 k

(g(j, k) exp[i( x j - x k)t]^s j
+âk

+ g (j, k) exp[- i( x j - x k)t]^s j
- ây

k). (37)
The statevectors in the interaction picture become

j W i(I) = exp(i ^H0t/h)j W i =
k

ck exp(ix kt)j1k, f0gi +
NA

j=1
cj exp(ix jt)jf0g, 1ji,

(38)
and the SchroÈ dinger equation for the wavefunction is

ihdj W i(I)

dt = ^H(I)
I j W i(I). (39)
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Integration of the SchroÈ dinger equation in the interaction picture is faster than the
original equation because only the interaction Hamiltonian is present.

3.4. Numerical methods
3.4.1. Integration of the Schr Èodinger equation

Our choice for the integration method of the time dependent SchroÈ dinger
equation is a classical four stage fourth order Runge± Kutta method. If the
wavefunction at time t is j W (t)i the wavefunction at a later time t + t ( t
small) is given by the following algorithm[14]

jk1i = t ^Hj W (t)i,
jk2i = t ^H(j W (t)i + 0.5jk1i),
jk3i = t ^H(j W (t)i + 0.5jk2i),
jk4i = t ^H(j W (t)i + 0.5jk3i),

j W (t + t)i = j W (t)i + jk1i
6 + jk2i

3 + jk3i
3 + jk4i

6 + O(( t)5).

(40)

The timestep t is a ® xed constant.
The essential part of the integration from a numerical point of view is how to

evaluate the right hand part of equation (39) as e� ciently as possible. The ® rst
term in equation (37) gives

^HI1j1k, f0gi = - ih
2²0L

NA

j=1 k 0

x
1/2
j Dj exp(ik 0 rj) exp[i( x j - x k)t]s j

+âk 01j1k, f0gi

= - ih
2²0L

NA

j=1
x

1/2
j Dj exp(ik rj) exp[i( x j - x k)t]jf0g, 1ji , (41)

^HI1jf0g, 1ji = 0, (42)
and the second one

^HI2j1k, f0gi = 0, (43)

^HI2jf0g, 1ji =
ih

2²0L

NA

j=1 k

x
1/2
j Dj exp(- ik rj) exp[- i( x j - x k)t]s j

- ây
k1jf0g, 1ji

=
ih

2²0L
k

x
1/2
j Dj exp(- ik rj) exp[- i( x j - x k)t]j1k, 0i. (44)

Hence the new coe� cients for the atomic (c0
j ) and ® eld (c0

k) basis vectors become

c0
j = - ih

2²0L
x

1/2
j Dj exp(ix jt)T(rj, t), (45)

c0
k =

ih
2²0L

exp(ix kt)U(k, t), (46)

where
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T(r, t) =
k

ck exp(- ix kt)( ) exp(ik r), (47)

U(k, t) =
r

NA

j=1
x

1/2
j Dj cj d (r - rj) exp(- ix jt) exp(- ik r). (48)

Both T(r, t) and U(k, t) are two-dimensional Fourier transforms, so in numerical
calculations the fast Fourier transform (FFT) can be used. The speed increase
obtained by using FFT instead of the direct summation is enormous especially in
simulations with a large number of atoms. In some simulations it can be said that
only this method makes these simulations possible.

There are several natural checks for the numerical simulations. First of all the
normof the wavefunction has toremain unity for all times. The system is closed so
the total energy of the system must be constant all the time. The ® eld energy can
be calculated using either formula (21) or integrating the energy density over the
whole cavity. The two methods should give the same results.

