PHYSICAL REVIEW A VOLUME 58, NUMBER 3 SEPTEMBER 1998
Dynamics of open systems governed by the Milburn equation
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Within the framework of the Milburn model of intrinsic decohereifi€e J. Milburn, Phys. Rev. A4, 5401
(1991)], which is based on an assumption of an existence of the fundamental time step, we study the dynamics
of open systems. We show that evolution of an open system governed by the Milburn equation can be
significantly modified compared to the standard Sdhrger quantum mechanics. This modification is most
pronounced when an open system is strongly coupled to its environf8dit50-294{@8)06209-X

PACS numbds): 03.65.Bz, 42.50-p

[. INTRODUCTION denotes the Hilbert space of the syst8nandH the Hilbert
space associated with the environmé&ptthen the formal
The problem of decoherence in quantum mechanics stilHamiltonian of the composite syste@t E is
attracts a lot of attention. Several conceptually different ap-
proaches have been proposed to explain why quantum coher- Hee=Hs®1g+Hi+ 1s®Hg, 1.2
ences cannot be observed on a “macroscopic” level. One

explanation of why quantum coherences are deteriorated angh /. ., whereH,, is some interaction term,sland 1-
difficult to observe is based on a hypothesis ttiasedquan-  are unity operators associated with; and’Hg, respectively,
tum systems do not evolve unitarily according to the Sehroand e denotes direct product of two operators. Suppose that
dinger equation, but are governed by more generalized equat t=0 the state of the composite systempig0)® pg(0).
tions that include intrinsic decoherence. In particular, e assume that the stapeg(t) of the composite system is
Milburn [1] has recently proposed an elegant model of in-goyerned by the Milburn Eq(1.1). If Tr¢ denotes the partial

trinsic decoherence based on a simple modificationwfia  {r5ce of the environment, then theduceddynamicsLg(t)
tary Schralinger evolution. This model is based on an as-uf the open systers is defined by

sumption that on sufficiently short time scales ttiesed
system evolves by aandom sequence of unitary phase _ _

changes generated by the system Hamiltonian. Based on this ps(V)=Ls(V)ps(0)=Trel pse(t)]. 1.3
assumption Milburn has derived the equation for the time

evolution density operatons(t) of closed quantum systems _By definition Lg(t) is linear, so that the state of the systSm
[1] is always mapped onto a state. In what follows we will study

how this mapping depends on the value of the parameter
d i i To make our discussion physical we will model the system
d—p(t)Z'y[ exr{— h—H}p(t)eX[{ﬁ—H}—p(t)], of interest as a two-level atom and the environment as an
t Y Y electromagnetic field. We will study a coupling of this two-
(1.9 level atom to a single-mode field as well as to a multimode
field (we will present results of numerical calculations with
the atom coupled to 500 modes of the electromagnetic)field
Prhe paper is organized as follows. In Sec. Il we present a
formal solution of the Milburn equatiofil.1) for Hamilto-

i niansH sg with discrete spectra. This solution is then used in
the fundamental time step goes to 2e#8q. (1.1) reduces to Sec. Il for a description of the dynamics of a single two-

the ordinary von Neumann equation describing the SChrolevel atom coupled to a single-mode electromagnetic field. In

dinger d_ynam|cs qf closed quantum systems. If the funda-SeC' IV we study the “decay” of a two-level atom coupled
mental time step is nonzero, but still very small, then the

Milburn equation(1.1) describes an intrinsic decay of quan- toa mul?imode_ electromagnetic field. The paper is concluded
. : ; with a discussion.

tum coherences in thenergybasis. Simultaneously, all con-
stants of the motion associated with the standard Siihger
dynamics remain constants of the motion in the MilburnIl. GENERAL SOLUTION OF THE MILBURN EQUATION
model and thus stationary states remain stationary states. FOR COMPOSITE SYSTEMS

Milburn in his paper has discussed in detail a number of
testable consequences of his model of intrinsic decoherence.
Nevertheless, he has studied only closed systems governgbg
by Eg. (1.1). In the present paper we analyze dynamics of ]
open quantum systems of the typg/stem+ environment E L= ex _'_(g._g.)
governed by the Milburn equation. To be specific,Hf dt P Y hy '

where v is the mean frequency of the unitatyninimum)
time step. This equation formally corresponds to the assum
tion that on a very short time scatethe probability that the
system evolves ip(7)=y7. In the limit y—o (i.e., when

We rewrite the Milburn equatiorfl.1) in the basis of
envectorsi )se of the total Hamiltonian(1.2),

