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We present a universal algorithm for the optimal quantum state estimation of an arbitrary finite
dimensional system. The algorithm specifigshgsically realizabli.e., finite) positive operator valued
measurement on a finite number of identically prepared systems. We illustrate the general formalism
by applying it to different scenarios of the state estimatiorVoindependent and identically prepared
two-level systems (qubits). [S0031-9007(98)05400-3]

PACS numbers: 03.65.Bz

Suppose we hav¥ quantum objects, each prepared indoes exist then using a simple formal construction one
an unknownpure quantum state described by a densitycan generate from the original optimal measurement
operatorp = |){¥|. The question is: What kind of another measurement which is covariant and which, at the
measurement provides the best possible estimatigi?of same time, conserves optimality of the original solution.
Clearly, if we have an unlimited supply of particles in the In the present Letter we address the question of how to
statep, i.e., whenN approaches infinity, we can estimate find finite optimal generalized measurements if they exist.
p with an arbitrary precision. In practice, however, This is a fundamental question because dinlite POVM
only finite and usually small ensembles of identicallyschemes are experimentally realizable. We propose a
prepared quantum systems are available. This leads tmiversal algorithm about how to look for these POVM
an important problem of the optimal state estimationschemes and we apply it explicitly in two physically
with limited physical resources. It is a generic problem,interesting cases of the state estimationNofdentically
common to many areas of quantum physics ranging fronprepared two-level systems (qubits).
the ultraprecise quantum metrology to eavesdropping in In order to set up the scene, let us assume that gtate
guantum cryptography. is generated from a reference state = |io) (ol by a

Within a framework of an elementary group theory theunitary operatior/ (x) which is an element of a particular
problem of the state estimation can be reformulated as anitary finite dimensional representation of a compact
more general problem of estimating an unknown unitaryLie group G. Different x denote different points of the
operation from a group of transformations acting on agroup [e.g., different angles of rotation in the case of the
given quantum system (i.e., the state estimation follows aSU(2)] and we assume that all values xfare equally
a special case). Holevo [1] has shown that this problenprobable.
can be solved via thecovariant measuremen{CM) Our task is to design the most general POVM, mathe-
approach. Unfortunately, the covariant measuremennatically described as a sgb,}*_, of positive Hermitian
corresponds to ainfinite (i.e., consisting of an infinite operators such th&, 0, = 1 [2,3], which when applied
continuous set of operators) and therefore physicallyo the combinedsystem ofall N copies provides us with
nonrealizable positive operator valued measuremerthe best possible estimation ¢f [and therefore also of
(POVM). We note that from the logic of the CM it U(x)]. We quantify the quality of the state estimation in
follows that if any optimal measurement (finite or infinite) terms of themeanfidelity

0031-900798/80(8)/1571(5)$15.00 © 1998 The American Physical Society 1571



VOLUME 80, NUMBER 8 PHYSICAL REVIEW LETTERS 23 EBRUARY 1998

N times first trace in Eq. (1) can be rewritten as

7=3 [ axTi10, U0 58 ® Ux)pUT ] _ o
Z G F=> f Tr[0, UY (x)Q0UNT (x)]
X Tr[U®)poU (x)U, poU ], (1) rAe
which corresponds to a particular choice of a cost function X TrUx)poUT (x)U, poU] 1 dx, (2)

[3] used in a context of detection and estimation theory\yhere /¥ (x) is a new representation of the same group
The mean fidelity (1) can be understood as follows: Ing: it is equivalent to thev-fold symmetrized direct prod-
order to assess how good a chosen measurement is Wgt [5] of the original representatioti(x). Here UV (x)

apply it many timesimultaneouslpnall N particles each  transforms the(™;*;!)-dimensional reference state de-
in stateU(x)poU*(x). The parametex varies randomly noted as).

and isotropically [4] over all points of the group during

many runs of the measurement. _ trace in Eq. (2) and, taking into account that in Eq. (2)
For each result of thg measurement, i.e., for each,, integrate over the whole group parametrized by,
operator O,, we prescribe the statdy,) = U,|¢) e can substitut&/" (x)UNt — UV (x) and U(x)UT —
representing our guess (ie., estimation)_of the origina (x). Now, using the Iinrearity of the trace Opel’;.tiOn as
state. The prgbablllty of the Aoutqfome is equal 10 \ye| as the linearity of the representation of the group
TrlO,UX)poUT(x) ® --- ® U)poU' (x)], while the & ;511 s a linear adjoint representation) we rewrite
corresponding fidelity of our estimation is [IF(x)pg X Eq. (2) as
Ut(x)U,poUt]. This fidelity is then averaged over
all possible outcomes and over many independent runs - _ A 77N 7Nt
of fhe measurement with randomlyyand Fi)sotropically f= Z:Tr[O,U,, kU, 3)
distributed parametess. We want to find the generalized

