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Quantum-state synthesis of multimode bosonic fields: Preparation of arbitrary states
of two-dimensional vibrational motion of trapped ions
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We present ainiversalalgorithm for an efficientleterministigpreparation of amrbitrary two-mode bosonic
state. In particular, we discuss in detail preparation of entangled states of a two-dimensional vibrational motion
of a trapped ion via a sequence of laser-stimulated Raman transitions. Our formalism can be generalized for
multimode bosonic fields. We examine stability of our algorithm with respect to a technical noise.
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|. INTRODUCTION between Fock stat¢s,n) with a fixed numben=n, of trap
quanta iny direction while applying sequentially the 1-D
The ability to control preparation and evolution of statespreparation schem] in the x direction for each particular

of quantum systems opens new horizons in experimenta{:ny_
physics(e.g., tests of fundamental concepts of quantum me- |n this paper we propose an alternative universal algo-
chanics as well as in potential technical applicatiof®ich  rithm for construction(synthesis of an arbitrary quantum
as quantum _ |nf0(mat|on process_)ng?ecent advances' N state of the two-mode bosonic field which can be straightfor-
quantum optic¥micromasers, cavity QED[1] and atomic \yargly generalized for the preparation of an arbitrary multi-
physics (dynamics of trapped iofd2] have demonstrated ,4e system. In our algorithm the number of operations re-
that a macroscopic observer can effectively control dynam'cauired for a preparation of the two-mode stétel) grows
as well as perform a complete measurement of states of m Snly polynomially as a function o)., andM ... In par-
croscopic quantum systems. In particular, preparation of all lar it N — M then the numbar of onerations is pro-
arbitrary quantum state of &inglemode electromagnetic o max Timax P P
field in micromasers and one-dimensioriaD) vibrational portional to 8V|maz<' , ) i
motion of trapped ions have been discussed in litergiBe To make our discussion as close as possible to experimen-
9]. Experimental realizations of highly nonclassical statestal realization we consider the preparation of states of the
such as Fock states, squeezed states, or’ Siciyer-cat two-dimensional vibrational motion of a trapped i¢h2].
states of thessinglemode bosonic fields have been reportedThe choice of the system is motivated by the fact that dissi-
[1,9]. The ability to synthesize an arbitrary motional state ispative effects can be significantly suppressed in ion traps
a key prerequisite for a quantum measurement ofdi- which is important for adeterministicengineering of quan-
trary motional observable of a trapped ion as proposed byum states. Moreover, the quantized vibration motion of a
Gardiner, Cirac, and Zolldr10]. These authors have gener- trapped ion can be effectively controlled by a proper se-
alized the 1D synthesis of motional states to 2D and higheguence of laser pulses tuned either to the atomic electronic
dimensions. In spite of the conceptual elegance, the methdgansition or to resolved vibrational sidebari@s9].
proposed by Gardiner, Cirac, and Zoller is difficult to imple-  The simplest quantum-state preparation is represented by
ment in general. The problem is that the number of lasef simpleunitary evolution of an input state of the system
operations required for preparation of a two-mode targegoverned by a specificgenerally, nonlinearHamiltonian.

state| W oqep Of the form Obviously, the fixed Hamiltonian restricts the family of tar-
get states which can be “generated” from available inputs.
Mmax Nmax Another way to prepare states of the system of intgjest,
|V argey = 20 20 Qurm,N) (1.))  single-mode bosonic fields to consider quantum interaction
m= n=

