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Quantum-state synthesis of multimode bosonic fields: Preparation of arbitrary states
of two-dimensional vibrational motion of trapped ions
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We present auniversalalgorithm for an efficientdeterministicpreparation of anarbitrary two-mode bosonic
state. In particular, we discuss in detail preparation of entangled states of a two-dimensional vibrational motion
of a trapped ion via a sequence of laser-stimulated Raman transitions. Our formalism can be generalized for
multimode bosonic fields. We examine stability of our algorithm with respect to a technical noise.
@S1050-2947~98!04209-7#

PACS number~s!: 42.50.Dv, 03.65.Bz, 32.80.Pj
es
nt

e

ic
m

f a

es

ed
i

b
r-
he
th
e-
se
ge

e
.

p-

ho
b-

nt
s
n

go-

or-
lti-
re-

-

en-
the

si-
aps

f a
se-
onic

d by
m

r-
ts.

n

y a
ate

to
nder
of
ex-
r a

joint
I. INTRODUCTION

The ability to control preparation and evolution of stat
of quantum systems opens new horizons in experime
physics~e.g., tests of fundamental concepts of quantum m
chanics! as well as in potential technical applications~such
as quantum information processing!. Recent advances in
quantum optics~micromasers, cavity QED! @1# and atomic
physics ~dynamics of trapped ions! @2# have demonstrated
that a macroscopic observer can effectively control dynam
as well as perform a complete measurement of states of
croscopic quantum systems. In particular, preparation o
arbitrary quantum state of asingle-mode electromagnetic
field in micromasers and one-dimensional~1D! vibrational
motion of trapped ions have been discussed in literature@3–
9#. Experimental realizations of highly nonclassical stat
such as Fock states, squeezed states, or Schro¨dinger-cat
states of thesesingle-mode bosonic fields have been report
@1,9#. The ability to synthesize an arbitrary motional state
a key prerequisite for a quantum measurement of anarbi-
trary motional observable of a trapped ion as proposed
Gardiner, Cirac, and Zoller@10#. These authors have gene
alized the 1D synthesis of motional states to 2D and hig
dimensions. In spite of the conceptual elegance, the me
proposed by Gardiner, Cirac, and Zoller is difficult to impl
ment in general. The problem is that the number of la
operations required for preparation of a two-mode tar
stateuC target& of the form

uC target&5 (
m50

Mmax

(
n50

Nmax

Qmnum,n& ~1.1!

dependsexponentiallyon the dimensionality of the subspac
of the Fock space in which the target state is embedded
particular, if Nmax5Mmax then the number of necessary o
erations is proportional to 2Mmax32Mmax. This exponential
dependence restricts applicability of the proposed met
~see below!. A novel approach which overcomes this o
stacle was introduced very recently by Kneer and Law@11#.
The authors have considered a photon-number-depende
teraction which is induced by a detuned standing-wave la
field in y direction. It keeps on resonance only transitio
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between Fock statesum,n& with a fixed numbern5ny of trap
quanta iny direction while applying sequentially the 1-D
preparation scheme@8# in the x direction for each particular
n5ny .

In this paper we propose an alternative universal al
rithm for construction~synthesis! of an arbitrary quantum
state of the two-mode bosonic field which can be straightf
wardly generalized for the preparation of an arbitrary mu
mode system. In our algorithm the number of operations
quired for a preparation of the two-mode state~1.1! grows
only polynomially as a function ofNmax and Mmax. In par-
ticular, if Nmax5Mmax, then the number of operations is pro
portional to 8Mmax

2 .
To make our discussion as close as possible to experim

tal realization we consider the preparation of states of
two-dimensional vibrational motion of a trapped ion@12#.
The choice of the system is motivated by the fact that dis
pative effects can be significantly suppressed in ion tr
which is important for adeterministicengineering of quan-
tum states. Moreover, the quantized vibration motion o
trapped ion can be effectively controlled by a proper
quence of laser pulses tuned either to the atomic electr
transition or to resolved vibrational sidebands@2,9#.

