Reconstruction of Liouvillian superoperators

Vladimír Bužek

Institute of Physics, Slovak Academy of Sciences, Dubravská cesta 9, 842 28 Bratislava, Slovakia
(Received 17 February 1998)

We show how to determine (reconstruct) a master equation governing the time evolution of an open quantum system. We present a general algorithm for the reconstruction of the corresponding Liouvillian superoperators. The dynamics of a two-level atom in various environments is discussed in detail.

PACS number(s): 03.65.Bz

A proper description of quantum dynamics of open systems is essential for our understanding of physical processes in many areas of physics, from quantum optics to quantum cosmology. In general an open system can be represented as a system S interacting with an environment E [1]. In this paper we consider the archetypal system plus environment model, which is specified as follows. Let \mathcal{H}_S denote a Hilbert space of the system S and \mathcal{H}_E the Hilbert space associated with the environment E. The Hamiltonian $\hat{H}_{SE} = \hat{H}_S \otimes \hat{1}_E + \hat{H}_{int} + \hat{1}_S \otimes \hat{H}_E$ of the composite system $S \oplus E$ acts on $\mathcal{H}_S \otimes \mathcal{H}_E$. It is assumed that $S \oplus E$ is a closed finite-dimensional system that evolves unitarily. The density operator $\hat{\rho}_{SE}(t)$ of this composite system is governed by the von Neumann equation with the formal solution $\hat{\rho}_{SE}(t) = \exp[-i(t-t_0)\hat{H}_{SE}]\hat{\rho}_{SE}(t_0)\exp[i(t-t_0)\hat{H}_{SE}]$, where the initial state is $\hat{\rho}_{SE}(t_0) = \hat{\rho}_S(t_0) \otimes \hat{\rho}_E(t_0)$ and $\hbar = 1$. The reduced dynamics of the system S is then defined as

$$\hat{\rho}_S(t): = \hat{T}(t,t_0)\hat{\rho}_S(t_0)\hat{T}^\dagger(t,t_0) = \text{Tr}_E[\hat{\rho}_{SE}(t)].$$

By definition, $\hat{T}(t,t_0)$ is a linear map that transforms the input state $\hat{\rho}_S(t_0)$ into the output state $\hat{\rho}_S(t)$. In this paper we address the question how to determine (reconstruct) the master equation that governs the time evolution of the reduced density operator $\hat{\rho}_S(t)$. This master equation can be written in the convolutionless form [2] (we omit the subscript S)

$$\frac{d}{dt}\hat{\rho}(t) = \hat{L}(t,t_0)\hat{\rho}(t),$$

which is possible due to the fact that in the finite-dimensional Hilbert spaces matrix elements of density operators are analytic functions. Consequently, $\hat{T}(t,t_0)$ are nonsingular operators (except maybe for a set of isolated values of t) in which case the inverse operators $\hat{T}(t,t_0)^{-1}$ exist and the Liouvillian superoperator can be expressed as

$$\hat{L}(t,t_0): = \left[\frac{d}{dt}\hat{T}(t,t_0)\right] \hat{T}^{-1}(t,t_0).$$

We note that $\hat{T}(t,t_0)$ is uniquely specified by \hat{H}_{SE} and by the initial state $\hat{\rho}_E(t_0)$ of the environment.

In this paper we propose a general algorithm to reconstruct the Liouvillian superoperator $\hat{L}(t,t_0)$ from the knowledge of the time evolution of the system density operator $\hat{\rho}(t)$. In fact, there are two aspects of this problem. First, $\hat{\rho}(t)$ can be given as a result of a sequence of quantum-tomography measurements [3] such that at each time t the system density operator is reconstructed from the measured tomographic data. From these experimental data the Liouvillian that governs the open system can then be reconstructed (see example A). Second, the density operator $\hat{\rho}(t)$ is determined from the knowledge of the unitary evolution of the composite $S \oplus E$ system [see Eq. (1)]. From this knowledge the master equation (2) is determined. In both cases the dynamics of the open system is given exclusively in terms of the system operators. Environmental degrees of freedom are completely eliminated from the reduced dynamics. Nevertheless, the state of the environment may change during the time evolution due to the interaction with the system. That is, we do not employ the assumption that the environment is a “big” reservoir that does not change under the action of the system (see examples B and C).