We can insert the identity operatbr’ UNT into the first

measurement whicmaximizeshe mean fidelityf given where
by Eqg. (1). & N(A . 77Nt N

The combined system o identically prepared ref- I — G UT QU () TrUX)poU " (x)po] dx,
erence states always remains within ttaally sym- 4)

metric subspaceof H* ® H* ® ---H*, where H* is . . "

k-dimensional Hilbert space of the reference state irfs @ positive Hem?'“a” operator. L

which the corresponding unitary representatiofx) acts. Let us now derive an upper bound on the mean fidelity.

Thus the dimensionality of the space in which we con- 1aKing into account positivity of the operatbr(i.e., ' =

struct the POVM{0,} is d = (N,'fffl . In this case the 2 )"'|¢i><¢_il; Ai = 0) arjd the cor_npleteness condition
| for POVM (i.e., .. O, = 1) we obtain

F =2 TrOUYFUNTT = 3 X Tr[0, UM 1) (il UNT] = Amax Y TH[O, U} 16 (il U]

A . (5)
= /\maxZTr[OrUﬁleﬁvT] = )\maxTr[l] = Amaxd .

From Eq. (5) it clearly follows that the upper bounld and specifically fofinite realizable POVMs this argument
can be achieved if and only if all operatos. forming  cannot be used and we have to proceed differently.

the POVM satisfy the following conditions: (i) Each To find the solution of the problem we start with
O, is proportional to a suitably rotated (by soni&') the following observation. Let us assume that we have
projector on the eigenvector of with the highest some POVM{O,}*_, and the corresponding guesde¥
eigenvalue, i.e., for all0, there existsUY, such that which maximize the mean fidelity. We can always
0, = ¢, UN|pmax) (dmad UNT. This UY, or more pre- construct another POVM with more elements which
cisely U, |4), is our guess associated with the resulf’* is also optimal. For example, Igt us consider a one-
(i) All ¢, are real and positive, to assure that allparametric subgrou/(¢) = expiX¢) of our original

O, are positive operators. (i) Finally, the opera- group G and choose a basifm)}%_, in which the
tors O, have to satisfy the completeness criterionaction of this subgroup is equivalent to multiplication by
S, crUN [ max) (dmadlUNT = 1. As shown by Holevo a factore’“~¢ [i.e., the operatorlU(¢) is diagonal in

[1] in the case of thanfinite POVM condition (iii) is  this basis andw,, are eigenvalues of the generatk.
fulfilled for covariant measurements, providing the repre-Then we taked points ¢; (s = 1,...,d) and generate
sentationU" of the groupG is irreducible (see example from each original operatoO, a set of 4 operators

B below). This statement follows from the Shur lemma.0;, = éUN(¢S)O,UN*(¢S). In this way we obtain a
However, in the general case of reducible representationew set ofld - R) operators such that the mean fidelity for
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this new set of operatorg, = >, Tr[0; ,UY FUN!],is ~ From here it follows tha{¥,) are determined as zero-
equal to the mean fidelity of the original POVMO,}  eigenvalue eigenstates. More specifically, they are
because we ascribe to each eventual rdsyli] a new functions of 4 Lagrange multipliers{L,,}.—; and R
guessU,, = U(¢;)U,. However, in order to guarantee vectors{x, }X_, [wherex, determineU, asU, = U(x,)].
that the new set of operator®;, is indeed a POVM we These free parameters are in turn relatedR/ieonditions

have to satisfy the completeness condition De{(F — UNTLUY)] = 0. The mean fidelity now is
A A 1 N A Nt equal to TrL. At this stage we solve a systemdfinear
I = ZZOm - ZZ d U™ ($5)0, U™ (¢s) equations [see the second formula in Eq. (9)] foun-

o 0l _‘Yw )’ (©) known parameters,. All solutions forc, parametrically

= 226—2(0) lm) (n| . depend onL, andx, which are specified above. We
o d o note that the number of free parameters in our problem