The simplest quantum-state preparation is represente
a simpleunitary evolution of an input state of the syste
governed by a specific~generally, nonlinear! Hamiltonian.
Obviously, the fixed Hamiltonian restricts the family of ta
get states which can be ‘‘generated’’ from available inpu
Another way to prepare states of the system of interest~e.g.,
single-mode bosonic field! is to consider quantum interactio
between this system and an adjoint quantum system~e.g.,
fermions!. Dynamics of these two systems is governed b
specific interaction Hamiltonian. The desired quantum-st
engineering is then achieved byconditional measurements
performed on the adjoint quantum system@4#. This nonuni-
tary selection of specific quantum trajectories allows us
synthesize essentially all quantum states of the system u
consideration. But there is a price to pay—the probability
the outcome of the given conditional process can be
tremely small. To overcome this problem one may conside
sequence of interactions between the original and the ad
systems. These interactions~channels! are governed by dif-
2481 © 1998 The American Physical Society
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ferent Hamiltonians with just one channel turned on a
given time. Coupling constants in these Hamiltonians a
times of duration of given interactions are in this casefree
parameters which can be appropriatelytunedso that at the
output the system of interest is disentangled from the adj
system~see below! and is prepared in the desired state. T
approach has recently been utilized by Law and Eberly@8#
who have shown that by a suitable switching between
channels of the atom-field interaction one can generate
arbitrary state of the single-mode cavity field. It is importa
to note that quantum states of 1D vibrational motion
trapped ions are experimentally created also via a sequ
of laser pulses tuned either to an electronic transition or
appropriate vibrational sideband@9#, that is, sequentia
switching of different interaction channels is used. Gener
zations of the 1D vibrational quantum-state synthesis to
and more dimensions have been discussed recently@10,11#.
In what follows we introduce auniversalscheme which en-
ables deterministic preparation of anarbitrary two-mode tar-
get state via an appropriate switching between las
stimulated Raman transitions described by single- and t
mode interaction Hamiltonians. The method can
generalized, e.g., for a trapped ion in a 3D trap potential
other multimode bosonic systems. Even for higher dim
sions the number of preparation operations scales polyno
ally with the dimensionality of the subspace of the Fo
space in which the target state is embedded.

The paper is organized as follows. In Sec. II we introdu
our algorithm for 2D quantum-state synthesis. In Sec. III
discuss a physical realization of the preparation scheme
Sec. IV we examine the stability of our algorithm with r
spect to a technical noise. Fidelity between outputs and
cific target states is evaluated. We finish our paper with c
clusions.

II. QUANTUM-STATE SYNTHESIS

Without any loss of generality let us assume that we w
to generate an arbitrary two-mode state given as a finite
perposition of number~Fock! states~1.1!. To describe the
preparation algorithm we first split the whole Hilbert spa
into an appropriate set of finite-dimensional subspaces
beled by a specific quantum number. Then we introduce
sorts of interaction channels. The first set of Hamiltonia
will be responsible for dynamics within a given subspa
while the second one will realize a ‘‘transfer’’ of probabilit
amplitudes between different subspaces. In particular, le
consider vibrational states of a trapped ion, confined in
harmonic potential. Excitations of two vibrational modes a
described by creation and annihilation operatorsâm and
âm

† (m5x,y). The Hilbert spaceHvib of all two-mode vibra-
tional states can be divided to subspaces with constant
number of vibrational quanta, i.e.,Hvib5 %HJ , J
50,1, . . . ,̀ , whereHJ is spanned by two-mode Fock stat
uJ,0&,uJ21,1&, . . . ,u0,J&. The subspacesHJ are dynamically
independent~invariant! for those Hamiltonians which do no
change the total number of vibrational quantaĴ5âx

†âx

1ây
†ây . However, to realize controlled manipulations wi

states within a given subspaceHJ we need an interaction o
the 2D bosonic field with another quantum system. In
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case of trapped ions it is natural to assume the coupling
internal energy levels of ions. In particular, we use thr
internal electronic statesu i & ~in L or J configurations! with
energies\v i ( i 5a,b,c) which form the basis of the Hilber
subspaceHin . Due to quantum interaction between the v
brational and internal degrees of freedom the total state v
tor of the composed system with the given maximum num
of vibrational quantaJmax5Mmax1Nmax at time t reads

uC~ t !&5 (
m50

Mmax

(
n50

Nmax

(
i 5a,b,c

Qm,n; i~ t !um,n& ^ u i &

5 (
J50

Jmax

(
k50

J

(
i 5a,b,c

Qk,J2k; i~ t !uk,J2k& ^ u i &,

~2.1!

which reflects quantum-mechanical entanglement betw
the two subsystems. We assume that initially the ion is in
internal stateua& and the vibrational motion is cooled to th
ground stateu0,0&. That is, the initial state vector of the com
posed systemuC(t50)&5u0,0& ^ ua& is factorized. Our task
is to find a unitary evolutionÛ†, such that at some timet5T
the state vector~2.1! can again be factorized, while the v
brational state of the ion is described by the target vec
~1.1!, i.e., uC(t5T)&5Û†u0,0& ^ ua&5uC target& ^ ua&.