In order to reconstruct the Liouvillian superoperator $\hat{L}(t,t_0)$ we have to determine firstly the linear map $\hat{T}(t,t_0)$ given by Eq. (1). This part of the reconstruction can be performed with the help of the algorithm recently proposed by Poyatos, Cirac, and Zoller [4]. This algorithm works as follows. Let us assume that the system S has been initially prepared in a pure state $|\Psi(t_0)\rangle = \sum_i^N |i_1\rangle_1 \otimes |\alpha_i\rangle_2$, where $|i_1\rangle_1$ are basis vectors in the $(N+1)$-dimensional Hilbert space \mathcal{H}_S of the system under consideration. It is further assumed that the environment is initially prepared in a state $\hat{\rho}_E(t_0) = \sum_{a_1,a_2} \delta_{a_1,a_2} |\alpha_1\rangle_2 \langle \alpha_2|_E$, where $|\alpha_i\rangle_2$ are basis vectors in the Hilbert space \mathcal{H}_E of the environment.

In general, the physical process $\hat{T}(t_k,t_0)$ is determined by a transformation acting on basis vectors of the system and the environment (in what follows we omit in all expressions the explicit reference to the initial time t_0)

$$|i_1\rangle_S\otimes|\alpha_1\rangle_E \rightarrow \sum_{\beta_1}^N \sum_{j_1=0}^N E_{i_1j_1}|\alpha_1\beta_1\rangle_2(t_k)|j_1\rangle_S|\beta_1\rangle_E.$$

The output density operator $\hat{\rho}(t_k)$ of the system at time t_k is obtained when the transformation (4) is applied to the initial
state of the system environment $\hat{\rho}(t_0) \otimes \hat{\rho}_E(t_0)$ and then the tracing over the environment is performed, so that $\rho(t_k)$ can be written as

$$\hat{\rho}(t_k) = \sum_{i_1, i_2=0}^{N} c_{i_1}(c_{i_2})^* \hat{R}_{(i_1, i_2)}(t_k),$$

where $(N+1)^2$ operators $\hat{R}_{(i_1, i_2)}(t_k)$ are defined as

$$\hat{R}_{(i_1, i_2)}(t_k) = \sum_{j_1,j_2=0}^{N} D_{(i_1, i_2)(j_1, j_2)}(t_k)|j_1\rangle\langle j_2|,$$

with

$$D_{(i_1, i_2)(j_1, j_2)}(t_k) = \sum_{a_1, a_2, \gamma} d_{a_1 a_2} (a_1 a_2) \gamma E_{(i_1, i_2)(a_1 a_2)\gamma}(t_k).$$

From Eq. (5) it follows that the process $\hat{T}(t_k)$ for a given time t_k is completely determined by $(N+1)^2$ operators $\hat{R}_{(i_1, i_2)}(t_k)$, which in turn are specified by the $(N+1)^2$ matrix elements $D_{(i_1, i_2)(j_1, j_2)}(t_k)$. We note that the $\hat{R}_{(i_1, i_2)}(t_k)$ have the properties

$$\text{Tr}\hat{R}_{(i_1, i_2)}(t_k) = \delta_{i_1, i_2},$$

or, equivalently,

$$\sum_{j=0}^{N} D_{(i_1, i_2)(j, j)}(t_k) = \delta_{i_1, i_2}$$

$$D_{(i_2, i_1)(j_1, j_2)}(t_k) = D_{(i_1, i_2)(j_2, j_1)}(t_k).$$

We also note that neither the $\hat{R}_{(i_1, i_2)}(t_k)$ nor $D_{(i_1, i_2)(j_1, j_2)}(t_k)$ depend on the initial state $\hat{\rho}(t_0)$ of the system and formally they fulfill the conditions

$$\lim_{t_k\to t_0} \hat{R}_{(i_1, i_2)}(t_k) = |i_1\rangle\langle i_2|,$$

$$\lim_{t_k\to t_0} D_{(i_1, i_2)(j_1, j_2)}(t_k) = \delta_{i_1, j_1} \delta_{i_2, j_2}.$$

