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We present the universal cloning transformation of states in arbitrary-dimensional Hilbert spaces.
This unitary transformation attains the optimal fidelity of cloning as specified by Werner [Phys. Rev. A
58, 1827 (1998)]. With this cloning transformation, pure as well as impure states can be optimally
copied, and the quality of the copies does not depend on the state being copied. We discuss the
properties of quantum clones. In particular, we show that in the limit of high dimension the fidelity of
clones does not converge to zero but attains the ligfiit We also show that our cloning transformation
is most suitable for cloning of entanglement. [S0031-9007(98)07854-5]

PACS numbers: 03.67.—a, 03.65.Bz, 89.70.+c

Suppose Alice has amknownpure state of a quantum S,
system|®),, and that she would like to send information |P)al0)s 10)a D) . (3)

about this state to Bob. The two different ways she cann the case of qubits = 2) the swapping can be per-
prOCGEd are what could be termed the classical meth%rmed with the he]p of a Simp|e quantum |Ogic network
and the quantum method. composed of twa-NoT operations with the (b) qubit be-

(1) Classical method—Alice can perform an optimal ing first the control (target) and then the target (control).
measurement on her system (see Ref. [1] and referenc@gternatively, one can utilize a nonunitary quantum tele-
therein), and this allows her to estimate the state. Th@ortation protocol [2] to realize the swapping.
quality of this estimation is characterized by the mean Comparing the two methods, we note three things.
fidelity f [1]. Taking into account the fact that Alice The first is that the quantum method transfers quantum
has only a single quantum object, the maximum valugnformation far better than the classical one. At the end
of the mean fidelity of the estimated state vector in arof the quantum transfer, Bob actually has Alice’s original

M-dimensional Hilbert space is [1] state, while at the end of the classical procedure, he has
_ 2 only a pale imitation. The second point is that with the
= M+ 1 (1) classical method, both Alice and Bob have information

After the measurement is performed Alice can Communi_about the state. In fact, Alice can send the result of her
P . measurement to as many people as she wishes, and each
cate her result to Bob who can recreate the estimated stat

Note that as soon as Alice performs the measurement t Of them can make a very imperfect copy of her original

i~ y . ) antum state. In the swapping scenario, however, only
Zﬁ;eel(?“ is “lost,” so that no further information can be one person has the stdtk), Alice at the beginning of the

(2) Quantum methoeAlice does not perform a mea- procedure and Bob at the end. Third, it is worth noting
surement on her quanfum system butR‘swaps" the statthat the quantum scenario requires shared entanglement

D), with Bob. An unknownpure state of a quantum ﬁn the case of the teleportation) or the ability to perform

system can be swapped between two parties by a unitarné/onlocal operations in the total Hilbert space of Alice and
transformation. To be specific, let us assume that Alice’ ob (for the swapping). These requirements might be

S..co . -
quantum object is initially prepared in a pure quantum statéjIﬁcICUIt to realize practically.
|®), given by

At this point, one can ask whether it is possible to find
u a procedure which combines the desirable aspects of both
|®), = Z @il W), ) of these methods. In particular, can one find a unitary
= ’ transformation (unitary so that no quantum information is
lost) which would result in both Alice and Bob having the
state|®) simultaneously?This unitary transformatiort/,
would act in such a way that

which lies in anM-dimensional Hilbert spacé{, spanned
by M orthonormal basis vectorkV;), (i = 1,...,M).
The complex amplitudeg; are normalized to unity, i.e., R
> lai|*> = 1. Simultaneously Bob has the same quantum |®), [0, N |D), DY, , 4)
system but it is initially prepared in a specific (i.e., known)

state|0), which is a vector in thé//-dimensional Hilbert for an arbitrary (unknown) input statd). Generalizing
spaceH,. From the general rules of quantum mechanicghe proof of the Wootters-Zurek no-cloning theorem [3] it
it follows that there is ainitary transformatiorf acting on is easy to show that the linearity of quantum mechanics
H, ® FH, which swaps Alice’s and Bob’s states, i.e.,  prohibits the existence of such a transformation (4).
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This represents a major difference between quantum (ii) If no a priori information about then state of the
and classical information: it is possible to make perfectoriginal system is available, then it is reasonable to require
copies of classical information, but quantum informationthat all pure states should be copied equally well. One
cannot be copied perfectly, i.e., quantum states cannot bgay to implement this assumption is to design a quantum
perfectly cloned. Nevertheless, if the requirement that theopier so that the distances between density operators of

copies be perfect is dropped, then it is possible to makgach system at the outplﬁ;tj(.o"t) (Where j = a,b) and
guantum copies. This was first shown in Ref. [4], where he ideal densitv operatop which describes thén
transformation which produces two copies of an arbitrar ty operatop; . .

state of the original mode are input state independent.