In what follows we prove that the unitary transformatio
Û can be represented by a sequence of five ‘‘elementa
unitary transformationsÛ (p) (p51, . . . ,5) which act in the
product Hilbert spaceHvib^Hin and which correspond to
five interaction channels associated with interaction Ham
toniansĤ (p):

Û5Â0H )
J51

Jmax

ĈJB̂J21ÂJJ ,

ÂJ5Û uJ,0,b&
~1! Û uJ21,1,a&

~3!
•••Û u2,J22,b&

~1! Û u1,J21,a&
~3! Û u1,J21,b&

~1! Û u0,J,a&
~3! ,

B̂J5Û uJ,0,c&
~2! Û uJ21,1,b&

~4! Û uJ21,1,c&
~2!

•••Û u1,J21,b&
~4!

3Û u1,J21,c&
~2! Û u0,J,b&

~4! Û u0,J,c&
~2! ,

~2.2!

ĈJ5Û uJ,0,a&
~5! .

The operatorsÂJ , B̂J , ĈJ are built up from ‘‘elementary’’
unitary transformationsÛ uk,J2k,i &

(p) where superscriptp deter-
mines the interaction channel and subscript indicates
parameters of the interaction are adjusted to transfercom-
pletely the current population of the component stateuk,J
2k& ^ u i & to the ‘‘neighboring’’ state according to the give
type of interaction~see below!.

The set of the ‘‘elementary’’ unitary transformationsÛ (p)

is sufficient ~even though not unique! to evolve the target
state~1.1! into the vacuum and vice versa. To specify the
we will analyze the ‘‘deevolution’’ of the target state into th
vacuum state. We will perform this deevolution via a sy
tematic ‘‘transfer’’ of population from state vectors wit
higher to smaller number of vibrational quanta. That is,
choose the operatorsÛ (p) so that at a given step of the un
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FIG. 1. Recursive ‘‘deevolution’’ algorithm:~a! Vectors um,n& ^ u i & are represented as points of a latticem,n with internal levelsi
5a,b,c shown in ‘‘ovals.’’ Components which enter~at this stage of ‘‘deevolution’’! the state vector~2.1! are indicated byd. Dashed lines

connect basis vectors from subspaces with constant number of trap quantaJ. ~b! The action of the operatorÂJ̃ for J̃53. The ‘‘elementary’’

transformationÛ u0,J̃,a&
(3) transferscompletelythe population of the stateu0,J̃& ^ ua& to the stateu1,J̃21& ^ ub& as indicated by solid arrow. The

atomic transition scheme of the corresponding stimulated Raman processp53 is shown in the inset. NextÛ u1,J̃21,b&
(1) transfers the population

from u1,J̃21& ^ ub& to u1,J̃21& ^ ua& by means of the interaction channelp51. The dashed arrows indicate simultaneous transitions w

lead to a change of the state vector~2.1!. The application of the sequenceÂJ̃ ‘‘shrinks’’ the whole population from the given subspac

HJ̃^Hin to the component stateuJ̃,0& ^ ua&. ~c! Specific preparation of the subspaceHJ̃21^Hin by the operatorB̂J̃21. The operatorÛ u0,J̃21,c&
(2)

transfers the population of the stateu0,J̃21& ^ uc& to u0,J̃21& ^ ub&, while Û u0,J̃21,b&
(4) transfers the population fromu0,J̃21& ^ ub& to u1,J̃

22& ^ ub&. The inset shows the schemes of the utilized stimulated Raman transitionsp52,4. Finally, the sequenceB̂J̃21 leaves onHJ̃21

^Hin only the component stateuJ̃21,0& ^ ub& and those states with the internal levelua& contributing to Eq.~2.1!. ~d! The operatorĈJ̃

5Û uJ̃,0,a&
(5) transfers the population of the component stateuJ̃,0& ^ ua& to the stateuJ̃21,0& ^ ub&. The procedures~b! and ~c! are recursively

repeated to ‘‘deevolve’’ the initial stateuC target& ^ ua& into u0,0& ^ ua&.
’’
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tary deevolution a particular probability amplitudeQk,J2k; i
is made equal to zero. In Fig. 1 we visualize the ‘‘direction
of the action of operatorsU uk,J2k,i &

(p) . Namely, in Fig. 1~a! we
represent state vectorsum,n& ^ u i & as ‘‘ovals’’ located at the
points of the lattice marked by parametersm,n associated
with vibrational state of an ion, while its internal state re
resented by a simple energy level diagram~population of a
given internal level is indicated by a bullet!. Dashed lines
indicate the subspacesHJ^Hin labeled by a constant numbe
of trap quantaJ.