between this system and an adjoint quantum system.,

fermiong. Dynamics of these two systems is governed by a
dependexponentiallyon the dimensionality of the subspace specific interaction Hamiltonian. The desired quantum-state
of the Fock space in which the target state is embedded. langineering is then achieved lypnditional measurements
particular, if Nya= M max then the number of necessary op- performed on the adjoint quantum systé#l. This nonuni-
erations is proportional to M, < 2Mmax This exponential tary selection of specific quantum trajectories allows us to
dependence restricts applicability of the proposed methodynthesize essentially all quantum states of the system under
(see below. A novel approach which overcomes this ob- consideration. But there is a price to pay—the probability of
stacle was introduced very recently by Kneer and [aM.  the outcome of the given conditional process can be ex-
The authors have considered a photon-number-dependent imemely small. To overcome this problem one may consider a
teraction which is induced by a detuned standing-wave lasesequence of interactions between the original and the adjoint
field in y direction. It keeps on resonance only transitionssystems. These interactiofshannels are governed by dif-
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ferent Hamiltonians with just one channel turned on at acase of trapped ions it is natural to assume the coupling to
given time. Coupling constants in these Hamiltonians andnternal energy levels of ions. In particular, we use three
times of duration of given interactions are in this cag® internal electronic statds) (in A or E configurationg with
parameters which can be appropriatalyedso that at the energieshw; (i=a,b,c) which form the basis of the Hilbert
output the system of interest is disentangled from the adjoinubspace;,. Due to quantum interaction between the vi-
system(see belowand is prepared in the desired state. Thisbrational and internal degrees of freedom the total state vec-
approach has recently been utilized by Law and EbE8ly tor of the composed system with the given maximum number
who have shown that by a suitable switching between twmf vibrational quantal,,;,= M max+ Nmax at timet reads
channels of the atom-field interaction one can generate an

arbitrary state of the single-mode cavity field. It is important Mmax Nmax ]

to note that quantum states of 1D vibrational motion of |‘I’(t)>:mzzo nZO i:aZbc Qmni(Dmn)@]i)
trapped ions are experimentally created also via a sequence o

of laser pulses tuned either to an electronic transition or an Jmax I

appropriate vibrational sidebanf®], that is, sequential = 2 Qui—ki(H]k,I—K)®]i),
switching of different interaction channels is used. Generali- J=0k=0i=abc "

zations of the 1D vibrational quantum-state synthesis to 2D 21

and more dimensions have been discussed recgtily 1.
In what follows we introduce aniversalscheme which en-
ables deterministic preparation of arbitrary two-mode tar-

which reflects quantum-mechanical entanglement between
the two subsystems. We assume that initially the ion is in an

get state via an appropriate switching between lasefnternal statda) and the vibrational motion is cooled to the

stimulated Raman transitions described by single- and twoground statg0,0). That is, the initial §tate vegtor of the com-
mode interaction Hamiltonians. The method can beposed systen (t=0))= |O;0>®|a> is factorized. Our task
generalized, e.g., for a trapped ion in a 3D trap potential anés to find a unitary evolution)', such that at some timte=T
other multimode bosonic systems. Even for higher dimenthe state vectof2.1) can again be factorized, while the vi-
sions the number of preparation operations scales polynomprational state of the ion is described by the target vector
ally with the dimensionality of the subspace of the Fock(1.1), i.e.,|W(t=T))=U0"0,00®|a)=|¥ qe ®|a).
space in which the target state is embedded. In what follows we prove that the unitary transformation
The paper is organized as follows. In Sec. Il we introducej can be represented by a sequence of five “elementary”
our algorithm for 2D quantum-state synthesis. In Sec. Il we

) . St . unitary transformations)®® (p=1,...,5)which act in the
discuss a phy3|cgl reahza‘uon_gf the preparation scheme. IBroduct Hilbert spaceH,,®H,, and which correspond to
Sec. [V we examine the Sta.b'l't.y of our algorithm with re- five interaction channels associated with interaction Hamil-
spect to a technical noise. Fidelity between outputs and spe- ~ = -~ o).
cific target states is evaluated. We finish our paper with contoniansH™:

clusions.