Poyatos et al. [4] have shown that in order to specify the $(N+1)^2$ operators $\hat{R}_{(i_1, i_2)}(t_k)$ one has to consider $(N+1)^2$ specific (see below) initial conditions $|\Psi^{(k_1, k_2)}\rangle_{in} = \sum_{i=0}^{N} |c^{(k_1, k_2)}_{i}\rangle_{i_1}$ where $k_1, k_2 = 0, 1, \ldots, N$, and to measure the corresponding $(N+1)^2$ output density operators $\hat{\rho}^{(k_1, k_2)}(t_k)$ which can be expressed as

$$\hat{\rho}^{(k_1, k_2)}(t_k) = \sum_{i_1, i_2=0}^{N} M_{(k_1, k_2)(i_1, i_2)}\hat{R}_{(i_1, i_2)}(t_k),$$

where

$$M_{(k_1, k_2)(i_1, i_2)} = c_{i_1}^{(k_1, k_2)}(c_{i_2}^{(k_1, k_2)})^*.$$

If the $(N+1)^2$ initial conditions $|\Psi^{(k_1, k_2)}\rangle_{in}$ are chosen so that the matrix $M_{(k_1, k_2)(i_1, i_2)}$ given by Eq. (12) is invertible, then the set of equations (11) can be solved with respect of the operators $\hat{R}_{(i_1, i_2)}(t_k)$. Alternatively, one can express the matrix elements $D_{(i_1, i_2)(j_1, j_2)}(t_k)$ as functions of the in and out states of the measured system, i.e.,

$$D_{(i_1, i_2)(j_1, j_2)}(t_k) = \sum_{k_1, k_2=0}^{N} M_{(i_1, i_2)(k_1, k_2)} S_{(k_1, k_2)(j_1, j_2)}(t_k),$$

where the $(N+1)^2 \times (N+1)^2$ matrix S is defined as

$$S_{(k_1, k_2)(j_1, j_2)}(t_k) = \langle j_1|\hat{\rho}^{(k_1, k_2)}(t_k)|j_2\rangle.$$

The matrix \hat{M} is the inverse of M and has the property $\Sigma_{k_1, k_2=0}^{N} \hat{M}_{(i_1, i_2)(k_1, k_2)} M_{(k_1, k_2)(i_1, i_2)} = \delta_{i_1, j_1} \delta_{i_2, j_2}$. So this is how the process $\hat{T}(t_k)$ can be reconstructed from the measured in and out states. To make the reconstruction possible the matrix M has to be invertible. Obviously, there are many choices of such a matrix. In particular, Poyatos et al. [4] have proposed M given by Eq. (12) with complex amplitudes $c_{i}^{(k_1, k_2)}$ specified as

$$c_{i}^{(k_1, k_2)} = \begin{cases} \left(\delta_{i, k_1} + \delta_{i, k_2}\right)/\sqrt{2} & \text{if } k_1 > k_2 \\ \delta_{i, k_1} & \text{if } k_1 = k_2 \\ \left(\delta_{i, k_1} + i \delta_{i, k_2}\right)/\sqrt{2} & \text{if } k_1 < k_2. \end{cases}$$

The reconstruction process described above gives us a set of operators $\hat{R}_{(i_1, i_2)}(t_k)$ that describe the transition of the system from the state $\hat{\rho}(t_0)$ to the state $\hat{\rho}(t_k)$ at a given time t_k. In principle, one can perform a whole sequence of such reconstructions at different times t_1, t_2, \ldots, t_k so that the reduced dynamics of the studied system can be reconstructed from the measured data.

Now our task is to determine (reconstruct) from a set of measurements of the output states $\hat{\rho}^{(k_1, k_2)}(t_k)$ for given input states $\hat{\rho}^{(k_1, k_2)}(t_0)$ the form of the Liouvilian superoperator $\hat{L}(t)$ in Eq. (2). To do so, we note that when the time evolution of the operators $\hat{\rho}^{(k_1, k_2)}(t_k)$ is governed by Eq. (2) and taking into account expression (11) and the assumption that the matrix M is invertible, we find that the operators $\hat{R}_{(i_1, i_2)}(t_k)$ are also governed by the same master equation, i.e.,

$$\frac{d}{dt} \hat{R}_{(i_1, i_2)}(t) = \hat{L}(t) \hat{R}_{(i_1, i_2)}(t),$$

with the initial conditions given by Eq. (10). Alternatively, taking into account the expression (6) we obtain from Eq. (16) a set of linear differential equations for matrix elements $D_{(i_1, i_2)(k_1, k_2)}(t)$.

\[
\frac{d}{dt}D_{(i_1,i_2|k_1,k_2)}(t) = \sum_{j_1,j_2=0}^N D_{(i_1,i_2|j_1,j_2)}(t)G_{(j_1,j_2|k_1,k_2)}(t),
\]
with the initial conditions (10). Here the matrix \(G_{(j_1,j_2|k_1,k_2)}(t)\) is defined as
\[
G_{(j_1,j_2|k_1,k_2)}(t) = \langle k_1 | \hat{\mathcal{L}}(t) | j_1 \rangle \langle j_2 | k_2 \rangle
\]
and it uniquely determines the Liouvillian superoperator \(\hat{\mathcal{L}}(t)\).

