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We study in detail the reconstruction of spin-1/2 states and analyze the connection between
(1) quantum Bayesian inference, (2) reconstruction via the Jaynes principle of maximum
entropy, and (3) complete reconstruction schemes such asdiscrete quantum tomography. We
derive an expression for a density operator estimated via Bayesian quantum inference in the
limit of an infinite number of measurements. This expression is derived under the assumption
that the reconstructed system is in a pure state. In this case the estimation corresponds to
averaging over a microcanonical ensemble of pure states satisfying a set of constraints imposed
by the measured mean values of the observables under consideration. We show that via a
“purification” ansatz, statistical mixtures can also be consistently reconstructed via the quantum
Bayesian inference scheme. In this case the estimation corresponds to averaging over the
generalized grand canonical ensemble of states satisfying the given constraints, and in the limit of
large number of measurements this density operator is equal to the generalized canonical density
operator, which can be obtained with the help of the Jaynes principle of the maximum entropy.
We also discuss inseparability of reconstructed density operators of two spins-1/2.  © 1998

Academic Press

454
0003-4916/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



RECONSTRUCTION OF QUANTUM STATES 455
I. INTRODUCTION

The concept of a quantum state represents one of the most fundamental pillars
of the paradigm of quantum theory [ 1-3]. Contrary to its mathematical elegance
and convenience in calculations, the physical interpretation of a quantum state is
not so transparent. The problem is that the quantum state (described ecither by a
state vector, or density operator or a phase-space probability density distribution)
does not have a well defined objective status, i.e., a state vector is not an objective
property of a particle. According to Peres (see [ 1, p.374]), “There is no physical
evidence whatsoever that every physical system has at every instant a well defined
state.... In strict interpretation of quantum theory these mathematical symbols [i.e.,
state vectors ] represent statistical information enabling us to compute the probabilities
of occurrence of specific events.” Once this point of view is adopted then it becomes
clear that any “measurement” or reconstruction of a density operator (or its
mathematical equivalent) can be understood exclusively as an expression of our
knowledge about the quantum mechanical state based on a certain set of measured
data. To be more specific, any quantum-mechanical reconstruction scheme is nothing
more than an a posteriori estimation of the density operator of a quantum-mechanical
(microscopic) system based on data obtained with the help of a macroscopic
measurement apparatus [3]. The recognition of quantum-state measurement and
reconstruction schemes stems from potential applications of these schemes in
atomic, molecular, and condensed-matter physics, as well as quantum-information
processing [4].

The quality of the reconstruction depends on the “quality” of the measured data
and the efficiency of the reconstruction procedure with the help of which the data
analysis is performed. In particular, we can specify three different situations. First,
in the case when all system observables are precisely measured, the complete
reconstruction of an initially unknown state can be performed (we will call this
the reconstruction on the complete observation level). Second, when just part of
the system observables is precisely measured then one cannot perform a complete
reconstruction of the measured state. Nevertheless, the reconstruction of the density
operator of the quantum system under consideration can be performed in this
case with the help of the Jaynes principle of Maximum Entropy (see below). This
reconstructed density operator uniquely determines mean values of the measured
observables and in addition it can provide us with nontrivial estimations of unmeasured
observables (we will denote this type of scheme as reconstruction on incomplete
observation levels). Finally, when measurement does not provide us with sufficient
information to specify the exact mean values (or probability distributions) but only
the frequencies of appearances of eigenstates of the measured observables, then one
can perform an estimation (reconstruction based on quantum Bayesian inference)
which is the “best” with respect to the given measured data and the a priori knowledge
about the state of the measured system.

The main purpose of the present paper is to demonstrate the intrinsic connection
between quantum Bayesian inference, incomplete quantum state reconstruction based



456 BUZEK ET AL.

on the MaxEnt principle and complete reconstruction of a quantum-mechanical state.
We start the paper with a brief description of various reconstruction schemes and
we set up the scene for our further discussion. In Sections 111 and IV we review the
Jaynes principle of maximum entropy and the quantum Bayesian inference scheme,
respectively. In Section V we present a proof that the standard Bayesian inference
(developed for the reconstruction of pure states) in the limit of infinite number of
measurements is equivalent to an averaging over generalized microcanonical ensembles
under the given constraints. In Section VI we show that with the help of the purification
ansatz the Bayesian inference scheme can be used for the reconstruction of impure
states. In subsequent sections we concentrate our attention on the reconstruction for
one and two spins-1/2 systems. In particular, in Section VII we briefly discuss a
reconstruction of spin states via the Jaynes MaxEnt principle. In Section VIII we
illustrate how Bayesian inference works for a single spin-1/2 system when it is a priori
known that this system is prepared in a pure state. Section IX is devoted to a state
reconstruction of two spins-1/2 via quantum Bayesian inference. In Section X we
present a systematic analysis of Bayesian reconstruction of a single spin-1/2 under
the a priori assumption that this system is prepared in a statistical mixture. We
summarize our results in Section XI.