Let us notice that, by the appropriate choicedf, the depends onR which has not been specified yet. We
¢ithstwm—an) chooseR such that there are enough free parameters so

sum Y 7 can always be made equal to5,,, e i e -
providing all eigenvalues are nondegenerate [6] (this idhat the mean fldell_ty is maX|m_|zed and _S|multaneously all
are positive. This freedom in the choice of the value of

basically a discrete Fourier transform and we illustrater ) e Y
this point in detail in example A). In this case, the R also reflects the fact that there is an infinite number of

conditions (6) for the off-diagonal terms in the basis€duivalent (i.e., with the same value of the mean fidelity)

Im) aretrivially satisfied whereas the diagonal terms argoptimal POVMs. The whole algorithm is completed by
equal to unity because the original POV, } guarantees 1nding ¢, from Eq. (6) which explicitly determine the
that 3,(0,)mwm = 1. Moreover, even if the original set finite optimal POVM{0;,}. This is the main result of our
of operators{0,} does not satisfy the full completeness L€tter: _ , _ ,
condition and the conditions for the off-diagonal terms_ " the following we will apply this general algorithm
are not satisfied (i.e., these operators do not constitutd"t© two physically important examples. _
a POVM) we can, using our extension ansatz, always —X@Mplé A—Suppose we hav&/ identical copies of
construct goroper POVM {0, ;}. This provesthat when  SPIN 1/2 all prepared in the same but unknown pure quan-
we maximize the mean fidelity (3) it is enough to assumdU™m state. If we choose the grodpto be U(2), i.e., the
d diagonal conditions rather than the original complete sefMPI€te unitary group transforming a two-level quantum
of 4 constraints for diagonaind off-diagonal elements. ~ SyStém, we can straightforwardly apply the optimal esti-
Now we turn back to our original problem of how to mation scheme as described above. To be more precise,
construct the POVM which maximizes the mean fidelity.due to the fact that there exist elements of the group U(2)
To do so we first express the operatofs in the for which the reference state is the fixed point (i.e., itis in-
form O, = ¢, UN|W,)(¥,|UNt, where|W,) are general sensitive to its action) we have to work only with the coset
normalized states in the-dimensional space in which space®’ |y, [5]. In the present case this is a subset
the operatord), act, andc, are positive constants. This Of the SU(2) group parametrized by two Euler angleg
substitution is done without any loss of generality [7]_and(the third Euler angley is fixed and equal to zero). This

it permits us to rewrite Eq. (3) so that the mean fidefity SUPSet is isomorphic to the Poincare sphere. _
does not explicitly depend o, i.e The unitary representatiofi is now the representation
ror 15y

_ A (%) [we use a standard classification of SU(2) represen-
=2 ¢, TrlIW,)(¥,|F]. (7)  tations, wherg(j) is the spin number]. Itsv-fold sym-

_ r . . metrized direct product (we denote this representation as
Obviously, the completeness conditidp O, = 1 is now UV) is the representation classified @) (which trans-
modified and it reads forms a spin¥/2 particle). Choosing the standard ba-

ZcrUqu,r><\l,r|UN1' -1 (8) sis | j,m) with m = —j,...,j in which the coordinate
" " " expression forU(6, ) corresponds to standard rotation
From our discussion above it follows that when maxi-matricesDin. (6, ,0) = e*i’”‘”din,n(e) [8], we obtain the
mizing the mean fidelity (7) it is enough to apply only  matrix expression for the operatér
constraints, ¢, [(m|Uy . |¥,)|> = 1 (herem = 1,...,d)
out of thed? constraints (8). Therefore to accomplish our P j” dd ]” sin(#) d6 (1 + coso)
task we solve a set of Lagrange equations wittagrange mn 0 0 8
multipliers L,,. If we expressL,, as eigenvalues of the v N,
operatorl. = Y, L,,|m){m| then we obtain the final very X D’ x(0,0)D; v (6,P) (10)
compact set of equations determining the optimal POVM B B

[F_U{VTZA,UN:H‘I’,) 0, _ N/2+m+1 .
(9) (N+2)(N +1) ™"
> el mlUN 1w,

1. . . . . .
When we insert this operator in Eq. (5) we immediately
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find the upper bound on the mean fidelity to be equal

