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Reconstruction of Liouvillian superoperators
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We show how to determin¢reconstruct a master equation governing the time evolution of an open
guantum system. We present a general algorithm for the reconstruction of the corresponding Liouvillian
superoperators. The dynamics of a two-level atom in various environments is discussed in detail.
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A proper description of quantum dynamics of open sys- In this paper we propose a general algorithm to recon-
tems is essential for our understanding of physical processegyct the Liouvillian superoperatdi(t,t,) from the knowl-
in many areas of physics, from quantum optics to quantunggge of the time evolution of the system density operator

cosmology. In general an open system can be represented : :
. i . ) i El(%.Inf here ar f this problem. Fir
a systemsS interacting with an environmer [1]. In this p ) act, there are two aspects of this proble st,

paper we consider the archetypal system plus environmerf{t) €an be given as a result of a sequence of quantum-
model, which is specified as follows. Lets denote a Hilbert tomography measuremerit3] such that at each timethe
space of the systers and Mz the Hilbert space associated SYStEM density operator is reconstructed from the measured

. . A ~ tomographic data. From these experimental data the Liouvil-
VJ\F"::T ﬂlei eg\sronr];ntehntE. The Tam'lt(t)nr'sa;ESE:tHs(g;E lian that governs the open system can thendm®nstructed

int™ 1s@ Mg OF the COMPOSHE SYSIEOE aCls ONTts  (gae example)). Second, the density operatpft) is deter-

®He.- Itis assumed the@ea_E 1S aclosed. flnlte-dlAmensmnaI mined from the knowledge of the unitary evolution of the
system that evolves unitarily. The density operatei(t) of  compositeS® E system[see Eq.(1)]. From this knowledge
this composite system is governed by the von Neumanghe master equatiof®) is determined. In both cases the dy-
equation with the formal solutionpgg(t)=exd—i(t  namics of the open system is given exclusively in terms of
—to)ﬂsd;)se(to)eXF[i(t—to)ﬂsd, where the initial state is the system operators. Environmental degrees of freedom are

S eelt) = ot @ pe(ts) andz=1. The reduceddvnamics completely eliminated from the reduced dynamics. Neverthe-
gfsffwe())sygtsé(nofg ?spti(eg)defined as y less, the state of the environment may change during the time

evolution due to the interaction with the system. That is, we
A A - - do not employ the assumption that the environment is a
ps(t):=T(1,t0) ps(to) =Tre[ pse(t)]- ) “big” reservoir that does not change under the action of the
A system(see exampleB and C).
By definition, 7(t,tp) is a linear map that transforms the In order to reconstruct the Liouvillian superoperator
input statepg(to) into the output statp(t). In this paper we  L(t,t,) we have to determine firstly the linear mdjgt, t,)
address the questidrow to determine (reconstruct) the mas- given by Eq.(1). This part of the reconstruction can be per-
ter equation that governs the time evolution of the reducedormed with the help of the algorithm recently proposed by
density operatops(t). This master equation can be written Poyatos, Cirac, and Zollgd]. This algorithm works as fol-
in the convolutionlesform [2] (we omit the subscripB) lows. Let us assume that the systenhas been initially
prepared in a pure staf@ (tq)) = 2:\‘1=0Cilli1), wherel|i,) are
- - R basis vectors in theN+ 1)-dimensional Hilbert spacHg of
ap(t)=ﬁ(t,t0)p(t), (@ the system under consideration. It is further assumed that the
environment is initially prepared in a statgg(to)
which is possible due to the fact that in thigite-dimensional =Eal,a2dala2|al>E<a2|’ where |a;)g are basis vectors in
Hilbert spaces matrix elements of density operators are anghe Hilbert spacé-g of the environment.

lytic functions. ConsequentlyZ(t,to) are nonsingular opera-  |n general, the physical proceg§t, o) is determined by
tors (except maybe for a set @olatedvalues oft) in which  a transformation acting on basis vectors of the system and
case the inverse operatdfét,t,) ~* exist and the Liouvillian the environmentin what follows we omit in all expressions

superoperator can be expressed as the explicit reference to the initial timg)
d N
L(t,to):= mf(t,m}:rl(t,to). (3) |i1>s|a1>E;t) lezo ; Eiyipiaysp(tliDsBe. (@
k