II. QUANTUM-STATE RECONSTRUCTION

A. Complete Observation Level

Provided that all system observables (i.e., the quorum [ 5, 6]) have been precisely
measured, then the density operator of a quantum-mechanical system can be
completely reconstructed (i.e., the density operator can be uniquely determined
based on the available data). In principle, we can consider two different schemes for
reconstruction of the density operator (or, equivalently, the Wigner function) of the
given quantum-mechanical system. The difference between these two schemes is
based on the way in which information about the quantum-mechanical system is
obtained. The first type of measurement is such that on each element of the ensemble
of the measured states only a single observable is measured. In the second type of
measurement a simultaneous measurement of conjugate observables is assumed. We
note that in both cases we will assume ideal, i.e., unit-efficiency, measurements.

1. Quantum Tomography

When the single-observable measurement is performed, a distribution W yy(A)
for a particular observable 4 of the state |y is obtained in an unbiased way [7],
ie, Wgy(4)= |<<15A|¥’>|2, where |® ) are eigenstates of the observable 4 such
that >, |®,><{®,|=1. Here a question arises: What is the smallest number of
distributions W,y(A4) required to determine the state uniquely? If we consider the
reconstruction of the state of a harmonic oscillator, then this question is directly
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related to the so-called Pauli problem [8] of the reconstruction of the wave-func-
tion from distributions W yy(q) and W,u(p) for the position and momentum of
the state [¥). As shown by Gale et al. [9] the knowledge of Wy+(q) and Wy (p)
is not in general sufficient for a complete reconstruction of the wave function. In
contrast, one can consider an infinite set of distributions W uy(x,) of the rotated
quadrature £, = ¢ cos 0+ p sin 0. Each distribution W 4y(x,) can be obtained from
a measurement of a single observable £,, in which case a detector (filter) is
prepared in an eigenstate |x,) of this observable. It has been shown by Vogel and
Risken [ 10, 11] that, from an infinite set (in the case of the harmonic oscillator)
of the measured distributions W,yy(x,) for all values of 6 such that [0 <0< r],
the Wigner function can be reconstructed uniquely via the inverse Radon transfor-
mation. This scheme for reconstruction of the Wigner function (i.e., the optical
homodyne tomography) has recently been realized experimentally by Raymer and
his co-workers [ 12].

Quantum-state tomography can be applied not only to optical fields but for
reconstruction of other physical systems. In particular, recently Janicke and Wilkens
[ 13] have suggested that Wigner functions of atomic waves can be tomographically
reconstructed. Kurtsiefer ez al. [14] have performed experiments in which Wigner
functions of matter wave packets have been reconstructed. Yet another example of the
tomographic reconstruction is a reconstruction of Wigner functions of vibrational
states of trapped atomic ions theoretically described by a number of groups [ 15] and
experimentally measured by Leibfried et al [16]. Vibrational motional states of
molecules have also been reconstructed by this kind of quantum tomography by
Dunn et al. [17].

Leonhardt [18] has recently developed a theory of quantum tomography of
discrete Wigner functions describing states of quantum systems with finite-dimen-
sional Hilbert spaces (for instance, angular momentum or spin). We note that the
problem of reconstruction of states of finite-dimensional systems is closely related
to various aspects of quantum information processing, such as reading of registers
of quantum computers [ 19]. This problem also emerges when states of atoms are
reconstructed (see, for instance, [20]).

Here we stress once again, that reconstruction on the complete observation level
(such as quantum tomography) is a deterministic inversion procedure which helps
us to “rewrite” measured data in the more convenient form of a density operator
(Wigner function) of the measured state.

2. Filtering with Quantum Rulers

For the case of simultaneous measurement of two non-commuting observables
(let us say ¢ and p), it is not possible to construct a joint eigenstate of these two
operators, and therefore it is inevitable that the simultaneous measurement of two
non-commuting observables introduces additional noise (of quantum origin) into
measured data. This noise is associated with Heisenberg’s uncertainty relation and
it results in a specific “smoothing” (equivalent to a reduction of resolution) of the
original Wigner function of the system under consideration (see Refs. [21] and [22]).