3.4.2. A method to detect a local time dependent spectrum
In the following simulations the spectrum is detected using the so-called

analyser atoms [15]. Many atoms with a very small dipole coupling constant are
put into speci® c locations in the cavity. All the atoms have di� erent transition
frequencies in between x min and x max

x j = x min + x (j - 1), x =
x max - x min

N - 1 , j = 1, 2, . . . , N. (49)

Also the dipole constants are all di� erent and very small

Dj =
C
x j

, (50)

where C is a very small constant, typically C = 0.0001 or so. The form (50) of Dj
gives the same decay constant C for all the atoms because in two dimensions C is
directly proportional tothe product D2

j x 2
j . Because the dipole coupling is small, the

atoms have very small decay constants and linewidths and only the radiation which
is exactly on resonance with the atom can excite it. Therefore the excitation of the
atoms as afunction of x can be interpreted as aspectrumof the ® eld at the position
of the atoms. Because the interaction between the radiation and the atoms is small,
the state of the ® eld does not change appreciably. The method can be used to
detect the local time dependent spectrum. Two-time averages, usually used in
spectrum calculations, are not needed. A more detailed description of the method
and comparisons with the time dependent spectrade® ned using two-time averages
[16] can be found in the paper by Havukainen and Stenholm [15], where it was
used todetect the spectrumof radiation emitted by alaser driven three-level atom.

4. Sim u lation s
In this section the results of several simulations are presented. First we show

that the energy density pro® le of the free photon does not preserve its shape if x 0 is
small, as explained earlier. In the second and third simulation, atoms are used as
mirrors and beam splitters. Using these components it is possible to build many
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optical systems. We present an interferometer as an example. We also present a
simulation of a two-slit experiment. Finally, we also brie¯ y study a spontaneous
decay of a two-level atom into the vacuum of electromagnetic modes in a two-
dimensional cavity.

4.1. A free photon
In the ® rst simulation the time evolution of the free photon wave packet is

studied. The initial wave packet is Gaussian (33) with parameters x0 = - 8.0,
y0 = 0.0, kx0 = 4.0, ky0 =0.0 and ¢2

kx = ¢2
ky =1.0. The probabilities jckj2 of the

® eld modes are shown in ® gure 1. Thecentral frequency of the photon wave packet
is so small that the k vectors of the modes with non-zero amplitudes are not
parallel. We would expect this to be observed, as explained earlier. The time
evolution of the energy density at two time values is shown in ® gure 2. The initial
Gaussian photon wave packet has an energy density centred at x=- 8.0, y =0.0.
The wave packet is moving to the right. During the free evolution energy density
becomes delocalized. From the ® gure we see that at t =20.0 the width in the y
direction is much larger than the initial value. This spread of the width of the
original wave packet is a standard quantum-mechanical e� ect.

4.2. A mirror
It is possible to b̀uild’ mirrors and beamsplitters using two-level atoms. In the

next simulation many atoms with large dipole constants were arranged intoa slab
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Figure 1. The probabilities jck j2 of the Gaussian initial state in k-space. The parameters
in equation (33) are x0 =- 8.0, y0 =0.0, kx0 =2.5, ky0 = 0.0, ¢2

kx =1.0 and
¢2

ky =1.0. Here we consider the size of the cavity to be L =10p and we take into
account 256 256 modes of the electromagnetic ® eld. Only one polarization (s = 1)
is taken into account.



con® guration. We take a45ë angle between the slab and the x axis. We assume all
atoms to have the same transition frequencies and dipole constants. The initial
photon wave packet has a Gaussian distribution (33) with parameters kx0 = 5.0,
ky0 = 0.0 and ¢2

kx = ¢2
ky = 0.125. The atoms in the slab are exactly on resonance

with the incoming photon wave packet (i.e. the central frequency of the wave
packet x 0 = 5.0 is equal to the transition frequency of the atoms). The dipole
constant is large D = 0.5. We assume that the mirror is composed of eight layers of
atoms as close to each other as possible. In our case we assume that the distance
between neighbouring layers of atoms coincides with the grid in con® guration
space (the grid spacing is x and for the given orientation of the mirror the
distance between the di� erent atomic layers is chosen tobe X = 21/2 x =0.17).
The central wavelength of the incoming photon wave packet is ¸ =1.26 so the
di� erence between the neighbouring atoms is much shorter than the wavelengthof
the incoming wave packet.