We note th§t§(t,t0) is uniquely specified bifise and by the  The output density operat@i(t,) of the system at timé, is
initial statepg(ty) of the environment. obtained when the transformatié) is applied to the initial
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state of the system environmeptt,) ® pe(to) and then the

tracing over the environment is performed, so thét) can
be written as

N

p(t)= >

11.10=

L GG Ry iy (80, (5)

where N+ 1)? operatorsfz(il,iz)(tk) are defined as

N
ﬁ(il,iz)(tk):j J_Eio D(il,iz)(jl,jz)(tk)“l><j2|v (6)
1127
with

Dy inipiy= 2 o,

ay,q3,Y

XE i, (W Ef i) (apm (B (7)

From Egq.(5) it follows that the procesé(tk) for a given
time t, is completely determined by K+1)? operators

ﬁ(i i.,y(t), which in turn are specified by theN(+ 1)?

172

X (N+1)? matrix element@(il,iz)(jl,jz)(tk). We note that

the ﬁ(il,iz)(tk) have the properties
TR i) (L) =,

112

()
[Rii it =R,.i ()
or, equivalently,
N
]2::0 D, iyan(tk=26i i,
9
D i1 (1) = Diigig) (5.0 (1)
We also note that neither theﬁ(il'iz)(tk) nor

D(il'iz)(jl*jz)(tk) depend on the initial state(t,) of the sys-
tem and formally they fulfill the conditions

lim ﬁ(il,iz)(tk)=|i1><i2|*
ty—to

(10)
M Dy 113,12 (80 = 01y,
k—to

Poyatoset al. [4] have shown that in order to specify the

(N+1)2 operatorslfi(il,iz)(tk) one has to considemN+ 1)?

specific (see below initial conditions |Wkik2y,

=EiN1:Oci('l(1‘k2)|i1> wherek, ,k,=0,1,... N, and to measure
the corresponding N+1)? output density operators
p&k1K(t,) which can be expressed as

N

;J(klyk2>(tk):' E

11,10=

0M(kl,kz)(il,iZ)R(il,iz)(tk)a 11

where
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(12

_ (kg ko) (Ky ko)
Mk, ky)(ig.ip=Ci Z(Cizl ).

i1
If the (N+1)? initial conditions|W(k1k2)), “are chosen so
that the matrixM ., k), i,) 9iven by Eq.(12) is invertible,
then the set of equatiorid1) can be solved with respect of
the operators?{(il,iz)(tk). Alternatively, one can express the
matrix eIementsD(iliiz)(jl,jz)(tk) as functions of then and
out states of the measured system, i.e.,

N
Diiyipiy ()= kE:O My i)y k) Sty ko) 3.5) (B
182
(13

where the N+1)?X (N+1)? matrix S is defined as

Stky k) (i1 (1) = p* k(1)) (14)

The matrix M is the inverse ofM and has the property
Ekl'kZZOM(jl'jZ)(kl'kZ)M(kllkZ)(il'iZ):5il’j15i2,j2. So this is

how the procesg(t,) can be reconstructed from the mea-
sured in and out states. To make the reconstruction possible
the matrixM has to be invertible. Obviously, there are many
choices of such a matrix. In particular, Poyateisal. [4]
have p(r;(orl)(o)sedJI given by Eq.(12) with complex ampli-

112

tudesc, specified as
(s, T Oiu N2 i Ky>k,
ci(kl‘kz): Sk, If ki=k; (15)

(3K, i 5i,k2)/\/§ if ky<k,.

The reconstruction process described above gives us a set of
operatorslfe(il,iz)(tk) that describe the transition of the sys-
tem from the staté(to) to the statq}(tk) at a given timd, .
In principle, one can perform a whole sequence of such re-
constructions at different timds,t,, . .. tx so that there-
duced dynamicsf the studied system can be reconstructed
from the measured data.