Let us start the ‘‘deevolution’’ procedure of the targ
state~1.1! into vacuum. After timet5T2t the vector de-
scribing the vibrational and internal state of the ion is giv
by Eq.~2.1!. We assume that the deevolution is performed
such a way that at this moment the state vector~2.1! is com-
posed only of state vectors from subspacesHJ^Hin with J
-

n

<J̃ (<Jmax). Now we apply three sequences of operatio
described by the operatorsÂJ̃ , B̂J̃21, and ĈJ̃ , respectively
@see Eq.~2.2!#.

The action of the operatorÂJ is illustrated in Fig. 1~b!. It
describes a process in which the first ‘‘elementary’’ transf
mation Û u0,J̃,a&

(3) transferscompletelythe population of the

stateu0,J̃& ^ ua& to the stateu1,J̃21& ^ ub& @see the solid ar-
row in Fig. 1~b!; dashed arrows indicate simultaneous tra
sitions which are not controlled at the given stage#. This
process can be realized by irradiating the ion with two ext
nal laser fields with tunable frequenciesvx andvy in x and
y directions. Adjusting the resonance conditionsvy2vx
5vb2va1nx2ny ([v3) the stimulated Raman transitio
@see the inset in Fig. 1~b!, p53# can be described in the
Lamb-Dicke regime by the effective interaction Hamiltonia
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~we discuss physical conditions under which this and all s
sequent Hamiltonians can be justified in Sec. III!:

Ĥ35g3âx
†âyub&^aue2 iv3t1g3* âxây

†ua&^bueiv3t, ~2.3!

with the corresponding time evolution operatorÛ (3)

5exp(2iĤ(3)t) setting \51. If the interaction constantg3
5ug3ueiu3 and the duration of the interactiont are chosen to
fulfill the condition

ieiu3Qk,J2k;acos@ ug3utA~k11!~J2k!#

1Qk11,J2k21;bsin@ ug3utA~k11!~J2k!#50,

~2.4!

then the population of the component stateuk,J2k& ^ ua& is
completely transferred to the stateuk11,J2k21& ^ ub&. @For
instance, in the situation described by Fig. 1~b! the probabil-
ity amplitude Q0,J̃;a becomes equal to zero.# Once this is
done, then the transformationÛ u1,J̃21,b&

(1) is turned on. In this

process the population of the component stateu1,J̃21& ^ ub&
is completelytransferred to the stateu1,J̃21& ^ ua&. The cor-
responding interaction channel is described by the Ham
tonian

Ĥ15g1ub&^aue2 iv1t1g1* ua&^bueiv1t. ~2.5!

Here we assume lasers to be tuned to the electronic tra
tion, i.e., vy2vx5vb2va ([v1). To cancel the term
Qk,J2k;b in the state vector~2.1!, the interaction constant
(ug1ut, u1) have to be chosen to satisfy the condition

Qk,J2k;asin~ ug1ut !1 ie2 iu1Qk,J2k;bcos~ ug1ut !50.
~2.6!

In particular, in Fig. 1~b! the operatorÛ u1,J̃21,a&
(1) cancels

Q1,J̃21;b for J̃53. The successive action of the ‘‘eleme
tary’’ transformationsÛ (3) andÛ (1) which form the operator
ÂJ̃ @see Eq.~2.2!# finally ‘‘shrinks’’ the population of the
subspaceHJ̃^Hin to a single stateuJ̃,0& ^ ua&.