458 BUZEK ET AL.

To describe the process of simultaneous measurement of two non-commuting observ-
ables, Wodkiewicz [ 23] has proposed a formalism based on an operational probability
density distribution which explicitly takes into account the action of the measurement
device modelled as a “filter” (quantum ruler). In particular, if the filter is considered to
be in its vacuum state then the corresponding operational probability density distribu-
tions is equal to the Husimi (Q) function [ 21 ]. The Q function of optical fields has been
experimentally measured using such an approach by Walker and Carroll [24]. The
direct experimental measurement of the operational probability density distribution
with the filter in an arbitrary state is feasible in an 8-port experimental setup of the
type used by Noh et al. [25].

We note that propensities, and in particular Q-functions, can also be associated
with discrete phase space and they can in principle be measured directly [26].
These discrete probability distributions contain complete information about density
operators of measured systems. Consequently, these density operators can be uniquely
determined from the discrete-phase space propensities.

B. Reduced Observation Levels and MaxEnt Principle

As we have already indicated, it is well understood that density operators can, in
principle, be uniquely reconstructed using either the single observable measurements
(optical homodyne tomography) or the simultaneous measurement of two non-
commuting observables. The completely reconstructed density operator contains
information about a// independent moments of the system operators. For example,
in the case of the quantum harmonic oscillator, the knowledge of the density
operator is equivalent to the knowledge of all moments {(a")™ 4"> of the creation
(a") and annihilation (&) operators.

In many cases it turns out that the state of a harmonic oscillator is characterized
by an infinite number of independent moments <{(4")”4"> (for all m and n).
Analogously, the state of a quantum system in a finite-dimensional Hilbert space
can be characterized by a very large number of independent parameters. A complete
measurement of these moments would take an infinite time to perform. This means
that even though the density operator can in principle be reconstructed the collection
of a complete set of experimental data points is (in principle) a never ending process.
In addition the data processing and numerical reconstruction of the density operator
are time consuming. Therefore experimental realization of the reconstruction of the
density operators for many systems can be difficult.

In practice, it is possible tomeasure just a finite number of independent moments
of the system operators, so that only a subset G, (v=1, 2, ..., n) of observables from
the quorum (this subset constitutes the so-called observation level [27]) is measured.
In this case, when the complete information about the system is not available, one
needs an additional criterion which would help to reconstruct (or estimate) the density
operator uniquely. Provided mean values of all observables on the given observation
level are measured precisely, then the density operator of the system under consideration
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can be reconstructed with the help of the Jaynes principle of maximum entropy (the
so-called MaxEnt principle) [27]. The MaxEnt principle provides us with a very
efficient prescription to reconstruct density operators of quantum-mechanical systems
providing the mean values of a given set of observables are known. It works perfectly
well for systems with infinite Hilbert spaces (such as the quantum-mechanical
harmonic oscillator) as well as for systems with finite-dimensional Hilbert spaces
(such as spin systems). If the observation level is composed of the quorum of the
observables (i.e., the complete observation level), then the MaxEnt principle
represents an alternative to quantum tomography, i.e., both schemes are equally
suitable for the analysis of the tomographic data (for details see [28]). To be
specific, the observation level in this case is composed of all projectors associated
with probability distributions of rotated quadratures. The power of the MaxEnt
principle can be appreciated in analyses of incomplete tomographic data (equiv-
alent to a reconstruction of the Wigner function in a discrete phase space). In
particular, Wiedemann [29] has performed a numerical reconstruction of the
Wigner function from incomplete tomographic data based on the MaxEnt principle
as discussed by Buzek er al. [28]. Wiedemann has shown that in particular cases
MaxEnt reconstruction from incomplete tomographic data can be several orders
better than a standard tomographic inversion. This result suggests that the MaxEnt
principle is the conceptual basis underlying incomplete tomographic reconstruction
(irrespective whether this is employed in continuous or discrete phase spaces).