II. QUANTUM-STATE SYNTHESIS

to generate an arbitrary two-mode state given as a finite su-

perposition of numbetFock states(1.1). To describe the By=0{T00 03 11 0(F 110 - O[T 1y
preparation algorithm we first split the whole Hilbert space R R R 2.2
into an appropriate set of finite-dimensional subspaces la- x U2 160(0) 5 0(8) ¢ '
beled by a specific quantum number. Then we introduce two

sorts of interaction channels. The first set of Hamiltonians (“;J:0|<J5>Oa>_

will be responsible for dynamics within a given subspace,
while the second one will realize a “transfer” of probability The operatord,, B,, C, are built up from “elementary”

amplitudes between different subspaces. In particular, let us . o), . )
consider vibrational states of a trapped ion, confined in ZDSnltary transformationtj ;) where superscripp deter

harmonic potential. Excitations of two vibrational modes are'nes the mterac'upn Chaf‘”e' and ;ubscnpt indicates that
parameters of the interaction are adjusted to transben-

Eiescrlbed by creation and annihilation operatars and pletely the current population of the component stéke]

al, (w=x.y). The Hilbert spacét,;, of all two-mode vibra-  —k)®|i) to the “neighboring” state according to the given
tional states can be divided to subspaces with constant tot@}pe of interaction(see below.

number of vibrational quanta, i.e.,Hp,=®H;, J The set of the “elementary” unitary transformatiob$?)
=0,1,... », whereH, is spanned by two-mode Fock states s gygficient (even though not unigeto evolve the target
19,0),[3=1,2), ... |0J). The subspaceX, are dynamically  gtate(1.1) into the vacuum and vice versa. To specify them
independentinvariany for those Hamiltonians which do not e will analyze the “deevolution” of the target state into the
change the total number of vibrational quania-ala, vacuum state. We will perform this deevolution via a sys-
+aja,. However, to realize controlled manipulations with tematic “transfer” of population from state vectors with
states within a given subspag we need an interaction of higher to smaller number of vibrational quanta. That is, we
the 2D bosonic field with another quantum system. In thechoose the operatot$?) so that at a given step of the uni-
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FIG. 1. Recursive “deevolution” algorithm(a) Vectors|m,n)®|i) are represented as points of a lattiven with internal levelsi
=a,b,c shown in “ovals.” Components which entéat this stage of “deevolution)'the state vectof2.1) are indicated by®. Dashed lines
connect basis vectors from subspaces with constant number of trap quéntdhe action of the operat(fkﬁ for J=3. The “elementary”
transformatloruIOJ a) transferscompletelythe population of the stai®,J)®|a) to the statd1,J—1)®|b) as indicated by solid arrow. The
atomic transition scheme of the corresponding stimulated Raman prpeess$s shown in the inset. Ne>k1!|1J 1h) transfers the population
from|1J—1)®|b) to |1J—1)®|a) by means of the interaction chanret 1. The dashed arrows indicate simultaneous transitions which
lead to a change of the state vecta@rl). The application of the sequenéq ‘shrinks” the whole population from the given subspace
H3® H,, to the component stafé,0)® |a). (c) Specific preparation of the subspeiﬁfgz_1®7-l,n by the operatoBj_,. The operatoUIOJ 10)
transfers the population of the stg@J—1)®|c) to |[0J—1)®|b), while U‘OJ 1py transfers the population frof0,J—1)®|b) to [1,J
—2)®|b). The inset shows the schemes of the utilized stimulated Raman trangitioRgt. Finally, the sequends;_, leaves onf3_
®H;, only the component stalje] 1,00®|b) and those states with the internal leya) contributing to Eq.(2.1). (d) The operatoiC;

= U|(35)oa> transfers the population of the component sfdtg)®|a) to the statdd—1,0)® |b). The procedureéb) and (c) are recursively
repeated to “deevolve” the initial stafel e} ®|a) into [0,0)®]a).

tary deevolution a particular probability amplitud® ;i <3 (<J,.). Now we apply three sequences of operations

is made equal to zero. In Flg 1 we wsuahzg th_e direction described by the operatofs, B5_,, andCs, respectively
of the action of operator@u(J ki) - Namely, in Fig. 1a) we [see Eq(2.2)].