Now our task is to determin@econstrudt from a set of

measurements of the output stapéé *2)(t) for given input
statesp(1:¥2)(t,) the form of the Liouvillian superoperator
ﬁ(t) in Eg. (2). To do so, we note that when the time evo-

lution of the operatorg®1-¥2)(t) is governed by Eq(2) and
taking into account expressidil) and the assumption that
the matrix M is invertible, we find that the operators

ﬁ(il,iz)(t) are also governed by the same master equation,
ie.,

d. ~ 4
aR(il,iz)(t):E(t)R(il,iz)(t)v (16)
with the initial conditions given by Eq0). Alternatively,
taking into account the expressi¢f) we obtain from Eg.
(16) a set of linear differential equations for matrix elements
D, i)k, k) (1) s
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N
d d. . T .+ < & & a4 .
aD(il’iz)(klvkz)(t)211%:0 D(il’iz)(jlvj2)(t)G(j1'j2)(kl'kz)(t)’ &P:[fp: 5[20'7PU+_0'+0'79_PO'+0'7]1 (22)
17 - .

describing the decay of a two-level atom into a zero-
with the initial conditions (10). Here the matrix temperature reservdi6]. The Liouvillian in Eq.(22) is time
G(j,.i,)(k, k) (1) is defined as independent which reflects the fact that the state of the res-

ervoir does not change in time under the influence of the

G, i ) =(Ke|(L(D)]j 1) 2])|K 1  System. _ o
(11120 k) () = CKal (LD 1) 2D k2) (18 Example B.Here we will reconstruct the Liouvillian su-

peroperator for the master equation describing the time evo-
lution of a single two-level atom interacting with a single-

L(1). . mode electromagnetic field in an ideal cavity. The
We already know how to reconstruct matrié@drom the  corresponding Hamiltonian in the dipole and the rotating-

measured data for arbitrary tinte(from these data we can wave approximations reads]
also evaluate the corresponding time derivaliv&sovided

the matrix D(ilviz)(leJ'z)(t) is not singular, its inverse A=wpo,+waa+ (o a+o_ah, (23)

and it uniquely determines the Liouvillian superoperator

B(jl'jZ)(il’iz)(t) can be found and then the reconstructed ma-
trix Gj. |k, k(1) iS given by a simple expression where is the atom-field coupling constant. We assume that
1i2iiite the atomic transition frequencyw(,) is on resonance with
N the field frequency ). The operatora’ anda are the usual
G(jl'jZ)(klvkz)(t) =i iE:o D(jlij)(ilviz)(t) pAhoAton creation and annihilation operators, respectively, with
12 [a,a’]=1. If the atom and the field are initially prepared in
d states |\P(t0))A= Col0)+c4) 1} and |\If(t0)}F: =o€ k)
X Gt Pip ipky k(D (19  =|a), respectively, then at timeethe atom-field state vector
|W(t))a_g reads

from which the superoperatcft(t) at timet can be deter-

mined. This is the main result of the paper. |W(t))a_r=Co>, (cOsr/k)|0)—isinr|k—1)|1))
In the following we will apply this general algorithm to k

three physically interesting examples.

Example A.Let us consider a two-level systeta two- +¢,>, (cosry, 1|K)|1)—isinry, ¢|k+1)|0)),
level atom, a spin 1/2, or a quantum )bivith a two- k
dimensional Hilbert spacéts spanned by two vectoril) (24)

and |0). In order to specify the Liouvillian superoperator

L(t) for the two-level atom we have to know the time evo- where 7=Avkt. Using Eq.(19) we can determine the Li-
lution of four initial states specified by E¢15). Let us as- ouvillian superoperator that governs the dynamics of the
sume that from the measured data it is found that these states

evolve as 10 !
~(0,0 00 ~(1,2) eirt 0 0.8 0
()= , ()= 1t '
PRO=lg ) PTOSL g e B
1/ eIt e T2 P 2
~(0,0) 1) — — =
pr(H)= ( T2 —Ft) , (20) oo
2\ —ie 2—e 04 3
1{ e Tt T2 -4
~(1,0 —
p( )(t)_ E(e_l‘tm 2_e_rt> . 0.2 ;
Now we can apply our reconstruction scheme and we find for 005 5 ; . p o -
the matrixG;, i, k,)(t) the expressiof5] t

T 0 0 r FIG. 1. Time evolution of the decay ratdt) (thin line) and the
population of the excited atomic levet) (thick line). We assume
o -In2 0 0 the atom to be in the center of the 1D cavity, so it is coupled only
0 (21) to the odd modesi.e., A,,=0). We assumé& =27 andc=1 so
that w,, ;1 =k+1/2 and\, . ;=A=0.3. The effective density of
0 modes that interact with the atom dk{(w)=L/2c7=1. There-
fore, the decay ratd’=2mA\%dg1(w)=0.564. We consideiK
This matrix corresponds to the Liouvillian that defines the=400 modes of the field initially in the vacuum state and the atom
master equation (with wa=101) in its upper statfl).