We already know how to reconstruct matrices \(D\) from the measured data for arbitrary time \(t\) (from these data we can also evaluate the corresponding time derivatives). Provided the matrix \(D_{(i_1,i_2|j_1,j_2)}(t)\) is not singular, its inverse \(D_{(j_1,j_2|i_1,i_2)}(t)\) can be found and then the reconstructed matrix \(G_{(j_1,j_2|k_1,k_2)}(t)\) is given by a simple expression
\[
G_{(j_1,j_2|k_1,k_2)}(t) = \left(\sum_{i_1,i_2=0}^N D_{(i_1,i_2|j_1,j_2)}(t) \right) \times \frac{d}{dt}D_{(j_1,j_2|i_1,i_2)}(t),
\]
from which the superoperator \(\hat{\mathcal{L}}(t)\) at time \(t\) can be determined. This is the main result of the paper.

In the following we will apply this general algorithm to three physically interesting examples.

Example A. Let us consider a two-level system (a two-level atom, a spin 1/2, or a quantum bit) with a two-dimensional Hilbert space \(\mathcal{H}_S\) spanned by two vectors \(|1\rangle\) and \(|0\rangle\). In order to specify the Liouvillian superoperator \(\hat{\mathcal{L}}(t)\) for the two-level atom we have to know the time evolution of four initial states specified by Eq. (15). Let us assume that from the measured data it is found that these states evolve as
\[
\rho^{(0,0)}(t) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho^{(1,1)}(t) = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & 1 - e^{-\Gamma t} \end{pmatrix},
\]
\[
\rho^{(1,0)}(t) = \frac{1}{2} \begin{pmatrix} e^{-\Gamma t} & i e^{-\Gamma/2} \\ -i e^{-\Gamma/2} & 2 - e^{-\Gamma t} \end{pmatrix}, \quad \rho^{(0,1)}(t) = \frac{1}{2} \begin{pmatrix} e^{-\Gamma t} & e^{-\Gamma/2} \\ e^{-\Gamma/2} & 2 - e^{-\Gamma t} \end{pmatrix}.
\]

Now we can apply our reconstruction scheme and find for the matrix \(G_{(j_1,j_2|k_1,k_2)}(t)\) the expression [5]
\[
G_{(j_1,j_2|k_1,k_2)}(t) = \begin{pmatrix} -\Gamma & 0 & 0 & \Gamma \\ 0 & -\Gamma/2 & 0 & 0 \\ 0 & 0 & -\Gamma/2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

This matrix corresponds to the Liouvillian that defines the master equation
\[
\frac{d}{dt}\hat{\rho} = \hat{\mathcal{L}}\hat{\rho} = \frac{\Gamma}{2} [2\hat{\sigma}_-\hat{\rho}\hat{\sigma}_+ - \hat{\sigma}_\pm\hat{\rho}\hat{\sigma}_\mp - \hat{\sigma}_\mp\hat{\rho}\hat{\sigma}_\pm],
\]
describing the decay of a two-level atom into a zero-temperature reservoir [6]. The Liouvillian in Eq. (22) is time independent which reflects the fact that the state of the reservoir does not change in time under the influence of the system.