represent state vectops, n)®||) as “ovals” located at the
points of the lattice marked by parametensn associated
with vibrational state of an ion, while its internal state rep- 3) ,
resented by a simple energy level diagrémopulation of a  Mation U|0J transferscomgletelythe population of the
given internal level is indicated by a bulleDashed lines state|O,J>®|a> to the statg1,J—1)®|b) [see the solid ar-
indicate the subspacés;® H;, labeled by a constant number row in Fig. 1(b); dashed arrows indicate simultaneous tran-
of trap quantal. sitions which are not controlled at the given sthgEhis
Let us start the “deevolution” procedure of the target process can be realized by irradiating the ion with two exter-
state(1.1) into vacuum. After timer=T—t the vector de- nal laser fields with tunable frequencieg and wy in x and
scribing the vibrational and internal state of the ion is giveny directions. Adjusting the resonance conditiong— w,
by Eqg.(2.1). We assume that the deevolution is performed in= w,— w,+ v,— vy (=w3) the stimulated Raman transition
such a way that at this moment the state ve€@ol) is com- [see the inset in Fig. (b), p=3] can be described in the
posed only of state vectors from subspagé® H;, with J Lamb-Dicke regime by the effective interaction Hamiltonian

The action of the operatko is illustrated in Fig. 1b). It
describes a process in which the first “elementary” transfor-
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(we discuss physical conditions under which this and all Subgj(4) which is obtained from Eq(2.3) by the substitutiorb
sequent Hamiltonians can be justified in Sec): 11l _.c anda—b. We see that the operat@_; acts IikeAj
but instead of the stimulated Raman processes betereen
the transitions«c are utilized. As the result of the action

of the operatorB3_; in the subspacé{;_,®H;, only the
component states with the internal lejel) and the state

[J—1,00®|b) have nonzero amplitudes.

Ha=gsaa,lb)(ale” "'+ gia,ajla)(ble’s, (2.3

with the corresponding time evolution operatdy(®

=exp(—iFH®%) settingZ=1. If the interaction constarg,
=|gs|e'?s and the duration of the interactigrare chosen to

fulfill the condition After the action of the operators; andB3_; the unitary
' operatorCj is utilized to transfer the population of the com-
ie'3Qy ;- 1aCog |gs[tV(k+1)(I—k)] ponent statdJ,0)®|a) to the statgJ—1,0)®|b) [see Fig.
. q_ .~ (5) .
+ Qs 13-k 1:68iM | g3l tV(k+ 1) (I—K)]=0, 1(d) for J=3]. The transformatlorUp’Oa) which performs

transitions between subspaces with the number of trap
(2.4 quanta differed by one is realized by the process described

. . ingle-m interaction Hamiltonian
then the population of the component stitgl —k)®|a) is by & single-mode interaction Hamiltonia

completely transferred to the statet 1,J—k—1)®|b). [For A.=gealbyale—1ost+ g* alla)(bletiest 2
instance, in the situation described by Figo)lthe probabil- 5=052b)(al 95 a/2)(b| Y
ity amplitude Qoj;. becomes equal to zefoOnce this is  with the resonance condition wy— wy=wp— wa— vy

done, then the transformati(ﬂdl‘(ll%_1b> is turned on. In this (=ws). The parameters of this interaction channel are deter-

process the population of the component sfafz—1)®|b)y ~ Mined by the constraint
is completelytransferred to the stgt&:]— 1)®[a). The cor- 1€1%5Q 02005 |0/ tv3) + Qs 1 0Sin(|gs[t3) =0,
res_pondlng interaction channel is described by the Hamil- (2.9
tonian

R _ _ for 3=1.

Hi=g,|b)(ale™'*1'+ g7 |a)(ble' 1. (2.9 As the result of the action of the operatdys, Bj_;, and