We plot the energy density of the one-photon wave packet re¯ ected by the
mirror in ® gure 3. Firstly we plot the initial wave packet at t = 0.0 (® gure 3(a)).
The photon is coming towards the atoms of the mirror. These atoms become
excited by the incoming wave packet. The s̀econdary’ radiation which is emitted
by the atoms interfere with the incoming wave packet. This secondary radiation
can formally be expressed as a sum of the two termsÐ the ® rst destructively
interfere with the incoming wave packet. As aconsequence of this interference the
incoming wave packet is d̀estroyed’ (i.e. becomes extinct). The other part of the
radiation which is c̀ollectively’ radiated by the atoms of the mirror represents the
re¯ ected wave packet. In fact, the process of re¯ ection of the wave packet by atoms
of the mirror represents a purely quantum (microscopic) version of the Ewald±
Oseen extinction theorem[17]. In ® gure 3(b) we have chosen conditions such that
at t = 20.0 all the radiation is re¯ ected by the atoms. The direction of propagation
of the re¯ ected wave packet is the same as expected in classical theory. The energy
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Figure 2. The time evolution of the energy density of the initial Gaussian photon in
free space. The parameters are the same as in ® gure 1. We see that the initial wave
packet (a) is nicely localized in the con® guration space while at later times it does
not preserve its initial shapeÐ we see (b) the spreading of the original wave packet in
the y direction.



density compared to the incoming wave packet is changed but is still clearly
localized. Note that the energy density is not perfectly symmetrical. The reason is
the same as in the simulation with a free photon, i.e. the distribution in k-space is
broad and near the origin so the spread of the wave packet is clearly seen.
Additionally, the interference between components of radiation emitted by di� er-
ent atoms of the mirror plays a role. In the left part of ® gure 4 we see the energy
density of the photon wave packet close to the surface of the mirror. We see that
the incoming and re¯ ected parts interfere. We also see that no energy is trans-
mitted by the atomic slab. In this sense the atoms serve as amirror. Nevertheless,
one has toremember that the atoms during the process of re¯ ection of the original
wave packet become excited, that is the mirror under consideration has its own
ìnternal’ (quantum) degrees of freedom, so the part of the original energy can be
(transiently) absorbedby the mirror. This alsoresults in the fact that this quantum
mirror might become entangled with the re¯ ected wave packet.

We note that the parameters of the atoms in this simulation were carefully
chosen in such a way that the atoms really form a mirror. If the parameters are
changed then part of the radiation can be transmitted, that is the collection of the
atoms can play the roÃ le of a beam splitter.

4.3. A beam splitter
In the previous simulation we have shown that it is possible to build an almost

perfect mirror using two-level atoms, assuming the parameters are chosen cor-
rectly. Using slightly di� erent parameters, we ® nd that the atoms can behave as a
beam splitter. There are several ways to modify the `mirror’ con® guration to
obtain a beam splitterÐ for instance, we can consider a smaller number of atoms,
or we can decrease the dipole constants, or change the resonance frequencies of the
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Figure 3. The energy density of the one-photon wave packet re¯ ected by a mirror
composed of two-level atoms. The initial photon is Gaussian (33) with parameters
x0 =- 8.0, y0 =0.0, kx0 =5.0, ky0 =0.0, ¢2

kx = 0.125 and ¢2
ky =0.125. The atoms of

the mirror are exactly on resonance with the central frequency of the photon wave
packet ( x = 5.0). The dipole constant of the atom is chosen to be D =0.5. The total
number of atoms considered in this simulation was 1584. The number of modes is
the same as in the simulation presented in ® gure 2.



atoms. We have tried all the possibilities and the most satisfactory results were
obtained by detuning the atoms. The frequencies of the atoms are nowtaken tobe
x =10.4. The centre frequency of the incoming photon wave packet is x 0 =15.0,
i.e. the detuning is really large. The time evolution of the energy density of the
electromagnetic ® eld in this case is shown in ® gure 5. The line in the middle
represents the positions of the detuned atoms. There is only one layer of atoms
instead of eight as in the mirror simulation. At t = 0.0 the photon is propagating
towards the atoms. Here again the incoming wave packet excites the atoms. Now
the quantuminterference between the incoming and emitted radiation is such that
part of the original wave packet is transmittedby alayer of atoms. The other part is
re¯ ected. In ® gure 5 we clearly see that at t =20.0 the original wave packet is split
intotwoparts propagating up and to the right. The energy is divided equally, that
is the atoms form a 50:50 beam splitter for the incoming photon. Here we stress
that the beam splitter under consideration has its own internal degrees of freedom
and transiently becomes excited. Nevertheless, after awhile the atoms completely
emit the excitation energy and the beam splitter is in aground stateÐ at this point
it is completely disentangled fromthe one-photon radiation ® eld which is now in a
pure superposition state with two macroscopically distinguishable components
(re¯ ected and transmitted).