- 1]pij(t): 2.1
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wherep;; (t)=(i|p(t)|j) and& are eigenvalues dfise. The G
solution of this equation reads e.= NG vl
L h— +
i (&+ wp) (3.4)
Pij(t):Pij(O)eXF{(GXF{—H(&_%)}—l]Yt): .- Eolti—wp
2.2 * ETh— w2+ G

where the matrix elemenjs;(0) describe the initial state of
the composite systenSE This initial state can be also
expressed in terms of eigenstates)sg=|a)gB)e of the
“free Hamiltonian” Hg® 1g+1s®Hg, such thatHgla)g
=ala)s and Hg|B)g=p|B)e. Taking into account
that [i)=3 ¢, |u)se=2 4C gl @) sl B)e, We havep;;(0)
=3 ,..0.,(0)(c,)*c), and we can rewrite the solutiq2.2)
in the basig{|u)sg as

while |®3)=]g;0). Now, using the results of Sec. Il we
evaluate the atom-field density operapai(t), which is the
solution of the Milburn equation with the Hamiltoni8.1).
After tracing over the field variables we obtain the atomic
density operator from which we evaluate the probability
P.d(t) that at timet the atom is in the excited state

1+2[e;[?le_|?
g+_€7 1
exp |co 7y vt

[EL—E
X cos sin hy yt|—1]]|
Finally, by performing a trace over the environment, we ob-
tain the solution for the density operator of the system undeThis probability is associated with the diagonal elements of

Pee(t):|a|2

plw(t)=i2’j cl(ch)* exp([exr{—i;—y(a—gj)}—l]yt)

X

x> erVr(O)(CiM,)*CJ;},. (2.3
w'v'

(3.9

consideration in the basi{$a)s}. the atomic density operator in the bagjs),|g)}. The off-
diagonal elements describe atomic quantum coherences. In
1. MILBURN’'S DYNAMICS OF TWO-LEVEL ATOM particular, from the general solution we find that the absolute
. value of these nondiagonal elememg,(t)= t)|e
Let us assume that a two-level atdthe systeminteracts reads g S(t) Kaleat®)le)]
with a single-mode cavity electromagnetic fieldnviron-
men) that is initially in the vacuum state. The atom-field P ()= VAZ+AZ +2A A codd. —b ), (36
dynamics in the dipole and the rotating-wave approximations ed T e T
are governed by the Jaynes-Cummings Hamiltofitdn where
H= S hoa(1+ o)+ hoalat hG(o, at o ah) ‘o |2 £~ &
2 WA z + -4 A.=aB*|e.|’exp] | co ﬁ —1|yt 3.7
Y
(3.1
and

where .. and o, are Pauli matrices and anda' are the
field-mode annihilation and creation operators, respectively.
w, is the atomic transition frequency aadis the field mode b=yt sin(
frequency, whileG is the atom-mode coupling constant. In
what follows we will consider that the field is initially in the
vacuum state, i.e|®)z=|0) and the atom in the superposi-
tion |¥)=c«le)+ B|g) of the upper [e)) and the lower
(lg)) states.

Taking into account that the excitation number is an inte

5{53). (3.9

fiy

We start our analysis of the atom dynamics with the case
when the atom does not interact with the cavity field, i.e.,
G=0. From the general solutiof8.5) for the population of
the excited stateP.((t) we find that it is constant, i.e.,
IPee(t):|a|2, which illustrates the fact that the diagonal el-

gral of motion of the Jaynes-Cummings dynamics, it is clea f the densi f the closed in th
that with the given initial state the dynamics is restricted toEments o t e density operator o t.e cqse sy_s_tem In the
nergy basis are not affected by Milburn’s modification of

the subspace of the total Hilbert space spanned by three of :
thonormal vectorge:0),|g:1),|g;0)}. In this basis we di- e duantum dynamics. On the other hand, for the absolute

agonalize the Hamiltonian3.) and we can write its value of off—diagonal matrix elementB.y(t) in the limit
eigenenergies in the foriisee[2]) G—0 we find
w
cos(—A>—1
Y

_ 2 -
5i=%ﬁ(wA+w)iﬁ\/(wA2w +G2, (32 Peg(t)=|aB |eXp[

and&;=0. The corresponding eigenstates can be written as N the limit o/y<1 thi; expression can be approximated
as Poy(t)=|aB*|exd —w’t/(2y)], which clearly describes

|®.)=e.|e;0)+g.|g;1), (3.3)  the effect of intrinsic decoheren¢8]. From Eq.(3.9) it is
also seen that with the decrease of the parametiére de-
where the coefficients.. are given by coherence is more pronounced. The effect becomes most

yt]. (3.9
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FIG. 1. The population of the excited atomic le(t) given

by Eq.(3.5) as a function of the scaled tin@t/ 7. The field mode
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FIG. 3. The population of the excited atomic lewel(t) given
by Eq. (3.5 as a function of the scaled timét/# for various

is initially in the vacuum state and the atom is in the state | es of the coupling constaGtand fixed value ofy/ w,= 10. All

[¥(0))=2"Y4|e)+|g)). We assumeo=w, and G = w,/100.

transparent fory/ wa=0.43. With the further decrease of
the decoherence becomes smaller andyfes,= 1/(27) the

oscillatory behavior of the atomic coherence becomes froze

Then for even smaller values gfthe functionP.(t) again

other conditions are the same as in Fig. 1.