C. Incomplete Measurement and Bayesian Inference

It has to be stressed that the Jaynes principle of maximum entropy can be
consistently applied only when exact mean values of the measured observables are
available. This condition implicitly assumes that an infinite number of repeated
measurements on different elements of the ensemble has to be performed to reveal
the exact mean value of the given observable. In practice only a finite number of
measurements can be performed. What is obtained from these measurements is a
specific set of data indicating the number of times the eigenvalues of given observ-
ables have appeared (which in the limit of an infinite number of measurements
results in the corresponding quantum probability distributions). The question is
how to obtain the best a posteriori estimation of the density operator based on the
measured data. Helstrom [30], Holevo [31], and Jones [ 32] have shown that the
answer to this question can be given by the Bayesian inference method, providing
it is a priori known that the quantum-mechanical state which is to be reconstructed
is prepared in a pure (although unknown) state. When the purity condition is
fulfilled, then the observer can systematically estimate an a posteriori probability
distribution in an abstract state space of the measured system. It is this probability
distribution (conditioned by the assumed Bayesian prior) which characterizes
observer’s knowledge of the system after the measurement is performed. Using this
probability distribution one can derive a reconstructed density operator, which
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however is subject to certain ambiguity associated with the choice of the cost func-
tion (see Ref. [ 30, p. 25]). In general, depending on the choice of the cost function
one obtains different estimators (i.e., different reconstructed density operators). In
this paper we adopt the approach advocated by Jones [32] when the estimated
density operator is equal to the mean over all possible pure states weighted by the
estimated probability distribution [see Eq.(4.4)]. We note once again that the
quantum Bayesian inference has been developed for a reconstruction of pure quantum
mechanical states and in this sense it corresponds to an averaging over a generalized
microcanonical ensemble. Obviously, the mean of pure states is in general impure state.
The deviation of the reconstructed density operator from pure states (measured in
terms of the von Neumann entropy) can then serve as a measure of the quality of
the reconstruction.

In a real situation one can never design a state-preparation device to produce an
ensemble of identical pure states. What usually happens is that the ensemble consists
of a set of pure states, each of which is represented in the ensemble with a certain
probability (alternatively, we can say that the system under consideration is
entangled with other quantum-mechanical systems). So now the question is how to
use the Bayesian reconstruction scheme when the quantum-mechanical system
under consideration is in an impure state (i.e., a statistical mixture). To apply the
Bayesian inference scheme, one has to define precisely three concepts: (1) the
abstract state space of the measured system; (2) the corresponding invariant
integration measure of this space; and (3) the prior (ie., the a priori known
probability distribution on the given parametric state space). Once these objects are
specified one can estimate an a posteriori probability distribution on the state space
after each individual outcome of the measurement has been registered. Using this
distribution the reconstructed density operator can be derived as an average over
all state space.

III. JAYNES PRINCIPLE OF MAXIMUM ENTROPY

From a mathematical point of view any quantum state is an element p of a
manifold {5 e L(#); p*=p, Tr(p) =1} of Hermitian operators acting on the Hilbert
space # with a trace equal to unity. This manifold is a convex space in which extreme
points (i.e., pure states) play an exceptional role. Namely, each element of the manifold
can be expressed as a convex linear combination of these extreme points. With each
quantum state p an infinite number of macroscopic quantities (0, (i.e., mean
values of observables O,) are associated. These mean values are defined via a linear
functional

(0> =Tr(0,p). (3.1)

Pure states have also another exclusive property that, Tr(p*) = 1, k € Z. Consequently,
there exists an observable (at least as a Hermitian operator) which acquires in this
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state an exact mean value, with a zero dispersion. Purity of quantum states can also
be quantified with the help of the von Neumann entropy [ 7]

S[pl=—=Tr(pIn p). (32)

The von Neumann entropy is a positive functional which has many appealing
properties such as concavity, continuity, additivity, and monotonicity (see [33]).
This entropy provides us with an effective measure of the deviation of a quantum
state from a pure state (for pure states S[ p]=0).

We have already noticed that complete information about a pure state can, in
principle, be obtained via the measurement of the single observable. However, in
general, this observable is not known a priori (we note that for statistical mixtures
it does not exist at all). Therefore a determination (equivalent to a reconstruction
or an a posteriori estimation) of a quantum state is in general based on a measurement
of the mean values [see Eq. (3.1)] of a specific set of observables O,, i =1, ..., n. This
set of observables specifies the so called observation level @ [27, 28]. If the chosen
observation level is incomplete, that is, if the density operator cannot be reconstructed
uniquely from the measured mean values, then one should expect that there will be a
number of density operators which fulfill the constraints given by Eq. (3.1). In this case
one needs an additional criterion which would help to determine the reconstructed
density operator uniquely. We note that if the pure state is incompletely reconstructed
on a given observation level then the corresponding von Neumann entropy of the
reconstructed state is larger than zero. According to Jaynes [ 27] this density operator
must be the one which fulfills the constraints (3.1) and which in addition maximizes the
Von Neumann entropy Eq. (3.2) (this is the so-called MaxEnt principle). In other
words, an a posteriori estimation (reconstruction) of the density operator based on a
measurement of a given set of observables is the most conservative assignment in
the sense that it does not permit one to draw any conclusions not warranted by the
data [34].