Here we assume lasers to be tuned to the electronic trangi: all CoefficientsQ5—; in Eq. (2.1 are equal to zero.
fi ; N _ oreover, the situation beforgFig. 1(a)] and after[Fig.
lon, 1.8, oy~ wx=wp=wa (Zwy). To cancel the term 1(d)] the action of these operators is the same, except we just
Qk.u-kp In the state vectof2.1), the interaction constants “moved” from the subspagéf@H 10 H- ®7_2 withpthe ]
i it J in J-1 in
(Igat. 61) have to be chosen to satisfy the condition number of trap quanta decreased by one. This means that the
Qk,J—k;aSir(|gl|t)+ie_iele,J—k;bcos(lglh):O- prociedure can b?cyr5|vglyrepgated. The given solution of
the “deevolution” gives immediately the recipe for the cre-
ation of the target vibrational state from the two-mode
cancels vacuum(with electronic levela)): We have to c_;hange prop-
~ : ) B erly the phase shift between external laser fields and repeat
Qq13-1.p for J=3. The successive action of the “elemen- . . . ol
o ‘ tiond) @ and0® which form the operator the sequence in the opposite order, i.e., we applyon
tary” transformation o wh € op |0,0)®|a). In this way we can synthesize an arbitrary state.
Aj [see Eq.(2.2] finally “shrinks” the population of the  The number of “elementary” operations involved in this
subspacé{;® H;, to a single stat¢J,0)®|a). process is proportional toJ2,,,, which is important for an
At this stage we start the process of cancellation of theexperimental realization of the proposed scheme, i.e., the

contribution of component statetk:]— 1-k)®|b) and number of necessary operations increases only polynomially
k3I-1-K®|c) in the “neighboring” subspaceH;., with the increase of the size of the Hilbert space in which the

®H,, [see Fig. {c)]. This intermediate procedure is required tar?ethsta:cte”is ‘?mbedd?d- hvsical imol . fth
to prevent a reverse transfer of population fréty_, ® Hj, n the following section a physical implementation of the

to H5®H,, [see below and Fig.(#)]. For this purpose the preparation scheme is discussed in more detail.
operatorB3_, is constructed from “elementary” operations

U@ andU® [see Eq(2.2)]. Namely, the operatdd \(g,%fm

describes the transfer of population of the sttzﬂé—l) lll. REALIZATION OF INTERACTION CHANNELS

®|c) to |0J—1)®|b). This transfer can be achieved with

the help of laser pulses tuned to the electronic transition be- The Hamiltonians which are eligible for the synthesis of
tween the levelgb) and|c). The corresponding interaction two-mode bosonic states have been discussed recently by
HamiltonianF® and the resonance condition are analogous€Veral authorgl0—-13. Some of the proposals are based on

~ (1) laser-stimulated dipole transitiofi$0] and phonon-number-
o those forH™, Eq. (2.9 (we. h??f to replace onlp—c dependent interaction via a detuned standing wadg For
anda—Db). Further, the operatiob

A 03— 1p) CBNCEIS @ contri-  or purposes we have utilized the stimulated Raman pro-
bution of the statd0,J—1)®|b) to the state vectof2.1).  cesses discussed in detail by Steinbach, Twamley, and
This interaction channel is described by the HamiltonianKnight [13]. In this section following Ref[13] we briefly

In particular, in Fig. 1b) the operatorLAJ‘(ll’lJ_lla>



PRA 58 QUANTUM-STATE SYNTHESIS OF MULTIMOLE . . . 2485

derive the Hamiltonians which are used in our algoriftzee In particular, tuning lasers to the first red sidebands
Egs. (2.3, (2.5, and (2.7)] and discuss the range of their A=A,—A,=v»,— v, with incommensuratérap frequencies
applicability. Let us consider a trapped ion confined in a 2Donly the resonant terms witk—m=1 andl—n=1 are re-
harmonic potential characterized by the trap frequenejes tained in the expansiof8.3):

and v, in two orthogonal directionsk andy. The ion is

irradiated along the andy axes by two external laser fields AY=g* ee,alF(ala,,a0a,)a,/b)(a| +H.c., (3.4
with frequencieso, , w, and wave vectork,, k, . The laser

fields stimulate Raman transitions between two internal enwhere
ergy levels|a) and|b) via an auxiliary electronic lever)

ket g2k 2l
which is far off resonance. For concreteness, we consider Fee- (+e )/22 (=D& €y "Tkakaﬂal
configuration with the upper levét) as outlined in the inset (k+D)!kI(T+2)!H!
of Fig. 1(b). The interaction Hamiltonian for the system un- (3.5

der consideration can be written in the dipole and rotating-
wave approximatiofRWA at laser frequencigsn the form  In the Lamb-Dicke regime, ,e, <1 the operatotF is close
to the unity operator and the Hamiltonig®4) which is writ-

|:|int=9>f e”"x;"‘”xt)|r><b|+gxe*i<kx;"‘*’xt)|b><r| ten in the interaction picture acquires in the S'mnger pic-
. i —at oot ture exactly the form of the two-mode Hamiltonigh;, Eq.
+9y e'tlymey) Ir)(al+g,e = eytay(r|. (2.3). With proper laser tunings we can design within the

