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Abstract

We present a microscopic model for a grey body which consists of a blackbody at the temperature Tb surrounded by
a semitransparent mirror. We derive the density operator of the grey-body radiation in the photon number or Wigner
representation. These relations involve the density matrix or the Wigner function of the incident radiation and kernels which
contain information about the blackbody temperature and the mirror. c© 1998 Published by Elsevier Science B.V.

PACS: 03.65.−w; 04.70.Dy; 42.50.Ct

Scattering of radiation off a black hole [1] is a
central problem in astrophysics and quantum gravity.
Remote sensing [2] is an important issue of applied
physics. The concept of grey-body radiation is im-
portant to both of them. Grey-body radiation emerges
from a physical object with a surface that absorbs and
reflects part of the incident radiation. Despite its im-
portance and many detailed investigations [316] no
complete quantum theory of grey-body radiation has
been developed. In this Letter we present the first mi-
croscopic theory. We give the density operator ρ̂(g) of
the grey-body radiation, expressed either in terms of
the Wigner function [7] W(g)(q, p) defined in phase
space by the dimensionless quadrature variables q and
p, or the density matrix ρ(g)

mm′ in the photon number
representation. We show that three physical factors de-
termine the complete quantum state of the grey-body
radiation: (i) the temperature Tb of the body, (ii) the
optical properties of the grey body, and (iii) the input
state.

When light shines on any body it will in general
reemit radiation. A blackbody is characterized by the
property that the radiation in the outgoing mode is in
a thermal state independent of the quantum state of
the incident radiation. The emitted field depends only
on the temperature Tb of the body. In this sense black-
body radiation is universal. In contrast, for a grey body
the state of the outgoing mode not only depends on
the temperature but also on the quantum state of the
incident field. It is therefore not universal. To under-
stand these features we need a model that shows how
to connect the incident with the outgoing radiation.

In our model we consider for the sake of simplic-
ity only two modes of the radiation field character-
ized by their wave vectors as shown by the left side of
Fig. 1. The first mode with density operator ρ̂(i) cor-
responds to the radiation incident on the grey body,
whereas the second mode is characterized by a field
with blackbody radiation ρ̂(b) of temperature Tb. We
couple these two modes by, for example, a dielectric
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Fig. 1. Microscopic model for the grey-body radiation. Left: We consider two modes characterized by wave vectors corresponding to
radiation incident on and scattered off the body. Right: Transformation of the incident into the outgoing radiation. The field of the incident
mode is coupled to a mode with thermal radiation from a blackbody at temperature Tb. A dielectric medium acting as a beam splitter provides
this coupling. Therefore the radiation emerging from the grey body carries properties of both the incident and the blackbody radiation.

medium acting as a beam splitter as indicated by the
right side of Fig. 1. We emphasize that the dielec-
tric medium serves only as a simple representation of
much more complicated physical processes. For ex-
ample, in the case of electromagnetic radiation scat-
tering off a black hole the event horizon serves as a
beam splitter at which in-going radiation gets partially
reflected or transmitted. The corresponding transmis-
sion and reflecting coefficients follow from the appro-
priate boundary conditions of Maxwell’s equations in
curved space-time [8]. A similar interpretation of the
beam splitter holds true in the context of a remote sen-
sor. The resulting two-mode field with density opera-
tor ρ̂(τ) reads

ρ̂(τ) = Û(τ) ρ̂(i) ⊗ ρ̂(b) Û†(τ), (1)

where Û(τ) ≡ exp(−iĤintτ/}) denotes the time evo-
lution operator. Here we have assumed that the inter-
action described by the Hamiltonian Ĥint acts during
the time τ.

Since the radiation in the incident mode is absorbed
by the blackbody we trace over this mode. Hence in
this model

ρ̂(g) = Tri
{
Û(τ) ρ̂(i) ⊗ ρ̂(b)(Tb) Û†(τ)

}
(2)

is the density operator of the grey-body radiation.
We note the linear relationship between the density

operators ρ̂(i) and ρ̂(g) of the incident and the outgo-
ing radiation. This property is independent of the spe-

cific form of the time evolution operator Û and of the
density operator ρ̂(i) of the incident field. It is there-
fore a universal feature which results from the linear-
ity of quantum mechanics. However, this is the only
universal property of the grey-body radiation. From
Eq. (2) we observe that in our model the density op-
erator of the grey-body radiation does 1 apart from
the temperature Tb of the body 1 depend on the spe-
cific interaction Hamiltonian Ĥint and the full density
operator ρ̂(i) of the incident radiation. This stands out
most clearly in the photon number representation,