With the help of the MaxEnt principle one can reconstruct the density operator
on a specific observation level (0. Following Jaynes [ 27] one can perform a reconstruc-
tion procedure in three steps:

(1) Firstly, for given observation level the generalized partition function

Z@=Tr{exp<—2i: i,O%)}, (3.3)

as a function of Lagrange multipliers A; has to be specified.

(2) Then the system of algebraic equations for the unknown 4;,

. . 0
(0 =Tr(0ipo) = =5 In Zo(hns s 1), (34)
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has to be solved. This system of algebraic equations corresponds to the constraints
imposed by the measured mean values Eq. (3.1)

(3) Finally, the so-called generalized canonical density operator (i.e., the
reconstructed density operator on a given observation level)

1 o
ﬁmzzlﬁ{exp<—; A,-Oiﬂ. (3.5)

can be obtained, where A; are the solutions of Egs. (3.4).

It is important to understand that in the reconstruction scheme via the MaxEnt
principle, no a priori information about the state of the measured system is assumed.
In other words, the reconstruction is performed on the most general state space of both
pure and impure states of the system.

We stress here that the exact mean value of an arbitrary observable can only be
obtained when a very large (in principle, infinite) number of measurements on
individual elements of an ensemble is performed. On the other hand, it is a very
legitimate question to ask “What is the best a posteriori estimation of a quantum
state when a measurement is performed on a finite (arbitrarily small) number of
elements of the ensemble?” To estimate the state of the system based on an incom-
plete set of data, one has to utilize more powerful estimation schemes such as the
quantum Bayesian inference.

IV. QUANTUM BAYESIAN INFERENCE

The general idea of the Bayesian reconstruction scheme is based on manipulations
with probability distributions in parametric state spaces 2 and A of the measured
system and the measuring apparatus, respectively. The quantum Bayesian method as
discussed in the literature [ 30-32] is based on the assumption that the reconstructed
system is in a pure state described by a state vector | ¥, or equivalently by a pure-state
density operator p = |¥ > <{ ¥|. The manifold of all pure states is a continuum which we
denote as 2. The state space 4 of reading states of a measuring apparatus will be
for the purpose of this paper associated with a discrete set of states.

In our case, when the standard Von Neumann measurement is considered, the
apparatus states are intrinsically related to the set of mutually orthogonal projectors
P 4. 0 associated with the spectrum of a given observable O (where /, are the corre-

sponding eigenvalues).
The Bayesian reconstruction scheme is formulated as a three-step inversion
procedure:

(1) As a result of a measurement a conditional probability

PO, 2;1p) =Tr(P;, 6p), (4.1)
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on the discrete space A4 is obtained. This conditional probability distribution specifies
the probability of finding the result A, if the measured system is in a particular state /.

(2) To perform the second step of the inversion procedure we have to specify
an a priori distribution p( /) defined on the space 2. This distribution describes our
initial knowledge concerning the measured system. Using the conditional probability
distribution p(O0, A,|p) and the a priori distribution p,(p) we can define the joint
probability distribution p(0, A;; p),

PO, 25 ) = p(O, 21 p) pol ), (42)

on the space 2 ® A. We note that if no initial information about the measured
system is known, then the prior py(p) has to be assumed to be constant (this
assumption is related to the Laplace principle of indifference [34]).

(3) The final step of the Bayesian reconstruction is based on the well-known
Bayes rule p(x|y) p(y) =p(x; y) = p(y|x) p(x), with the help of which we find the
conditional probability p(5| O, 2,) on the state space £,

;L’h
p (4.3)

Q> Q>

<A )4
p(plO, 4 fg (0.

from which the reconstructed density operator can be obtained [see Eq. (4.4)].