(3.1) Lamb-Dicke limit all the remaining interaction Hamiltonians
required for the quantum-state synthesis described in Sec. Il.

The coupling constarg, (g,) is proportional to the inten- In particular, retaining only resonant terms in Eg.3) for
sity of the laser field inx (y) direction and the dipole mo- the laser-stimulated Raman process wiik-0 the interac-
ment of the electronic transitiofb)«|r) (|a)«|r)). The tion HamiltonianH,, Eq. (2.5, is obtained in the Schro
upper off-resonant level) can be adiabatically eliminated dinger picture. The process with= — v, is described by the
provided thatA,,A,>0,,0p,/Ax—A,|, where laser detun- one-mode interaction Hamiltonidts, Eq. (2.7). Let us also
ings for dipole transitiongh)«|r) and|a)«|r) are denoted notice that beyond the Lamb-Dicke limit this process is
as A,=(w,—wp)—wy, and Ay=(w,—w,)—w,, respec- analogous to a nonlinear Jaynes-Cummings dynamics dis-
tively. After adiabatic elimination the effective interaction cussed by Vogel and de Matos Filfd).

Hamiltonian for the stimulated Raman transititm) < |b) Considered approximations impose limitations on the ap-
reads[13] plicability of the interaction Hamiltonians. Driven electronic
transition (2.5 and one-mode interactiof®2.7) have been
anetff =g* e—i<wy—wx>t|5x(_ i €x)|5y(i ey)|b><a| considered already for the 1D quantum-state syntf8%ig\

_ R R new tool in our approach represents the two-mode interac-

+ge W'D, (i€)D,(—ieyla)ybl. (32  tion HamiltonianF,, Eq. (2.3. Comprehensive analysis of

the limitations for Eq.(2.3) was done in Ref[13]. It turns

HereDy(i€y) = el<a@q*29) = gkl is the displacement opera- out that the most subtle point is the second RWA at trap

tor (g=x y) the Lamb-Dicke parametet, is defined as frequenciegsee Eqs(3.3), (3.4)] which imposes restrictions
eq— 12k3/(2mhvg) and the effective interaction constagt  [13]

=05 gy(l/A +1/A,). Further, we assume that the energies
of the electronic Ievel$a> and|b) are redefined to include || €x€;MaX Nz M mad < MiN( vy, ) M
Stark shifts due to the adiabatic elimination of the off- Y maem YT min(vy,vy)
resonant energy levét) [13]. (3.6)
In the interaction picture the effective interaction Hamil-

=5,

o D = The trap anisotropy, i.eincommensurat&ap frequencies, is
tonianH{5" = eMotA {5Pe Mot can be expressed #he free  required to avoid additional resonances in E33). Numeri-
Hamiltonian HO induces transformat|onsaq—>a e vt cal simulations in Ref[13] demonstrated that it is experi-
|a)(b|—|a)(ble” H{@p~wa)ty mentally feasible to operate the considered Hamiltonians
within the Lamb-Dicke limit.
(—ie)* M(ie,)*" It is worth noticing that already the nonlinear for(3.4)
corresponding to the two-mode interaction Hamilton(ar3)
outside of the Lamb-Dicke regime allows us to adopt the
Xe—it[A+(k—m)vx-%—(n—l)vy]éimaiayamb><a|_|_H.C. p_roposed algor?thm_ for quantum-state synthesis. _The main
difference consists in the form of generalized Rabi frequen-
(3.3 cies. In particular, the matrix element of the interaction