N+1 A 2 d!// \/(Nlllm)(NZXn) i
to N+2- Fm,n = f ~_ N+l ell//(n—m)(l + COS¢)
This is the main result of the paper by Massar and 0 27 2 (13)
Popescu [9] who noted that this upper bound can be at- VGG
tained using the special POVM which consists ofréinite = T(Zém,n + Omn+1 T Om+1n)-

continuous set of operators proportional to isotropically ro- o _
tated projectoty, 5) (5, 5|. This resultis closely related The upper bound on the fidelity Eq. (5) is now too
to the covariant measurements of Holevo [1]. conservative to be of any use (greater than unity). We
However, our aim is to construct an optimal afite  ¢an. however, solve the system of Egs. (9) which in this
POVM. To do so, we have to find a finite set of pairs of Particular case of the commutative group reads
angles{(ar,tpr)} such that the completeness conditions (8) [F — £]|W) = 0: m | WY =1: ¥Ym. (14)
which now take the form o
, , The condition DetF' — L) = 0 now determines the
Zcrefizp,(m*n)dzﬂ(elﬁ)d?ﬂ(gr) = S (11) eigenvector|¥) WiFh_the zero eigenvalue as a functipn
" "3 "3 of Lagrange multipliersL,,. When we substitute this
i . ~eigenvector into the second equation in Eq. (14) we
are fulfilled. Following our ge_n_eral scheme we first optain a set of equations fdr,, from which the statd¥)
satisfy the completeness conditions (11) for diagonatan pe determined. The final POVM is then constructed

terms [compare with Eq. (9)] by rotation of|¥) by N' + 1 angles, in such a way that
N all off-diagonal elements o} (Oy),... become equal to
Zcrd,;,g(ﬁr)z =1, m=-N/2,....N/2. (12) zero. Thisis done in exactly the same way as in example

A. The resulting POVM corresponds to tiien Neumann

To satisfy these completeness conditions we chopse ~ Measuremenperformed on thecompositesystem ofall

1 anglesd, to be equidistantly distributed in th@, 7) N ions characterized by the set of orthogonal projectors
[obviously, there are many other choices which may suit 1 N,

the purpose—see discussion below Eg. (9)]. Then wePs = [¥o) (¥l |¥,) = N D g,
solve the system of linear equations for + 1 vari- =0 (15)
ablesc,. For this choice of, the system (12) has non- _
negative solutions. Finally we satisfy the off-diagonaland the maximal mean fidelity is given as the sum:

conditions by choosingV + 1 angles ¢, = = for F=1/2+ 12V YY),
: SN gy . L .
eachd,. In this casegyry 2—ge'’ = 8, forall y = Finally, we note that the Hermitian operatdr con-

—N/2,...,N/2 and the off-diagonal conditions are sat- structed from the optimal POVM (15)
isfied straightforwardly. This concludes the construction

N
of the optimal and finite POVM for the spini/2 state b = Z 2m sP, (16)
estimation. SN+1

Example B—Consider a system d¥ effectively two-

. L ; with the corresponding guesses as eigenvalues, is identical
level altoms (qubits), all |n|t|aI_Iy prepared mﬂthe referenceto the Pegg-Barnett Hermitian phase operator [11] origi-
state 7= (0) + |1)) by applying so called; pulse t0  nay introduced within a completely different context.
initially degxmted atoms. Then the atoms undergo the | conclusion, we have presented a general algorithm
free evolution effectively described by the Llj(l) group; for the optimal state estimation from finite ensembles.
i.e., the state of the single qubit evolves g$(l0) + |t provides finite POVMs which, following the Neumark
expligs(1)}1)). Our task is to find a measurement which theorem [10], can, at least in principle, be implemented as
provides the optimal estimation of the phagé&) of the  simple quantum computations. We discuss these aspects
U(1) rotation which carries the information about thein detail elsewhere [12].
interaction parameters. We thank Serge Massar, Jason Twamley, Susana
In the standard classification of representations of théduelga, Thomas Pellizzari, and Chiara Macchiavello
U(1) group the single isolated qubit is described byfor helpful discussions. This work was supported by
the direct sum of two one-dimensional representationshe Open Society Fund and FCO, the United Kingdom
U = (0) ® (1). The representatiot’" transforming the EPSRC, European TMR Network ERP-4061PL95-1412,
entire system ofN qubits is then equal to the direct Hewlett-Packard, Elsag-Bailey, and The Royal Society.
sum of representations of the forfd) & (1) & ---(N).
This acts in theN + 1 dimensional space spanned by
basis vectordm), m = 0,1,...,N. In this basis matrix [1] A.S. Holevo, Probabilistic and Statistical Aspects of
elementsF, , of the operatorr given by Eq. (4) take the Quantum Theory (North-Holland, Amsterdam, 1982),
form p. 163, and references therein.
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