=2"Y2(]e)+]|g)). From Fig. 1 we see that for large values
of y (i.e., a very small fundamental time sjepe atom ex-
"Nibits the usual vacuum Rabi oscillations as predicted by the

exhibits intrinsic decoherence. Nevertheless, it is not as pros_tandard Schdinger equation. Nevertheless, with the de-

nounced as foly/wa=0.43. In the limity— 0 the evolution

of the atom is totally “frozen,” which is associated with the

crease ofy not only the intrinsic decoherence of the initial
atom coherence becomes transpai@ee Fig. 2, but also

introduction of the minimum time step, that is, one cannot';he atomic population becomes affected by modification of

produce an atomic oscillator with a period shorter than thq

minimum time stefsee the discussion below and Fig. 2

he dynamics. As seen from Fig. 1, for small value$ahe
requency of Rabi oscillations does not dependyoiut the

We turn our attention back to the dynamics of the Com_amplltude of these oscillations become smaller. fzamall

posite atom-field system. For simplicity we assume that th

enough(in our picturey/w,=0.01, i.e., in this case=G)

field mode is on resonance with the atomic transition fref%he Rabi oscillations become completely suppressed and the

guencywa= w. This allows us to see how the dynamics of

atom “collapses” very rapidly to the mixture=%|e){e|

§ . . . . . .
an open system is modified by the Milburn equation. In Figs.ﬂL 1/9)(g|. Obviously, this is a completely different situation

1 and 2 we plot the time evolution dP.((t) and Pgg(t)
given by Egs.(3.5 and (3.6), respectively. Here we first
consider weak coupling, i.eG=wA/100. The atom is ini-

tially prepared in the superposition stat¢¥(0))
05
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FIG. 2. The time evolution of the atomic coherenBgy(t)
given by Eq.(3.6) as a function of the scaled tim@t/ 7. All con-
ditions are the same as in Fig. 1.

compared to the Schdinger picture. This means that the
Milburn dynamics leads to changes in populations in energy
eigenstates of an open systéme., a sub-system of the com-
posite system In fact, the larger the couplinG between the
subsystems, the larger is the deviation from the Sdinger
dynamics. This property of the Milburn dynamics is clearly
seen from Fig. 3, in which we plot the time evolution of the
function P.((t) for the fixed value ofy (we take y/wpx
=10) and for various values @.

We note that in the limit of very strong coupling the
Milburn dynamics can be significantly different from the
Schalinger evolution even for very large values pfismall
fundamental time stepsTo be specific, let us introduce a
parameteg=2G/y. If £+ 2an, then in the strong-coupling
limit G—o0, when simultaneously— (so thaté= const)
the functionP.(t) given by Eq.(3.5 describes an “instan-
taneous” collapse to the stationary valug?/2. On the con-
trary, the Schrdinger dynamics describes periodic Rabi os-
cillations (obviously, the frequency of these oscillations is
very large in the large-coupling limit

We conclude this section with a brief remark on “freez-
ing” of the Milburn dynamics. From Eq(3.5 we see that
for G/y=mn the atomic-level populatiofP.(t) is frozen
(here we assume thad=w,). If in addition w/y=mn,

then also the atomic coherences do not evolve, i.e.,
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FIG. 4. The atomic coherendg,(t) given by Eq.(3.6) as a
function of y/w, for two fixed values of timedg, . All conditions
are the same as in Fig. 1.

Peg(t)=const. For illustration we plot in Fig. 4 the time
evolution ofP¢(t) for two fixed values of time as a function

of y/wa. We see that the decoherence is strongest fo

10 12
FIG. 5. The population of the excited atomic lewl(t) as a

function of the scaled timE&'t. We assumél =500 field modes and
all of them are initially prepared in the vacuum state. The atomic-

transition frequencyw, is chosen in scaled units to be equal to

unity and the cutoff frequency. .= 8. In this figure we assume
vl wpa=0.43, which is the same as for an isolated two-leveld:N,wc o
utoff -

the weak-coupling limit with constai@, equal toG= w /80 for all
\'s. The decay rate given by Weisskopf-Wigner thep4y reads
fF=27G2d where for
atom (see above The evolution is frozen fory/wa
=1/(2mn). In the limit y— 0, the system does not evolve at
all.

the density of
We assume the atom
¥ (0))=2""4]e)+]g)).