input qubit state ;' = 2) was given. This transformation Quantitatively this means that if we employ the Bures

was shown to be optimal, in the sense that it maXimize%istance [12.13]
the average fidelity between the input and output qubits, '

by Gisin and Massar [5] and by Brusstal. [6]. Gisin and o 2. 12

Massar have also been able to find copying transformations ~ 48(P1.p2) = V2(1 = Try pi "o/ )2, (6)
which producek copies fromi originals (where > 1) [5]. )

In addition, quantum logic networks for quantum copying@S & measure of distance between two operators, then the
machines of qubits have been developed [7], bounds hay@@ntum copier should be such that

been placed on how good the copies can be [8,9], and L (out) A (id)y .

asymmetric cloning has been proposed [10]. dg(pj "spj ) =const  j=ab. (7)

So far, all of the copying machines (transformations)Here we note that other measures of the distance between
which have been proposed copy qubits, which are twoy o density operators (e.g., Hilbert-Schmidt norm) can be

level systems. Suppose instead that we would like to cop . ; . :
an entangled state of two or more qubits. One approac _sed to specify the unlversal_clonmg transformation. The
is to use the single-qubit cloners to individually copy eaCh(jlﬂi!C;OI;)Ttﬁfa t;:z;rar;:formatlon does not depend on the
qubit. It is known that, in the case of two qubits, this - Finall su -Id Iso like t ire that th
will preserve some of the quantum correlations between (iii) Finally, we would also like to require that the

the particles [L1], but, as we shall see, it does not make 8opies are as close as possible to the ideal output state,

particularly good copy. The other alternative is to designWhICh is, of course, just the input state. This means that

a copy machine which copies higher-dimensional systemé’ye want our quantum copying transformation to minimize

That is what we shall do here. the distance between the output stafe"’ of the copied
We are particularly interested in how the quality of thequbit and the ideal stat,éj(-ld).
copies scales with the dimensionalit,, of the system In looking for a universal cloning transformation which

being cloned. What we find is that the fidelity of the generates two imperfect copies from the original state,

copies decreases withf, as expected, but, somewhat |®),, we note that the quality of the cloning will not

surprisingly, does not go to zero &6 goes to infinity. depend on the patrticular state (in the given Hilbert space)
Even though ideal cloning, i.e., the transformation (4),which is going to be copied if and only if the output

is prohibited by the laws of quantum mechanics for anreduced density matrix is of the form

arbitrary state (2), it is still possible to design quantum

cloners which operate reasonably well. Here we note slou) _ Sl 1 - S 4 (8)
that for the swapping of quantum states it is enough to P e M

perform a unitary transformation on the Hilbert space A

H, ® H,. However, quantum cloning is best realized whereﬁj'd) = |®)(D| is the density operator describing

when the original and the copy quantum systems interadhe original state which is going to be cloned. This scaling

with an additional quantum system, the quantum clonerform of Eq. (8) guarantees that the Bures distance (6)

and this is, in fact, what happens in the universal quanturbetween the input and the output density operators is input

cloning machine (UQCM) [4]. It can be specified by the state independent.

following conditions. The quantum cloning machine we consider is itself
(i) The state of the original system and its quantuman M-dimensional quantum system, and we shall let

copy at the output of the quantum cloner, described byX;). (i =1,...,M) be an orthonormal basis of the

density operatorﬁlgom) and'[)l(;om), respectively, are identi- cloning machine Hilbert space. This cloner is initially
cal, i.e., prepared in a particular stafg),. The action of the
cloning transformation can be specified by a unitary
ﬁg"‘“) = f;l(,om). (5) transformation acting on the basis vectors of the tensor

product space of the original quantum systgh),, the
The reduced density operat,@&out) (ﬁl(,om)) is obtained via copier, and an additional/-dimensional system which

tracing over the copier and the cloh€a) after the cloning becomes the copy (which is initially prepared in a specific
is performed. state [0),). Let us consider the transformation of the
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basis vectors relation
M
W)l O)p1X)r — el WidalWids|Xi)e + d D (W)l W), c +2M — 1d* = 1. (10)
JFi . . . .
4 _ ' Using the transformation (9) we find that the partieles
1 )alWip) 1X;)s ) and b at the output of the cloner are in the same

with real coefficientsc and d. From the unitarity of state (have the same reduced density matrixes), which is
the transformation (9) it follows that andd satisfy the | described by the density operator

M M
p = pp = S el + (M = D)Wl + Y aiai[2ed + (M — 2d* W)Y + 1. (12)
i=1 ij=1

i#j

Now our task is to find the values farandd such that | pendent (i.e., all states are cloned equally well), we evalu-
the density operator in Eq. (11) takes the scaled form ofte the Bures distance (6) between the density operators