Example B. Here we will reconstruct the Liouvillian superoperator for the master equation describing the time evolution of a single two-level atom interacting with a single-mode electromagnetic field in an ideal cavity. The corresponding Hamiltonian in the dipole and the rotating-wave approximations reads [6]
\[
\hat{H} = \omega_A \hat{\sigma}_z + \omega_a \hat{a}^\dagger \hat{a} + \lambda (\hat{\sigma}_+ \hat{a} + \hat{\sigma}_- \hat{a}^\dagger),
\]
where \(\lambda\) is the atom-field coupling constant. We assume that the atomic transition frequency \(\omega_A\) is on resonance with the field frequency \(\omega\). The operators \(\hat{a}^\dagger\) and \(\hat{a}\) are the usual photon creation and annihilation operators, respectively, with \([\hat{a}, \hat{a}^\dagger] = 1\). If the atom and the field are initially prepared in states \(|\Psi(t_0)\rangle_A = c_0 |0\rangle + c_1 |1\rangle\) and \(|\Psi(t_0)\rangle_F = \Sigma_k \alpha_k |k\rangle\), respectively, then at time \(t\) the atom-field state vector \(|\Psi(t)\rangle_{A-F}\) reads
\[
|\Psi(t)\rangle_{A-F} = c_0 \sum_k (\cos \tau_k |k\rangle |0\rangle - i \sin \tau_k |k-1\rangle |1\rangle) + c_1 \sum_k (\cos \tau_{k+1} |k+1\rangle |1\rangle - i \sin \tau_{k+1} |k\rangle |0\rangle),
\]
where \(\tau_k = \lambda \sqrt{k} t\). Using Eq. (19) we can determine the Liouvillian superoperator that governs the dynamics of the atom-field system.

FIG. 1. Time evolution of the decay rate \(\gamma(t)\) (thin line) and the population of the excited atomic level \(P(t)\) (thick line). We assume the atom to be in the center of the 1D cavity, so it is coupled only to the odd modes (i.e., \(\lambda_{2k} = 0\)). We assume \(L = 2\pi\) and \(c = 1\) so that \(\omega_{2k+1} = k + 1/2\) and \(\lambda_{2k+1} = \lambda = 0.3\). The effective density of modes that interact with the atom is \(d_{eff}(\omega) = L/2c\pi = 1\). Therefore, the decay rate \(\Gamma = 2\pi\lambda^2 d_{eff}(\omega) = 0.564\). We consider \(K = 400\) modes of the field initially in the vacuum state and the atom (with \(\omega_A = 101\)) in its upper state \(|1\rangle\).
atom. Here $\hat{L}(t)$ explicitly depends on the initial state of the cavity field. Let us assume a particular case when the field has been prepared in the Fock state $|M\rangle$. With this initial state the matrix (13) takes the form

$$ D_{ij\rightarrow ij}(t) = \begin{pmatrix} \xi_1 & 0 & 0 & 1 - \xi_1 \\ 0 & \sqrt{\xi_0 \xi_1} & 0 & 0 \\ 0 & 0 & \sqrt{\xi_0 \xi_1} & 0 \\ 1 - \xi_0 & 0 & 0 & \xi_0 \end{pmatrix}, $$

where $\xi_0 = \cos^2(\lambda t \sqrt{M})$ and $\xi_1 = \cos^2(\lambda t \sqrt{M+1})$. The determinant of this matrix $\det[D] = \xi_0 \xi_1 (\xi_0 + \xi_1 - 1)$ is equal to zero only at discrete moments, so D is invertible and we can use Eq. (19), from which we find

$$ G_{ij\rightarrow ij}(t) = \begin{pmatrix} -\gamma_1 & 0 & 0 & \gamma_1 \\ 0 & -\gamma_2/2 & 0 & 0 \\ 0 & 0 & -\gamma_2/2 & 0 \\ \gamma_3 & 0 & 0 & -\gamma_3 \end{pmatrix}, $$

with the time-dependent parameters $\gamma_i(t)$ given as

$$ \gamma_1(t) = \frac{2\lambda \sqrt{M} \sin(2\lambda t \sqrt{M}) \sin^2(\lambda t \sqrt{M+1}) + \sqrt{M+1} \sin(2\lambda t \sqrt{M+1}) \cos^2(\lambda t \sqrt{M})}{\cos(2\lambda t \sqrt{M}) + \cos(2\lambda t \sqrt{M+1})}, $$

$$ \gamma_2(t) = \frac{\lambda \sqrt{M} \sin(2\lambda t \sqrt{M}) \cos^2(\lambda t \sqrt{M+1}) + \sqrt{M+1} \sin(2\lambda t \sqrt{M+1}) \cos^2(\lambda t \sqrt{M})}{\cos^2(2\lambda t \sqrt{M}) \cos^2(\lambda t \sqrt{M+1})}, $$

$$ \gamma_3(t) = \frac{2\lambda \sqrt{M} \sin(2\lambda t \sqrt{M}) \cos^2(\lambda t \sqrt{M+1}) + \sqrt{M+1} \sin(2\lambda t \sqrt{M+1}) \sin^2(\lambda t \sqrt{M})}{\cos(2\lambda t \sqrt{M}) + \cos(2\lambda t \sqrt{M+1})}. $$