) ) ) ) Hamiltonian(3.4) in the Lamb-Dicke regime,<1 [i.e., Eq.
The resonant terms in the expansi@3) which contribute (5 3) in the interaction picture reads (b,n—1m

dominantly to the resulting effective Hamiltonian can be se-
lected by an appropriate choice of laser frequencies. If off+1|Hmt |m,n,a)=gzy(m+1)n while beyond the Lamb-
Dicke reg|me the corresponding matrix element is given as

resonant processes are oscillating with sufficiently high fre-
quencies they can be eliminated applying the second RWA ajze~ (+epizy L H(ELa_1(€9)/N(m+1)n where Ly, is the
trap frequencies. associated Laguerre polynomial. Inserting the “nonlinear”

Fi(ef = g e (+er
int m,k,l,n k'l'mlnI
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1.0 —=

®|a). The fidelity is defined as the averaged squared scalar
product of particular realizationgV 5) with |W e ®|a),
ie.,

0.9
f:<<|<\P5|\Ptarge§|a>|2>>&- (4-1)

In our simulations we have performed averaging over 100
runs of state-synthesis sequences. In these runs each value
gpt associated with a given elementary operatibﬁ’) ac-
quires a random fluctuation within the interval{1) 6. We
have considered two different target states, two-mode cat-
like state|V .9 =Neaf|@)|@)+|—a)|—a)) and two-mode
0.6 correlated statd\lfcorr>=e*‘“|2’22m(am/\/ﬁ)|m,m>, with

0.0 0.005 0.01 0.015 0.02 a=2. For this value of the amplitude these two states have

6 approximately the same mean number of vibrational quanta

n=nX+Fy:8.0. We have considered two cases when

0.8

fidelity

0.7

FIG. 2. We plot fidelity given by Eq(4.1) as a function of the
range of fluctuationss. We consider two different target states, Mqu: 12 andeaX,: 2_0 (hereNma,=Mmay).
two-mode catlike stat¥ ) (denoted byA) and two-mode corre- Figure 2 clearly indicates the f_act that the larger the \_/alue
lated statd ¥ ., (denoted byl) with @=2. We have considered Of Mmax the more pronounced is the role of fluctuations
two cases wherM =12 (solid lines and M ,,=20 (dashed (compare solid and dashed lines which corresponifl tq,
lines). Comparing two solid lines we see that the smaller the num-=12 andM ,,,= 20, respectively This observation is easy
ber of nonzero amplituded,,, in the target statél.1) the larger is  to explain: The total number of operations in our algorithm is
the fidelity for a given value 0b. proportional to 12, (for M ;.= Nmad Which means that

the caseM .= 20 requires almost three times more opera-

Rabi frequencies into Eq$2.4), (2.6), and(2.8) which de-  tions compared to the case will,,.=12. The noise is ac-
termine the choice of the interaction constants and switchingumulated as a function of elementary operations, therefore
times, the same sequence of elementary transforma@®s  to improve the fidelity of the preparation process it is impor-
could be applied for preparation of a given state even outsidgant to chooséM ., carefully. To be specific, for a given
of the Lamb-Dicke regime. On the other hand, the conditionsye have to choose theinimal values ofM ., and Ny ax
for the applicability of the second RWA at trap frequenciessych that
to obtain Eq.(3.4) from Eq. (3.3 are not so transparent as
restrictions for the RWA within the Lamb-Dicke regime » Nimax
(3.6). This problem goes beyond the scope of the present > D 1Qmd? = 2 D |Qmili<e. 4.2
paper in which we demonstrate the potential of our algorithm m=0n=0 m=0 n=0
in the Lamb-Dicke regime.