In the right hand part of ® gure 4 the energy density of the photon wave packet
is shown close to the s̀urface’ of the beam splitter. To the left of the atoms the
incoming and re¯ ected wave packets interfere. We also see that a fraction of the
original radiation is able to p̀ass’ the atoms and to continue to propagate to the
right. The wavelength of the photon was chosen to be shorter than in the mirror
simulation, which can be seen from the interference structure.
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Figure 4. The energy density of the electromagnetic ® eld at the moment when the
incoming wave packet interfere with the radiation re-emitted by the atoms of the
mirror (left) and the beam splitter (right). The central wavelength of the photon
wave packet in the case of the mirror simulations is taken to be longer compared to
the case of the beam splitter simulations. The interference pattern in the two cases is
di� erent. We see that in the case of the beam splitter part of the radiation is
transmitted. The parameters of the simulations are speci® ed in the previous ® gures.



We have also studied the spectral properties of re¯ ected and transmitted parts
of the original wave packet. In this situation 200atoms were used todetect the time
dependent spectraof the twooutgoing parts of the photon by applying the method
described earlier. Both spectra were identical to the spectrum of the incoming
photon. This means that our quantum beam splitters and mirrors are linear
devices, which is important if we want to build optical networks out of the
considered optical elements.

4.4. Parabolic mirror
Another illustration of the power of our microscopic model of optical elements

is the parabolic mirror. In fact, it is possible to b̀uild’ out of two-level atoms
mirrors of arbitrary shape. In the next simulation, the photon wave packet is
propagating towards a parabolic mirror, the shape of which is described by the
equation x= x0 + (1/2p)y2 = 2 - (1/18)y2. The focus of the parabola is at the
point x= x0 + (p/2) =- 2.5, y = 0. The time evolution of the energy density is
shown in ® gure 6. At t = 0.0 the Gaussian photon is propagating towards the
parabola. The little circle in between the photon and the parabola shows the
position of the focus. At t =8.0 we see the photon wave packet being re¯ ected
from the parabola. We see the interference between the incoming and the re-
emitted radiation. We note that at t = 12.8 most of the radiation goes through the
focus. In the last ® gure (t = 18.0) the photon wave packet propagates to the
left.
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Figure 5. The energy density of the photon wave packet which is split by a quantum
beam splitter composed of a set of two-level atoms composing a one-dimensional
crystalÐ the quantum beam splitter. The initial photon is Gaussian (33) with
parameters x0 =- 10.0, y0 =0.0, kx0 = 15.0, ky0 =0.0, ¢2

kx = 0.125 and ¢2
ky =0.125.

The transition frequency x = 10.4 of the atoms is detuned from the central
frequency of the incoming photon wave packet x 0 =15.0. The total number of
atoms is equal to 881, while the number of modes is the same as in the simulation
presented in ® gure 2. Here we again assume the dipole constant of the atoms to be
D = 0.5.