From the solution (26) it follows that the Liouvillian superoperator is explicitly time dependent, which reflects the dynamical response of the environment (i.e., the cavity field). The master equation (2) with $\hat{L}(t)$ specified by Eq. (26) can be written as

$$ \frac{d}{dt} \hat{\rho} = \frac{\gamma_1(t)}{2} [2\hat{\sigma}_- \hat{\rho} \hat{\sigma}_+ - \hat{\sigma}_+ \hat{\rho} \hat{\sigma}_- - \hat{\rho} \hat{\sigma}_+ \hat{\sigma}_-] $$

$$ - \eta(t) [2\hat{\sigma}_- \hat{\rho} \hat{\sigma}_+ \hat{\rho} \hat{\sigma}_- + \hat{\sigma}_+ \hat{\rho} \hat{\sigma}_- \hat{\rho} \hat{\sigma}_+] $$

$$ + \frac{\gamma_3(t)}{2} [2\hat{\sigma}_+ \hat{\rho} \hat{\sigma}_- - \hat{\sigma}_- \hat{\rho} \hat{\sigma}_+ \hat{\rho} \hat{\sigma}_-], $$

with the coefficients $\gamma_i(t)$ [Eq. (27)] and $\eta(t) = \gamma_2(t) - \gamma_1(t) - \gamma_3(t)$. One can check that $\hat{\rho}_A(t)$ obtained from Eq. (24) is the solution of the master equation (28). We note that if the cavity field is initially in the vacuum state $(M = 0)$ then the master equation (28) takes the form (22), but with the time-dependent “decay” rate $\Gamma = \gamma_1(t) = 2\lambda \tan \lambda t$.

Example C. Finally, we consider a single two-level atom coupled to K modes of the electromagnetic field in a one-dimensional cavity of the length L. The spectrum of modes is discrete with frequencies $\omega_k = k \pi c / L$. The corresponding total Hamiltonian in the dipole and rotating-wave approximations reads [7]

$$ \hat{H} = \omega_A \hat{\sigma}_+ + \sum_{k=1}^K \omega_k \hat{a}_k^\dagger \hat{a}_k + \sum_{k=1}^K \lambda_k (\hat{\sigma}_- \hat{a}_k + \hat{\sigma}_+ \hat{a}_k^\dagger). $$

The field is assumed to be initially in the vacuum state. By applying our algorithm we find the master equation for the atom to be of the form (22), except the decay rate $\Gamma = \gamma(t)$ is now explicitly time dependent. It can be expressed in terms of the “measured” probability $P(t) = \langle 1 | \hat{\rho}_A(t) | 1 \rangle$ that the upper atomic level is excited:

$$ \gamma(t) = - \left(\frac{dP(t)}{dt} \right) P(t)^{-1}. $$

In Fig. 1 we present the time evolution of $P(t)$ and $\gamma(t)$ obtained with the help of numerical diagonalization of the Hamiltonian (29). From our results it follows that $\gamma(t=0) = 0$ but as soon as the atom starts to radiate the function $\gamma(t)$ starts to grow and after a short time it takes the constant value $\Gamma = 2\pi \lambda^2 d_{eff}(\omega)$ given by the Fermi golden rule [7]. At this stage the atom radiates exponentially and two wave packets propagating to the left and the right cavity mirrors are irradiated. These packets are reflected by mirrors at $t = L / 2 c$ and they “kick” back the atom at $t = L / c$. At this point the atom is essentially in its ground state and the reflected waves packets (environment) force it to absorb energy, i.e. the atom does not decay exponentially anymore. This is the reason why during the recurrence of the atomic inversion $\gamma(t)$ rapidly changes and takes negative values.

I thank Pavel Bôna, Ignacio Cirac, Gabriel Drobný, Jason Twamley, and Peter Zoller for helpful discussions and comments. This work was supported by the Aktion Österreich–Slowakische Republik under Project No. 18s42, by the Royal Society, and by Slovnaft.
[5] Matrix elements $G_{(j_1,j_2)(k_1,k_2)}$ are labeled so that the pair (j_1,j_2) indicate lines [the jth line is numbered as $j=(N+1)^2-(N+1)j_1-j_2$] while (k_1,k_2) indicates rows [the kth row is numbered as $k=(N+1)^2-(N+1)k_1-k_2$].