IV. MODIFICATION

modes we have
initially
OF THE WEISSKOPF-WIGNER DECAY

in the state

fundamental time step we observe suppression of the decay,
which is caused by the nonunitary evolution of the system on

a short time scal¢here “short” is specified by the value of
In what follows we want to generalize the results of the

preceding section and we will study the dynamics of th

v). This freezing of the time evolution is analogous to the
netic field. The corresponding Hamiltonian in the dipole an

guantum Zeno effedis]. The difference is that the nonuni-
tarity in the quantum Zeno effect is caused by a sequence of
) efrequent measurements while in our case the nonunitarity of
atom coupled to the multimode vacuum of the electromagyye ‘eyolution is caused by the existence of the fundamental
) Y diime step. In the Milburn model the physical background for
the rotating-wave approximations redds this fundamental time step is not analyzed. Anyway, in the
1 particular case of an atom discussed in this paper one may
- T find an analogy between the Milburn evolution and the dy-
: 2 hoa(l+o)+ ; hanaa namics of the atom when the atomic collisions are taken into
account. These collisions can be considered to be responsible
+2 h(Gyo,a,+Gro_a)),

(4.1) for a nonunitary evolution of the atom and the frequency of

collisions is then directly related to the time step considered
by Milburn. On the other hand, there might exist another
where summations run over the field modes. We will con-more fundamental reasdp.g., a structure of the space-time
sider the field to be initially in the vacuum state and the atorris not continuous which would justify the Milburn equation
in the superposition staleV') = a|e)+ B|g). (if it is correct. Anyway, it is not the aim of our paper to
Combining the results of Sec. Il with the numerical diago-illuminate this fundamental question. Our task is to show
nalization of the Hamiltonian(4.1) we have analyzed the that the Milburn dynamics of open systems might be com-
decay of the two-level atom under consideration into thepletely different from the Schdbnger dynamics and that
multimode vacuum of the electromagnetic field. We havemaybe this difference can be observed.
considered 500 modes of the field, such that in the scaled To complete the picture of the decay of a two-level atom,
units wp=1 and the cutoff frequency i®y=8. The re-

sults of our numerical simulations are presented in Fig. 5representing atomic coherences. We see that quantum coher-
upper atom level in the weak-coupling limiGE wa/80).

we present in Fig. 6 the time evolution of the functi®gy(t)
which shows the time evolution of the population of the ences in the Milburn model of the atomic decay depend on

the value ofy. In particular, with the decrease of coher-

We see that for a very small fundamental time stepences are deteriorated faster than in the standard Weisskopf-
(y/ wa=10P) the Milburn dynamics leads to the exponential Wigner model. The fastest intrinsic decoherence in the weak-
decay of the atomic populatioR.«(t), which is exactly the coupling limit can be observed

same as within the framework of the Weisskopf-WignerNevertheless, further decrease pfdoes not lead to faster
theory[4] (see solid line in Fig. b With the increase of the deterioration of quantum coherences. On the contraryyfor

for y/wa=0.43.
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05 & ' - ' ' " modes for large coupling constants does not lead to an ex-
N = T e, =10 onential decay of the atom. In particular, for a certain
\ w, = r Yw, = 102 p . y . p ; X
AN Wontof =8 — s, = 10’ choice of the system parameters the population of the atomic
04RY N\ e Y, =10 upper level will periodically oscillate, while within the
4 3 \\ G—wA/SO — Yw =101 . .
:\\ N 500 modes o =107 framework of the Milburn model the dynamics of the atom
03 b . . can be partially frozen. Because of numerical problems we
= have not been able to analyze this regime in detail.
ﬂ? :
02 V. DISCUSSION AND CONCLUSIONS
' In the paper we have shown that in the Milburn model the
01} dynamics of open systems can be significantly modified in a
' sense that populations of eigenstates of the subsystem
Hamiltonian do evolve differently compared to the Sehro
00 dinger dynamics. Within the framework of the model de-

scribing an interaction of a single two-level atom and a
single-mode electromagnetic field, we have shown that in the
strong-coupling limit Rabi oscillations can be completely
suppressed even for very short fundamental time steps while
the system rapidly “collapses” into a statistical mixture. On
the other hand, in the weak-coupling limit and the large
small enoughP.4(t) decays slower than in the Weisskopf- enough fundamental time step we can observe freezing of the
Wigner model and in the limity—O0 the dynamics is com- atomic subsystem.

pletely frozen.

We have also studied dynamics of the two-level atom
interacting with the multimode vacuumNES00) in the
strong-coupling limit. Here the problem is that the standard This work was supported in part by the Royal Society, by
Weisskopf-Wigner model with a large but finite number of the Slovak Academy of Sciences, and by Slovnaft.

FIG. 6. The time evolution of the atomic cohererieg(t) as a
function of the scaled timé't. All conditions are the same as in
Fig. 5.
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