ρ
(g)
nn′ ≡ 〈n|ρ̂(g)|n′〉 =

∑
m,m′

Kmm′

nn′ ρ
(i)
mm′ , (3)

following from Eq. (2). Here the summation kernel

Kmm′

nn′ ≡
∑
k,l

ρ(b)
kk Umk

nl (Um′k
n′l )∗

contains the matrix elements Umk
nl ≡ 〈nb, li|Û|mi, kb〉

and ρ(b)
kk ≡ 〈kb|ρ̂(b)|kb〉 in the photon number basis

|mi, kb〉 of the incident and the blackbody radiation.
Hence the specific form of the interaction Hamilto-
nian determines the matrix elementsUmk

nl and therefore
the kernel. Moreover, Eq. (3) suggests that coherence
properties of ρ̂(i) can reflect themselves in ρ̂(g). In the
present paper we consider the case of a linear coupler
and show that indeed the density matrix of the grey-
body radiation is in general not diagonal in the photon
number representation.
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In our model we assume that the atoms of the
medium interact with the radiation field via one-
photon processes which give rise to a linear coupling
between the incident field mode and the mode of the
blackbody radiation. This yields the Hamiltonian [91
12]

Ĥint = i}λ(â†bâi − âbâ
†
i ), (4)

where âi (â†i ) and âb (â†b) are the annihilation (cre-
ation) operators for the incident and blackbody modes,
respectively. Here the interaction strength is denoted
by λ. When we write the annihilation operators

âj =
1√
2

(q̂j + ip̂j)

for j = i and b in terms of the dimensionless quadra-
ture operators q̂j and p̂j we can identify the evolution
operator with

Û(τ) = exp(−iĤintτ/}) = exp(−iλτL̂z),

where L̂z ≡ q̂ip̂b− p̂iq̂b is the z component of the an-
gular momentum operator. Hence Û describes a rota-
tion in the qi1qb plane about the angle λτ. When it acts
on a two-mode position eigenstate |x, y〉 we obtain

exp(−iλτL̂z)|x, y〉 = |tx− ry, rx+ ty〉, (5)

where t ≡ cos(λτ) and r ≡ sin(λτ) are interpreted
as the probability amplitudes of the transmission and
the reflection of light of the beam splitter, respec-
tively [9].

Relation (5) allows us to express the two-mode
Wigner function

W(out)(qi, pi; qb, pb)

=
1

4π2

∞∫
−∞

dyi

∞∫
−∞

dyb 〈qi − yi/2, qb − yb/2|

× ρ̂(out)|qi + yi/2, qb + yb/2〉 ei(piyi+pbyb) (6)

of the output fields as a product of the Wigner func-
tions W(b) and W(i) of the blackbody and the incident
radiation, respectively. Indeed, by substituting the den-
sity operator (1) into the Wigner function (6) and
by making use of the transformation property (5) we
find [13] the relation

W(out)(qi, pi; qb, pb) = W(b)(tqb − rqi, tpb − rpi)

×W(i)(tqi + rqb, tpi + rpb), (7)

In our model of the grey body we only observe the
blackbody mode. We therefore have to integrate the
two-mode Wigner function W(out), Eq. (7), over the
pair (qi, pi) of phase-space variables associated with
the incident mode. Hence, the Wigner function of the
grey-body radiation reads

W(g)(qb, pb) =

∞∫
−∞

dqi

∞∫
−∞

dpi W
(out)(qi, pi; qb, pb).

(8)

We now rewrite this integral taking into account the
explicit form

W(b)(q, p) =
1

π(1 + 2n̄b)
exp

(
−q

2 + p2

1 + 2n̄b

)
(9)

of the Wigner function of the thermal field. Here n̄b =
[exp(}ω/kBTb) − 1]−1 is the mean photon number
of a thermal state at frequency ω and temperature Tb.
The Boltzmann constant is denoted by kB.

We insert Eq. (9) into Eqs. (7) and (8), perform
the substitution of variables qi = (q′ − rqb)/t and
pi = (p′ − rpb)/t, and obtain the Wigner function

W(g)(q, p) =

∞∫
−∞

dq′
∞∫
−∞

dp′

×K(q, p; q′, p′)W(i)(q′, p′) (10)

of the grey-body radiation. Here the integral kernel

K(q, p; q′, p′) ≡ 1
πt2(1 + 2n̄b)

× exp

(
−(q− rq′)2 + (p − rp′)2

t2(1 + 2n̄b)

)
(11)

is normalized to unity.
Eq. (10) expresses the Wigner function of the grey-

body radiation in terms of the Wigner function of the
incident radiation. The integral kernel K, Eq. (11),
depends only on the temperature of the body and the
properties of the beam splitter characterized by the
coefficents r and t. In particular, the kernel has the
limits



4 V. Bužek et al. / Physics Letters A 239 (1998) 115

K(q, p; q′, p′) = W(b)(q, p), for t2 = 1,

= δ(q− q′) δ(p − p′) for t2 = 0.

(12)

which shows that in the case of a completely transpar-
ent mirror, that is t2 = 1, the incident radiation is com-
pletely thermalized and the grey body radiates thermal
radiation described by the Wigner function (9). Hence
the grey body operates as a blackbody. On the other
hand, in the case of a perfectly reflecting mirror, that
is t2 = 0, the grey-body radiation is the incident radi-
ation described by the Wigner function W(i)(q, p).