At this stage we start the process of cancellation of
contribution of component statesuk,J̃212k& ^ ub& and
uk,J̃212k& ^ uc& in the ‘‘neighboring’’ subspaceHJ̃21
^Hin @see Fig. 1~c!#. This intermediate procedure is require
to prevent a reverse transfer of population fromHJ̃21^Hin
to HJ̃^Hin @see below and Fig. 1~d!#. For this purpose the
operatorB̂J̃21 is constructed from ‘‘elementary’’ operation
Û (2) andÛ (4) @see Eq.~2.2!#. Namely, the operatorÛ u0,J̃21,c&

(2)

describes the transfer of population of the stateu0,J̃21&
^ uc& to u0,J̃21& ^ ub&. This transfer can be achieved wit
the help of laser pulses tuned to the electronic transition
tween the levelsub& and uc&. The corresponding interactio
HamiltonianĤ (2) and the resonance condition are analogo
to those forĤ (1), Eq. ~2.5! ~we have to replace onlyb→c

anda→b). Further, the operationÛ u0,J̃21,b&
(4) cancels a contri-

bution of the stateu0,J̃21& ^ ub& to the state vector~2.1!.
This interaction channel is described by the Hamilton
-

l-

si-

e

e-

s

n

Ĥ (4) which is obtained from Eq.~2.3! by the substitutionb
→c and a→b. We see that the operatorB̂J̃21 acts likeÂJ̃
but instead of the stimulated Raman processes betweena↔b
the transitionsb↔c are utilized. As the result of the actio
of the operatorB̂J̃21 in the subspaceHJ̃21^Hin only the
component states with the internal levelua& and the state
uJ̃21,0& ^ ub& have nonzero amplitudes.

After the action of the operatorsÂJ̃ andB̂J̃21 the unitary
operatorĈJ̃ is utilized to transfer the population of the com
ponent stateuJ̃,0& ^ ua& to the stateuJ̃21,0& ^ ub& @see Fig.
1~d! for J̃53#. The transformationÛ uJ̃,0,a&

(5) which performs
transitions between subspaces with the number of
quanta differed by one is realized by the process descr
by a single-mode interaction Hamiltonian

Ĥ55g5âxub&^aue2 iv5t1g5* âx
†ua&^bue1 iv5t, ~2.7!

with the resonance conditionvy2vx5vb2va2nx
([v5). The parameters of this interaction channel are de
mined by the constraint

ieiu5QJ,0;acos~ ug5utAJ!1QJ21,0;bsin~ ug5utAJ!50,
~2.8!

for J5 J̃.
As the result of the action of the operatorsÂJ̃ , B̂J̃21, and

ĈJ̃ , all coefficientsQk,J̃2k; i in Eq. ~2.1! are equal to zero.
Moreover, the situation before@Fig. 1~a!# and after @Fig.
1~d!# the action of these operators is the same, except we
‘‘moved’’ from the subspaceHJ̃^Hin toHJ̃21^Hin with the
number of trap quanta decreased by one. This means tha
procedure can berecursivelyrepeated. The given solution o
the ‘‘deevolution’’ gives immediately the recipe for the cr
ation of the target vibrational state from the two-mo
vacuum~with electronic levelua&): We have to change prop
erly the phase shift between external laser fields and re
the sequence in the opposite order, i.e., we applyÛ† on
u0,0& ^ ua&. In this way we can synthesize an arbitrary sta
The number of ‘‘elementary’’ operations involved in th
process is proportional to 2Jmax

2 , which is important for an
experimental realization of the proposed scheme, i.e.,
number of necessary operations increases only polynom
with the increase of the size of the Hilbert space in which
target state is embedded.

In the following section a physical implementation of th
preparation scheme is discussed in more detail.

III. REALIZATION OF INTERACTION CHANNELS

The Hamiltonians which are eligible for the synthesis
two-mode bosonic states have been discussed recentl
several authors@10–13#. Some of the proposals are based
laser-stimulated dipole transitions@10# and phonon-number
dependent interaction via a detuned standing wave@11#. For
our purposes we have utilized the stimulated Raman p
cesses discussed in detail by Steinbach, Twamley,
Knight @13#. In this section following Ref.@13# we briefly
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derive the Hamiltonians which are used in our algorithm@see
Eqs. ~2.3!, ~2.5!, and ~2.7!# and discuss the range of the
applicability. Let us consider a trapped ion confined in a
harmonic potential characterized by the trap frequenciesnx
and ny in two orthogonal directionsx and y. The ion is
irradiated along thex andy axes by two external laser field
with frequenciesvx , vy and wave vectorskx , ky . The laser
fields stimulate Raman transitions between two internal
ergy levelsua& and ub& via an auxiliary electronic levelur &
which is far off resonance. For concreteness, we consideL
configuration with the upper levelur & as outlined in the inse
of Fig. 1~b!. The interaction Hamiltonian for the system u
der consideration can be written in the dipole and rotati
wave approximation~RWA at laser frequencies! in the form

Ĥ int5gx* ei ~kxx̂2vxt !ur &^bu1gxe
2 i ~kxx̂2vxt !ub&^r u

1gy* ei ~kyŷ2vy!tur &^au1gye
2 i ~kyŷ2vy!tua&^r u.