Clivintk kM= o 5 _ppm
0o 0 0
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atom. HereZ(t) explicitly depends on the initial state of the Minant of this matrix d¢D]=¢&o¢1(éo+ ¢, —1) is equal to
cavity field. Let us assume a particular case when the field€r Only at discrete moments, Bois invertible and we can
has been prepared in the Fock stiw). With this initial ~ US€ EA(19), from which we find

state the matriX13) takes the form

6 0 0 14 A
—72
0o 0 0 . _
Dty iy 1 (D)= ol 2 Cey CotakWTlo oy o |0 @9
1:72/M1412 O O gogl 0 7 0 O B y
-6 0 0 & ’ ’
where&y,=cog(\tyM) and&;=cog(\tyM +1). The deter-  with the time-dependent parametergt) given as
=2 VMSIn( 2Nt M) SIFP(A VM + 1) + VM + 1sin 20 tyM + 1) cog(A M) ]
(e cog 2\ t\M) +cog2at M + 1) ’
" AWM sin( 2 tyM)co@(At VM + 1) + VM + 1sin2xt M + 1) co2(At M) ] -
Y2ll)=

coZ(AtM)co2(\tyM +1) '

20 [ VM sin( 2 tyM)cof(AtyM + 1) + VM + 1sin 2\t VM + 1) sirP(At M) ]
cog 2\ tyM) +cog 2\t M + 1) '

va(t) =

From the solution26) it follows that the Liouvillian super- The field is assumed to be initially in theacuumstate. By
operator is explicitly time dependent, which reflects the dy-applying our algorithm we find the master equation for the
namical response of the environmehne., the cavity field atom to be of the forni22), except the decay ralé— y(t) is

The master equatiof®) with £(t) specified by Eq(26) can  nhow explicitly time dependent. It can be expressed in terms
be written as of the “measured” probabilityP(t)=(1|pa(t)|1) that the
upper atomic level is excited:
do v _~ i x4 a aa s
——[20_poy—0o,0_p—po,o_]

at’” 2

D) A~ A an A A A aa s
5 o,0_po_o.to_opo.o_]

dP(t
Y= —(%) Pt~ (30

In Fig. 1 we present the time evolution &f(t) and y(t)
obtained with the help of numerical diagonalization of the
" Ys_(t)[zA b —o o p—po_o.] (28) Hamiltonian (29). From our results it follows thay(t=0)
2 Le0+PO-TO-04PTPO-0 1], =0 but as soon as the atom starts to radiate the fungtfon
starts to grow and after a short time it takes the constant
with the coefficients y;(t) [Eq. (27)] and 7(t)=y,(t)  valueI'=2m\%de¢(w) given by the Fermi golden rulgr].
— y,(t) = y5(t). One can check thqf:tA(t) obtained from Eq. At this stage the atom radiates exponentially and two wave
(24) is the solution of the master equatit28). We note that Packets propagating to the left and the right cavity mirrors
if the cavity field is initially in the vacuum statd{=0) then  are irradiated. These packets are reflected by mirrors at
the master equatiof8) takes the form(22), but with the ~ =L/2c and they "kick” back the atom at=L/c. At this
time-dependent “decay” ratf — y,(t) =2\ tant. point the atom is essentially in its ground state and the re-
Example CFinally, we consider a single two-level atom flected waves packet@nvironmenk force it to absorb en-
coupled toK modes of the electromagnetic field in a one-€rgy, i.e. the atom does not decay exponentially anymore.
dimensional cavity of the length. The spectrum of modes ThlS 1S the reason why during the recurrence pf the atomic
is discrete with frequencies, = kmc/L. The corresponding inversiony(t) rapidly changes and takes negative values.
total Hamiltonian in the dipole and rotating-wave approxi-
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