4.5. Interferometer
Using aquantum beam splitter and two quantum mirrors we can c̀onstruct’ a

single-photon interferometer (see ® gure 7). Here the one-photon wave packet
comes towards the beam splitter (t =0.0) and is divided into two parts which
propagate towards the mirrors (t =18.0). The distances of the mirrors from the
beam splitter are exactly the same. The mirrors re¯ ect the radiation back to the
beam splitter. At t = 33.3 the two re¯ ected parts reach the beam splitter. Each
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Figure 6. The time evolution of the energy density of the one-photon wave packet
re¯ ected by a parabolic mirror composed of two-level atoms. At time t =0 the wave
packet is localized to the left of the focus of the mirror (a little circle in the ® gure)
and propagates towards it. At time t =8.0 we see an interference pattern due to
interference between the incoming wave packet and the re-emitted radiation. At
time t =12.8 the original wave packet is completely re¯ ected by the mirror and is
localized around the focus. The spatial dependence of the energy density is
determined by the shape of the mirror. We can observe a reduction of the width of
the re¯ ected wave packet in the y direction. At time t =18.0 the wave packet is
signi® cantly spread. We see that the maximal energy density is now smaller than in
the original wave packet (compare with ® gure for t =0.0). The number of atoms
from which the parabolic mirror is composed is NA =1100. The parameters of the
atoms are the same as in ® gure 3. The initial photon is Gaussian (33) with
parameters x0 =- 6.0, y0 = 0.0, kx0 =5.0, ky0 =0.0, ¢2

kx =0.125 and ¢2
ky =0.125.



wave packet considered individually would be split by the beam splitter into
two parts going left and up (i.e. transmitted and re¯ ected). On the other hand
due to the quantum interference between the components of the radiation
® eld coming fromthe twomirrors we can observe something completely di� erent:
if the optical paths of the two components are equal then their relative phase
is such that quantum interference results in an emergence of a single-photon
wave packet travelling up (t =45.0). Conversely, if the distances of the two
mirrors from the beam splitter are not equal then the relative phase of the two
components which interfere on the beam splitter after being re¯ ected by the
mirrors can result in awave packet travelling left (see ® gure 8). Here the di� erence
of the optical paths is approximately one central wavelength of the original wave
packet. We see that in this case most of the energy travels in the form of a wave
packet to the left.
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Figure 7. The time evolution of the energy density of the one-photon wave packet in an
interferometer. The distance of the two mirrors from the beam splitter is the same.
We see that the interference results in a wave packet propagating upwards. The
initial wave packet, the beam splitter and the mirrors have the same parameters as in
the ® gures considered above. Here the mirrors and the beam splitter are speci® ed in
® gures 3 and 5, respectively.



4.6. Two-slit experiment
The microscopic quantum model we study in this paper can also be used to

study the two-slit experiment. Let us assume a photon wave packet which has a
very broad energy density in the y direction, i.e. this wave packet models a plane
wave which approaches the mirror with two slits, see ® gure 9. On the left we have
placed another mirror. Without it, the part of the plane wave which is re¯ ected
from the double slit mirror would disappear at the left and reappear on the right
because of the periodic boundary conditions we use in our simulations.

The original one-photon wave packet (t = 0.0) propagates towards the mirror
with twoslits. At t = 5.0 the p̀lane’ wave packet is re¯ ected fromthe mirror. Some
of the energy propagates through the slits (i.e. there is anon-zero probability that
the original one-photon wave packet can be transmitted through the mirror viathe
slits). We see that through each slit a part of the energy propagates to the rightÐ
the interference between these components of the electromagnetic ® eld is clearly
seen (see t = 20.0 and t = 25.0).
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Figure 8. Same as in ® gure 7 except the distances of the mirrors from the beam splitter
di� er by one wavelength. This di� erence leads to quantum interference which
results in a wave packet propagating to the left. The initial wave packet, the beam
splitter and the mirrors have the same parameters as in the ® gures considered above.



The p̀lane’ wave packet which has been re¯ ected by the mirror with twoslits is
then re¯ ected by the left mirror and then again by the the double slit mirror. Here
part of the energy g̀oes’ through the slits again forming a second, more complex,
interference pattern (see t = 20.0). This process of bouncing of the original wave
packet between twomirrors continues and each time afraction of the energy passes
through the slits.