~3.1!

The coupling constantgx (gy) is proportional to the inten-
sity of the laser field inx (y) direction and the dipole mo
ment of the electronic transitionub&↔ur & (ua&↔ur &). The
upper off-resonant levelur & can be adiabatically eliminate
provided thatDx ,Dy@ga ,gb ,uDx2Dyu, where laser detun
ings for dipole transitionsub&↔ur & andua&↔ur & are denoted
as Dx5(v r2vb)2vx and Dy5(v r2va)2vy , respec-
tively. After adiabatic elimination the effective interactio
Hamiltonian for the stimulated Raman transitionua&↔ub&
reads@13#

Ĥ int
~eff!5g* e2 i ~vy2vx!tD̂x~2 i ex!D̂y~ i ey!ub&^au

1gei ~vy2vx!tD̂x~ i ex!D̂y~2 i ey!ua&^bu. ~3.2!

Here D̂q( i eq)5ei eq(âq
†
1âq)5eikqq̂ is the displacement opera

tor (q5x,y); the Lamb-Dicke parametereq is defined as
eq

25\2kq
2/(2m\nq) and the effective interaction constantg

5gx* gy(1/Dx11/Dy). Further, we assume that the energ
of the electronic levelsua& and ub& are redefined to include
Stark shifts due to the adiabatic elimination of the o
resonant energy levelur & @13#.

In the interaction picture the effective interaction Ham

tonian H̃̂ int
(eff)5eiĤ 0tĤ int

(eff)e2 iĤ 0t can be expressed as~the free

Hamiltonian Ĥ0 induces transformationsâq→âqe2 inqt,
ua&^bu→ua&^bue2 i (vb2va)t)

H̃̂ int
~eff!5g* e2~ex

2
1ey

2
!/2 (

m,k,l ,n

~2 i ex!
k1m~ i ey! l 1n

k! l !m!n!

3e2 i t [D1~k2m!nx1~n2 l !ny] âx
†mâx

kây
†l ây

nub&^au1H.c.

~3.3!

The resonant terms in the expansion~3.3! which contribute
dominantly to the resulting effective Hamiltonian can be
lected by an appropriate choice of laser frequencies. If
resonant processes are oscillating with sufficiently high
quencies they can be eliminated applying the second RW
trap frequencies.
-

-

s

-
f-
-
at

In particular, tuning lasers to the first red sideban
D[Dx2Dy5nx2ny with incommensuratetrap frequencies
only the resonant terms withk2m51 and l 2n51 are re-
tained in the expansion~3.3!:

H̃̂ int
~3!5g* exeyâx

†F̂~ âx
†âx ,ây

†ây!âyub&^au1H.c., ~3.4!

where

F̂5e2~ex
2
1ey

2
!/2(

k,l

~21!k1 lex
2key

2l

~k11!!k! ~ l 11!! l !
âx

†kâx
kây

†l ây
l .

~3.5!

In the Lamb-Dicke regimeex ,ey!1 the operatorF̂ is close
to the unity operator and the Hamiltonian~3.4! which is writ-
ten in the interaction picture acquires in the Schro¨dinger pic-
ture exactly the form of the two-mode HamiltonianĤ3, Eq.
~2.3!. With proper laser tunings we can design within t
Lamb-Dicke limit all the remaining interaction Hamiltonian
required for the quantum-state synthesis described in Se
In particular, retaining only resonant terms in Eq.~3.3! for
the laser-stimulated Raman process withD50 the interac-
tion Hamiltonian Ĥ1, Eq. ~2.5!, is obtained in the Schro¨-
dinger picture. The process withD52nx is described by the
one-mode interaction HamiltonianĤ5, Eq. ~2.7!. Let us also
notice that beyond the Lamb-Dicke limit this process
analogous to a nonlinear Jaynes-Cummings dynamics
cussed by Vogel and de Matos Filho@7#.