Eq. (8). This directly guarantees the universality of thedescribing the output of the cloner and the ideal clone. In

transformation (9). our particular case, we find that the distance betwlh

C_omparing Eq_s. (8) and (11) we find thaandd must g f)gd) depends only on the dimension of the Hilbert
satisfy the equation spaceM, but not on the state which is cloned, i.e.,

c? = 2cd. (12) 73\
Taking into account the normalization condition in  ds(p{*. pi¥) = \5(1 _\/m> - (19)

Eq. (10), we find that . _ . _
The Bures distance in Eqg. (15) is maximal when states

ct = L, 2 — ¥, (13) in an infinite-dimensional Hilbert space are cloned, and
(M +1) 2M + 1) in that case we find lim—.. dz(p ", pody = V2 = V2.
from which it follows that the scaling factaris This means that, even for an infinite-dimensional system,
M + 2) reasonable cloning can be performed, which is reflected
s=c+ M —2d* = ———%. (14) in the fact that the corresponding scaling factas equal
2M + 1) to1/2.

If M =2, the transformation (9) then reduces to the Using the transformation in Eq. (9), we can also find
cloning transformation for qubits introduced in Ref. [4]. the state of the copy machine after the cloning has been
For this case the optimality of the cloning transformationperformed,
(i.e., thats = 2/3 is the maximum possible value of the A(out) _ 127 ~(ANT g
scaling factor) has been proven by Gisin and Massar [5] p)(‘ ' =2d (p)(‘ T 2d, (16)
(see also later work by Brusd al. [6]). We have numeri- i.e., the cloner is left in a state proportional to the trans-
cally tested the optimality of the cloner described by theposed state of the original quantum system. The von Neu-
unitary transformation (9). Werner [14] has recently anainann entropy of the copier at the output reflects the degree
lyzed general limits on the fidelity of universal cloning. of entanglement between the copies and the copier. As
His results independently confirm that the transformatiorexpected, this entropy does not depend on the state to be
(9) is optimal. copied and is just a function of the dimension of the Hilbert
We note that the scaling factor, which describes thespace, i.e.S = In(M + 1) — (2In2)/(M + 1). This is
quality of the copy, is a decreasing function®f This again an increasing function @f which reflects the fact
is not surprising, because a quantum state in a largdhat the copies and the copier become increasingly corre-
dimensional space contains more quantum informatiofated asV increases.
than one in a small-dimensional space (e.g., a state in a We also note that the linearity of quantum mechanics
4-dimensional space contains information about two qubitémplies not only that ideal cloning of the form given in
while a state in a 2-dimensional space describes only Eq. (4) does notexist but also that there is no universal
single qubit), so that, alf increases, one is trying to copy cloning transformation which would result in a separable
more and more quantum information. On the other handputput of the form
it is interesting to note that in the limi — <o, i.e., in
the case where the Hilbert space of the given quantum p = sp© @ s +
system is infinite dimensional (e.g., a quantum-mechanical
harmonic oscillator), the cloning can still be performedsuch that the reduced density operatpi&” and s>
efficiently with the scaling factor equal tiy2. have the scaled form (8). In other words, the cloning
In order to confirm that the quality of the copies which transformation which satisfies the conditions (i)—(iii) pro-
the cloning transformation (9) produces is input state indeduces two clones which are entangled. From this one may

1 —
M2

i, e1,, @7
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adopt the following interpretation of cloning: After the using a nonlocal copier than when two local copiers are
cloning, the information is distributed in such a way thatused. Obviously, there is a price to be paid—nonlocal
some of it is in the copies, some is in the entanglementloners are likely to be more difficult to implement in
between the copies, some is in the copy machine, angractice than local cloners.
some is in the entanglement between the copies and the The quality of the copies which are produced by the
copy machine. The information in the entanglement andwo different methods are also different. Local copying
in the copy machine is effectively lost if we just look at has the disadvantage that the quality of the copies it
the copies, and this is why the copies are not perfect.  produces depends on the state being copied, so that, in
Until now we have considered only the cloning of puregeneral, the copies are not in the scaled form which
states. Nevertheless, the cloning transformation (9) can beppears in Eq. (8). However, in the special case=
applied successfully for the universal cloning of arbitrary3 = 1/+/2 they are, and the scaling factor4¢9. This
impure states. To be specific, let us assume the mostan be compared to the input-state-independent value of

general density operat@rﬁ,m) =X Ayl¥) (Y| Itcan s = 3/5 for the nonlocal copier. Thus, we see that the

be directly shown that, with the cloning transformationnonlocal copier produces better copies.

described above, one obtains the two clones at the output This work was supported by the Royal Society and by

with the reduced density operators given in the scaledhe Slovak Academy of Sciences.

form (8). The scaling factor is the same as for pure

states. This proves once again the universality of the

cloning transformation—arbitrary unknown states (pure

or impure) are universally cloned with the same fidelity
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