It is interesting to compare the interference structure with the theoretical
prediction derived within classical optics. The formula can be calculated using
Huygens’ principle[18]. According tothis, every point at the slit can be considered
tobe a source of secondary wavelets. The total intensity pro® le is a superposition
of these wavelets. Let us ® rst consider a text book treatment of a one slit mirror,
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Figure 9. The time evolution of the energy density of a photon wave packet in the two-
slit experiment. A p̀lane’ wave packet propagates towards the mirror with two slits.
The mirror is composed of two-level atoms as in previous ® gures except in this case
there are two slits now. Another quantum mirror is considered to be located to the
left of the two-slit mirror. This con® guration is chosen to make sure that none of
the original energy passes to the right due to the periodic conditions we imposed on
the SchroÈ dinger equation. To make the ® gure more transparent we use a
logarithmic scale for the energy density of the ® eld. The number of modes in this
simulation is 512 512. The total number of atoms used in the mirrors is
NA = 7872.



® gure 10. The plane wave packet of frequency x is coming from the left towards a
slit of width d. The ® eld strength on the right coming from a speci® c point at the
slit is proportional to the phase factor exp[i(kx- x t)]. The phase di� erence of the
radiation coming from two di� erent spatial points in the slit is x=y sin µ, if the
distance fromthe mirror is long enough. According toHuygens’ principle the total
radiation is a superposition

E / exp[i(kx - x t)]
d/2

- d/2
exp(iky sin µ) dy

= exp[i(kx - x t)] 2
k sin µ

sin kd
2 sin µ . (51)

For two slits of width d and a separation a we have two integrals

E / exp[i(kx - x t)]
d/2

- d/2
exp(iky sin µ)dy +

- a+d/2

- a- d/2
exp(iky sin µ) dy

= exp i kx - x t + ka
2

cos ka
2 sinµ sin kd

2 sin µ

k sin µ
, (52)

which gives for the intensity
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Figure 10. We show one slit in the mirror. The width of the slit is d. The optical
path di� erence of the radiation coming from two di� erent points at the slit is x.



I / E E =
cos2 ka

2 sin µ sin2 kd
2 sin µ

(k sin µ)2 . (53)

On the other hand, we can use the results of our numerical simulations and
evaluate the intensity of the radiation which has been created to the right of the
two-slit mirror during the ® rst re¯ ection of the original wave packet:

I( u ) =
L /2

rmin

I(r, u )dr. (54)

Toneglect the contribution of the second re¯ ection we take the lower bound of the
integral over the polar coordinate r tobe rmin =10. The theoretical prediction (53)
and the intensity derived from our simulations (54) are shown in ® gure 11. Both
intensities are normalized in such away that their maximumis equal tounity. Near
µ = 0 the agreement between the two results is very good. For larger values of µ
there is adi� erence between the two lines which is understandable because we are
comparing a classical result with anumerical simulation of aquantum model with
realistic features such as the non-zero width of a mirror composed of two-level
atoms or the wave packet which is not a plane wave, etc. Taking these di� erences
into account it is surprising that the two pictures coincide so well.
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Figure 11. We present the intensity of the radiation ® eld at the region behind the two-
slit mirror. The dashed line corresponds to the intensity derived from a classical
model (see equation (54) while the solid line is obtained from our numerical
simulations based on a purely quantum description of the process. We see a very
good agreement between the two results for small µ.



4.7. Decay of a two-level atom
Until nowwe have considered in our simulations that the ® eld has been initially

excited and all the atoms were initially in the ground state. Obviously, our model
can also be applied to a situation when one of the atoms is excited and the ® eld is
initially in the vacuum state (i.e. we still restrict ourselves to the one-excitation
subspace of the total Hilbert space). In this section we brie¯ y discuss the problem
of a spontaneous decay of a two-level atom in a two-dimensional cavity. We
consider the atomic transition frequency to be x =15.0 and the dipole constant is
D = 0.05. The atom is situated at the origin (x= 0.0, y =0.0) of the two-
dimensional cavity. The number of ® eld modes is 256 256= 65536. In ® gure
12 we present the natural logarithm of the excitation probability of the atom as a
function of time. From here we can conclude that the decay of the atom is
approximately exponential with adecay constant C ’ 0.14. In ® gure 13 we present
probabilities of the excitation of the modes kx (ky= 0). Because the direction of the
constant dipole vector of the atomis chosen tobe in the z direction, the amplitude
pro® le is the same on any line which goes through the origin of momentum space.
As expected for times large enough the modes with jkxj = 15 are dominantly
excited. In fact the peaks are not exactly at the resonance frequency, there is a
small shift which is identi® ed to be a Lamb shift (from the ® gures we cannot see
this but the shift can be determined from numerical values obtained in the
simulation).