Considered approximations impose limitations on the
plicability of the interaction Hamiltonians. Driven electron
transition ~2.5! and one-mode interaction~2.7! have been
considered already for the 1D quantum-state synthesis@8#. A
new tool in our approach represents the two-mode inte
tion HamiltonianĤ3, Eq. ~2.3!. Comprehensive analysis o
the limitations for Eq.~2.3! was done in Ref.@13#. It turns
out that the most subtle point is the second RWA at t
frequencies@see Eqs.~3.3!, ~3.4!# which imposes restrictions
@13#

uguexeymax~Nmax,Mmax!!min~nx ,ny!,
max~nx ,ny!

min~nx ,ny!
>5.

~3.6!

The trap anisotropy, i.e.,incommensuratetrap frequencies, is
required to avoid additional resonances in Eq.~3.3!. Numeri-
cal simulations in Ref.@13# demonstrated that it is exper
mentally feasible to operate the considered Hamiltoni
within the Lamb-Dicke limit.

It is worth noticing that already the nonlinear form~3.4!
corresponding to the two-mode interaction Hamiltonian~2.3!
outside of the Lamb-Dicke regime allows us to adopt t
proposed algorithm for quantum-state synthesis. The m
difference consists in the form of generalized Rabi frequ
cies. In particular, the matrix element of the interacti
Hamiltonian~3.4! in the Lamb-Dicke regimeeq!1 @i.e., Eq.
~2.3! in the interaction picture# reads ^b,n21,m

11uH̃̂ int
(3)um,n,a&5g3A(m11)n while beyond the Lamb-

Dicke regime the corresponding matrix element is given

g3e2(ex
2
1ey

2)/2Lm
1 (ex

2)Ln21
1 (ey

2)/A(m11)n where Lm
1 is the

associated Laguerre polynomial. Inserting the ‘‘nonlinea
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Rabi frequencies into Eqs.~2.4!, ~2.6!, and ~2.8! which de-
termine the choice of the interaction constants and switch
times, the same sequence of elementary transformations~2.2!
could be applied for preparation of a given state even out
of the Lamb-Dicke regime. On the other hand, the conditio
for the applicability of the second RWA at trap frequenc
to obtain Eq.~3.4! from Eq. ~3.3! are not so transparent a
restrictions for the RWA within the Lamb-Dicke regim
~3.6!. This problem goes beyond the scope of the pres
paper in which we demonstrate the potential of our algorit
in the Lamb-Dicke regime.

IV. STABILITY OF SYNTHESIS

Our algorithm works ideally when there are essentially
dissipations in the system. It is the reason why we h
considered effectively dissipation-free dynamics of trapp
ions. Nevertheless, we have to stress that the ideal synth
of quantum motional states assumes also perfect contro
interaction constants and switching times of particular int
action channels. Namely, the values ofgpt found via the
‘‘deevolution’’ procedure@i.e., solutions of Eqs.~2.4!, ~2.6!,
and ~2.8!# have to be controlled as precisely as possible
practice one cannot avoid some level of ‘‘technical’’ nois
for example, due to imperfect timing of switching betwe
interaction channels. Therefore in what follows we will stu
the stability of the presented algorithm with respect to
‘‘technical’’ noise. This noise is simulated as random flu
tuations of the ideal valuesgpt. In particular, fluctuations are
equally distributed around the ideal~complex! values gpt
@i.e., solutions of Eqs.~2.4!, ~2.6!, and ~2.8!# within a fixed
interval (11 i )d. In general, the output state vectorsuCd& of
the composed system which are prepared in the presen
‘‘technical’’ fluctuations take the form~2.1!, i.e., the vibra-
tional and internal degrees of freedom are not disentang
Figure 2 shows the fidelityf of the ‘‘imperfect’’ output
statesuCd& with respect to the desired state vectoruC target&

FIG. 2. We plot fidelity given by Eq.~4.1! as a function of the
range of fluctuationsd. We consider two different target state
two-mode catlike stateuCcat& ~denoted byn) and two-mode corre-
lated stateuCcorr& ~denoted byh) with a52. We have considered
two cases whenMmax512 ~solid lines! and Mmax520 ~dashed
lines!. Comparing two solid lines we see that the smaller the nu
ber of nonzero amplitudesQmn in the target state~1.1! the larger is
the fidelity for a given value ofd.
g

e
s

nt

o
e
d
sis
of
-

n
,

e
-

of

d.

^ ua&. The fidelity is defined as the averaged squared sc
product of particular realizationsuCd& with uC target& ^ ua&,
i.e.,

f 5^^ z^CduC target&ua& z2&&d . ~4.1!