M max ' 'm

We can also use Fig. 2 to illustrate the fact that for a given
value ofM ., the fidelity of the preparation may depend on
the target state. To be specific, we have found that the

Our algorithm works ideally when there are essentially nosmaller the number of nonzero amplitud@s,, in the target
dissipations in the system. It is the reason why we havetate(1.1) the higher the fidelity is for a given value of the
considered effectively dissipation-free dynamics of trappedange of fluctuations. This behavior can be rather surpris-
ions. Nevertheless, we have to stress that the ideal synthesigy as for synthesis of two states “localized” within the
of quantum motional states assumes also perfect control glame region of the vibrational “latticeth,n we need a com-
interaction constants and switching times of particular interparable number of elementary operations. Nevertheless, each
action channels. Namely, the values @jft found via the nonzeroQ,, after the synthesis is biased by more or less the
“deevolution” procedurdi.e., solutions of Eqs(2.4), (2.6), same error and, consequently, the states with smaller number
and (2.8)] have to be controlled as precisely as possible. Irof nonzero amplitude®,,,, are less sensitive to fluctuations.
practice one cannot avoid some level of “technical” noise,As already stated, this observation concerns only states “lo-
for example, due to imperfect timing of switching betweencalized” within the same region of the vibrational lattice
interaction channels. Therefore in what follows we will studym,n and with a comparable mean number of vibrational
the stability of the presented algorithm with respect to thequanta.

“technical” noise. This noise is simulated as random fluc- Finally, we briefly compare our algorithm with the one
tuations of the ideal valuegt. In particular, fluctuations are proposed by Gardiner, Cirac, and ZollgiO] in which the
equally distributed around the idea@domple® values gt number of operations in the preparation sequence is growing
[i.e., solutions of Eqs(2.4), (2.6), and(2.8)] within a fixed  exponentiallyas 2M X 2Mmax Therefore fluctuations for
interval (1+i) 8. In general, the output state vect¢¥ ;) of M., large enough cause an insurmountable problem. There
the composed system which are prepared in the presence isfalso another problem with this procedure. Namely, Gar-
“technical” fluctuations take the forng2.1), i.e., the vibra- diner, Cirac, and Zoller have utilized only two internal
tional and internal degrees of freedom are not disentangledittomic levels (@), |b)) which results in the fact that their
Figure 2 shows the fidelityf of the “imperfect” output algorithm is based on manipulations with vibrational states
states| W ;) with respect to the desired state vecfd#,, .y ~ Which are out of the original Hilbert space specified by the

IV. STABILITY OF SYNTHESIS
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cutoffs M 2 and Nppay. I other words, manipulations with number of trap quanta iy direction. The number of opera-
highly excited vibrational states are required for constructiortions scales also polynomially as/# ., with only two elec-
of states with relatively small number of vibrational quanta.tronic levels involved.

This means that not only the number of operations is expo-

nentially growing but also the number of vibrational quanta V. CONCLUSION

during the preparation procedure may transiently exponen- In this paper we have presented a universal algorithm for

tially increase. an efficient deterministic preparation of an arbitrary two-
We stress that our algorithm is associated with manipula- prep Y

tions only within the original subspace of the Hilbert spacecmoc:geu?;rsogcrz:%‘ﬁj V1\_/ﬁehe:\ée Oasde%prtﬁsﬂfgg Caalgcg'ethﬁn?:'_ a
specified byM ,ax @nd N,ax. Moreover, the number of op- b brog : brop 9

rations arows onl vnomially a2 The dimension alized to 3D trapping potential and three-mode vibrational
efa;ho t?/vg 0 s(,jo Fy pkoy g a y}’:\ maxr']_ heth ensio states. In this case one would need four internal electronic
of the two-mode FFock subspace from which the componenf, o\ ang nine interaction channels coupled to the 3D vibra-

states are does not increase during the prgpara_tion procedU{I%nal field. It can be shown that the number of operations
This great reduction of number of operations is due to therequired for quantum-state synthesis scales polynomially

fact that we have employed the third atomic lej@) in the , rq~Mﬁ’W). Further generalization to multimode fields is pos-
preparation procedure. Very recently a new 2D preparatio dible [15]

scheme was introduced by Kneer and Ldwl]. The
standing-wave Iaser_ field iy d|rect|or_1 induces a photon- ACKNOWLEDGMENT
number-dependent interaction enabling us thus to use 1D

schemes selectively for particular subspaces with constant We thank Jason Twamley for helpful discussions.
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