We plot the energy density of the one-photon wave packet emitted by the
decaying atomin ® gure 14. Because of the rotational symmetry of the problem we
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Figure 12. The exponential decay of an excited atom. The atomic transition frequency
and dipole constants are x =15.0 and D =0.05, respectively. The atom is
positioned in the centre of the square cavity of the linear dimension L =10p . We
consider 256 256 =65536 modes of the electromagnetic ® eld. The probability to
® nd the atom in the excited state is plotted on a logarithmic scale: the exponential
character of the decay is clearly seen. The corresponding decay rate is C =0.14.



plot just one c̀ut’ (y = 0) in the energy density as a function of x. The energy
density is presented for two times, t = 4.0 and t =12.0. At both times there is a
peakin the centre where the atomis positioned. This means that at these twotimes
the atomstill emits the radiation (which is in agreement with the chosen decay rate
C =0.14). We turn our attention to the fact that at t = 4.0 the energy density is
non-zeroonly for jxj 4.0. Analogously for the time t = 12.0 the energy density is
non-zeroonly for jxj 12.0. This re¯ ects the fact that the causality is preserved in
our simple quantum-mechanical treatment of the decay of the two-level atom in
the cavity. Here we have presented just a few features of the decay. The complete
description of the process deserves more detailed discussion. For instance, one
might be interested on howthe decay depends on the mode spectra, the position of
the atom, what are the values of the Lamb shift, how the decay depends on the
frequency cut-o� , etc. We will address these questions elsewhere.

5. Conc lu sion
We have shown the results of many quantummechanical simulations with two-

level atoms and a one-photon wave packet inside a two-dimensional cavity. The
initial basis vectors are restricted to admit only one excitation. Because a rotating
wave interaction between the radiation and the atoms is used, basis vectors with
more excitations acquire no excitation. For these kinds of states the special
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Figure 13. We present probabilities of the excitation of the modes with ky =0. We see
that for times large enough the modes with jkxj =15 are dominantly excited, i.e. the
® eld modes at frequencies close to the resonant transition frequency of the atom are
most excited.



numerical technique which utilizes FFT (fast Fourier transform) may be used.
Using FFT the simulations become orders of magnitude faster, allowing more
modes and atoms to be included.

The atoms are at ® xed positions and it is possible to build complicated
structures with di� erent kinds of atoms. Several layers of atoms which are on
resonance with the incoming radiation form a quantum mechanical mirror if the
density of the atoms is high enough. The mirror may have an arbitrary shape. In
our simulations both the usual ¯ at and the parabolic mirror were used. One layer
of detuned atoms forms a beam splitter. We have shown that, using mirrors and
beam splitters, it is possible to build complicated optical networks. As an example
the time evolution of a photon in an interferometer was studied.

Usually the optical components are taken to be classical objects which give
boundary conditions to the quantum-mechanical time evolution or determine the
modes used in a quantization. In our simulations the whole system, including
beam splitters and mirrors, is in a well-de® ned quantum mechanical state. In
addition to the simulations shown in this paper it is possible to build more
complicated networks of beam splitters and mirrors. One interesting possibility
is to build cavities of arbitrary shape and study the time evolution of the photon
intensity inside the cavity. It is also possible to use moving atoms in the
simulations allowing moving beamsplitters and mirrors tobe built. One extension
of the current model would be to take basis states with more than one-photon
excitation into account. However, the number of basis states with a given
excitation increases so rapidly that it is unlikely tobe possible to use the methods
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Figure 14 We plot the energy density of the one-photon wave packet emitted by the
decaying atom. The parameters of the atom are the same as in ® gure 12.



of this paper for ® elds of higher intensity. Thus all the phenomena of nonlinear
optics require novel computational approaches.
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