In our simulations we have performed averaging over 1
runs of state-synthesis sequences. In these runs each
qpt associated with a given elementary operationÛ (p) ac-
quires a random fluctuation within the interval (11 i )d. We
have considered two different target states, two-mode
like stateuCcat&5Ncat(ua&ua&1u2a&u2a&) and two-mode
correlated stateuCcorr&5e2uau2/2(m(am/Am!) um,m&, with
a52. For this value of the amplitude these two states h
approximately the same mean number of vibrational qua
n̄5n̄x1n̄y.8.0. We have considered two cases wh
Mmax512 andMmax520 ~hereNmax5Mmax).

Figure 2 clearly indicates the fact that the larger the va
of Mmax the more pronounced is the role of fluctuatio
~compare solid and dashed lines which correspond toMmax
512 andMmax520, respectively!. This observation is easy
to explain: The total number of operations in our algorithm
proportional to 8Mmax

2 ~for Mmax5Nmax) which means that
the caseMmax520 requires almost three times more ope
tions compared to the case withMmax512. The noise is ac-
cumulated as a function of elementary operations, there
to improve the fidelity of the preparation process it is impo
tant to chooseMmax carefully. To be specific, for a given«
we have to choose theminimal values ofMmax and Nmax
such that

(
m50

`

(
n50

`

uQmnu22 (
m50

Mmax

(
n50

Nmax

uQmnu2<«. ~4.2!

We can also use Fig. 2 to illustrate the fact that for a giv
value ofMmax the fidelity of the preparation may depend o
the target state. To be specific, we have found that
smaller the number of nonzero amplitudesQmn in the target
state~1.1! the higher the fidelity is for a given value of th
range of fluctuationsd. This behavior can be rather surpri
ing as for synthesis of two states ‘‘localized’’ within th
same region of the vibrational ‘‘lattice’’m,n we need a com-
parable number of elementary operations. Nevertheless,
nonzeroQmn after the synthesis is biased by more or less
same error and, consequently, the states with smaller num
of nonzero amplitudesQmn are less sensitive to fluctuation
As already stated, this observation concerns only states
calized’’ within the same region of the vibrational lattic
m,n and with a comparable mean number of vibration
quanta.

Finally, we briefly compare our algorithm with the on
proposed by Gardiner, Cirac, and Zoller@10# in which the
number of operations in the preparation sequence is grow
exponentiallyas 2Mmax32Mmax. Therefore fluctuations for
Mmax large enough cause an insurmountable problem. Th
is also another problem with this procedure. Namely, G
diner, Cirac, and Zoller have utilized only two intern
atomic levels (ua&, ub&) which results in the fact that thei
algorithm is based on manipulations with vibrational sta
which are out of the original Hilbert space specified by t

-
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cutoffs Mmax andNmax. In other words, manipulations with
highly excited vibrational states are required for construct
of states with relatively small number of vibrational quan
This means that not only the number of operations is ex
nentially growing but also the number of vibrational quan
during the preparation procedure may transiently expon
tially increase.

We stress that our algorithm is associated with manipu
tions only within the original subspace of the Hilbert spa
specified byMmax and Nmax. Moreover, the number of op
erations grows only polynomially as 8Mmax

2 . The dimension
of the two-mode Fock subspace from which the compon
states are does not increase during the preparation proce
This great reduction of number of operations is due to
fact that we have employed the third atomic leveluc& in the
preparation procedure. Very recently a new 2D prepara
scheme was introduced by Kneer and Law@11#. The
standing-wave laser field iny direction induces a photon
number-dependent interaction enabling us thus to use
schemes selectively for particular subspaces with cons
.
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od
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ev
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tt.
n
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nt
re.
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nt

number of trap quanta iny direction. The number of opera
tions scales also polynomially as 2Mmax

2 with only two elec-
tronic levels involved.

V. CONCLUSION

In this paper we have presented a universal algorithm
an efficient deterministic preparation of an arbitrary tw
mode bosonic state. We have adapted this algorithm a
computer program@14#. The proposed method can be gene
alized to 3D trapping potential and three-mode vibratio
states. In this case one would need four internal electro
levels and nine interaction channels coupled to the 3D vib
tional field. It can be shown that the number of operatio
required for quantum-state synthesis scales polynomi
(;Mmax

3 ). Further generalization to multimode fields is po
sible @15#.
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