We now illustrate relation (10) further using either
a thermal state or a coherent state as the incident field.
We start our discussion with the case when the inci-
dent radiation is in a thermal state at temperature Ti

with mean photon number n̄i. We substitute the cor-
responding Wigner function in Eq. (10) and perform
the integration. We find that the grey-body radiation
is in the thermal state with the mean photon number
n̄g = t2n̄b + r2n̄i. This result proves one of the key
assumptions made in Ref. [3].

However, Eq. (10) is much more general. To
demonstrate this and to bring out most clearly that
the grey-body radiation can carry phase information,
we now analyze the second example in which the
incident field is in a coherent state described by

W(i)
coh(q, p) =

1
π

exp[−(q− q̄)2− (p− p̄)2], (13)

where q̄ and p̄ are the mean values of the quadrature
operators. We substitute Eq. (13) into Eq. (10) and
obtain the Wigner function

W
(g)
coh (q, p) =

1
π(1 + 2t2n̄b)

× exp

(
−(q− rq̄)2 + (p − rp̄)2

1 + 2t2n̄b

)
(14)

of the grey-body radiation 1 when the incident field is
in a coherent state. Note that W(g) is still a Gaussian
located away from the origin of phase space and hence
the phase information of the incident coherent field

1 The P -function of this particular state was first calculated by
Lachs [14] in a different context, as a mixture of thermal and
coherent state.

is partially preserved in the grey-body radiation. This
example clearly shows that the grey-body radiation
cannot be ad hoc expressed only as a statistical mixture
of Fock states.

To illustrate this feature from a different point of
view we now return to the connection formula (3)
in the photon number representation. We explicitly
calculate the summation kernel Kmm′

nn′ by making use
of the relations [15]

ρ(g)
nn′ = 2π

∞∫
−∞

dq

∞∫
−∞

dp W(g)(q, p)Wn′n(q, p),

(15)

W(i)(q′, p′) =
∑
m,m′

Wmm′(q
′, p′) ρ(i)

mm′ (16)

with [15,16]

Wnn′(q, p) =
1

2π

∞∫
−∞

dy 〈q− y/2|n〉〈n′|q+ y/2〉 eipy

=
(−1)n

′

π

(
n′!
n!

)1/2

[
√

2(q− ip)]n−n
′

× exp(−q2 − p2)L(n−n′)
n′ (2q2 + 2p2), (17)

where L(m)
n (x) is a generalized Laguerre polynomial.

When we substitute Eq. (10) into Eq. (15) and then
use Eq. (16) we find by comparison with Eq. (3) the
formula

Kmm′

nn′ = 2π
∫

dq
∫

dp
∫

dq′
∫

dp′K(q, p; q′, p′)

×Wn′n(q, p)Wmm′(q′, p′). (18)

We obtain an explicit form of the summation kernel K
by substituting the integration kernelK, Eq. (11), and
expression (17) for Wnn′ into Eq. (18). The integrals
can be calculated analytically and we arrive [17] at

Kmm′

nn′ = δn−n′,m−m′
(
n′!m′!
n!m!

)1/2 (n+m′)!
n′!m′!

× rn−n′ t2(n′+m′) (1 + n̄b)m
′
n̄n
′

b

(1 + t2n̄b)n+m′+1

× 2F1(−n′,−m′;−m′ − n; z), (19)

where 2F1(α, β;γ; z) is the hypergeometric function
with the argument z = 1− r2/t4n̄b(1 + n̄b).
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It is because of the Kronecker delta in Eq. (19) that
the photon statistics P (g)

n ≡ 〈n|ρ̂(g)|n〉 and P (i)
m ≡

〈m|ρ̂(i)|m〉 of the grey-body radiation and of the in-
cident radiation are simply connected according to
Eq. (3) by

P (g)
n =

∑
m

Kmm
nn P (i)

m . (20)

Thus, if the incident radiation is a statistical mixture of
photon number states then Eq. (20) contains the com-
plete information because the density matrices have
no off-diagonal elements. However, as soon as the in-
cident radiation contains coherences, described by the
off-diagonal elements of the density matrix, one needs
to take into account the off-diagonal elements of the
grey-body radiation as implied by Eq. (3).

In conclusion, we have presented a microscopic
model of the grey body which consists of a blackbody
at the temperature Tb and a beam splitter characterized
by the amplitudes of transmission and reflection. The
beam splitter is modeled as a linear coupler between
the blackbody radiation and the incident radiation. We
have derived general expressions, Eqs. (3) and (10),
for the density operator of the grey-body radiation in
the photon number or Wigner representation. In our
discussion we have considered the ideal mirror, i.e.
the lossless mirror which does not introduce additional
noise or losses. Moreover we have focused on two
modes only. However, we emphasize that the present
treatment can be generalized 2 leading to more com-
plicated kernels.
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