In the case of the repeated N-trial measurement, the reconstruction scheme
consists of an iterative utilization of the three-step procedure as described above.
After the Nth measurement we use as an input for the prior distribution the condi-
tional probability distribution given by the output of the (N — 1)st measurement.
However, we can equivalently define the N-trial measurement conditional probability
Y nlp)=T1Y, p(O,, 4;1p) and applying the three-step procedure just once to
obtain the reconstructed density operator

Q h N Ad.Q
ST _l p(pl{} ) p (44)

where p in the r.h.s. of Eq. (4.4) is a properly parameterized density operator in the
state space Q.

At this point we should mention one essential problem in the Bayesian reconstruc-
tion scheme, which is the determination of the integration measure d,. The integration
measure has to be invariant under unitary transformations in the space Q. This
requirement uniquely determines the form of the measure. However, this is no
longer valid when Q is considered to be a space of mixed states formed by all
convex combinations of elements of the original pure state space Q. Although the
Bayesian procedure itself does not require any special conditions imposed on the
space €2, the ambiguity in determination of the integration measure is the main
obstacle in generalization of the Bayesian inference scheme for reconstruction of «
priori impure quantum states. We will show in Section VI that this problem can be



464 BUZEK ET AL.

solved with the help of a purification ansatz. We will also discuss in detail how to
apply the quantum Bayesian inference for a reconstruction of states of a spin-1/2
when just a finite number of elements of an ensemble have been measured. Before
we do this, in the following Section we will analyze the limit of a large number of
measurements.

V. BAYESIAN INFERENCE IN LIMIT OF INFINITE NUMBER OF
MEASUREMENTS

The explicit evaluation of an a posteriori estimation of the density operator p{ }
is significantly limited by technical difficulties when integration over parametric
space is performed [see Eq. (4.4)]. Even for the simplest quantum systems and for
a relatively small number of measurements, the reconstruction procedure can
present technically insurmountable problems.

On the other hand let us assume that the number of measurements of observables
O, approaches infinity (i.e., N — o). It is clear that in this case the mean values of
all projectors <15,1j, 0;» associated with the observables O, are precisely known
(measured): i.e.,

(P 0 =0, (5.1)

where 3 a;z 1. In this case the integral on the right-hand side of Eq. (4.4) can be
significantly simplified with the help of the following lemma:

LEMMA. Let us define the integral expression

Iy, ..o, 1) EJI dx, Jyz a’xz---jy"i1 dx,_1 F(xq{, .., x

0 0 0

n—11015 s an—l)a (52)

where

1
F(xq, oy X 1| 0qy ey %y 1) :Ex‘;‘le;’zN...xZn_—llN(l —Xy e =X, ) (5.3)

and o; satisfy condition Yo, = 1. The integration boundaries y, are given by relations:
k—1
e=1-73 x; k=2,.,n—1 (54)

j=1

and B equals the product of Beta functions B(x, y):

BEB(an+l’an—l+1)B(an+an—l+1aan—2+2)
---Bla,+a,_y---a,+1,a,+n—1). (5.5)
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(1)  The function F(x, .., X,_1|%1, .., &, _1) in the integral (5.2) is a normalized
probability distribution in the (n — 1)-dimensional volume given by integration boundaries.

(1) For N — oo, this probability distribution has the properties
{x;y - (x> o? i=1,2,3,.,n—1; (5.6)
ie., this probability density tends to the product of delta functions:

lm F(Xq, e X, g0y, e &, ) =0(X —ap) O(Xa—0p) -+ O(X, g — &, 1), (5.7)

N — oo

Proof. Statement (i) can be derived by the successive application of the equation
[see for example [ 35, Egs. (3.191)]]

ju X' Nu—xy*"Vdx=u""""1Bu,v). (5.8)
0

Statement (ii) can be obtained as a result of straightforward calculation of limits of
certain expressions containing Beta functions with integer-number arguments. In
our calculations we have used the identity

B(n+1,m) n
B(n,m) n+m’ (59)

which is satisfied by Beta functions with integer-number arguments.

A. Conditional Density Distribution

Let us start with the expression for conditional probability distribution p({ } x|p)
for the N-trial measurement of a set of observables O;. If we assume that the
number of measurements of each observable O, goes to infinity then we can write

P({ Yol p)= Jim TT| TT Tr(P;, 0,009V . (5.10)

i Lj=1

The first product on the right-hand side (r.h.s.) of Eq. (5.10) is associated with each
measured observable O, on a given observation level. The second product runs over
eigenvalues 7, of each observable O,.

In what follows we formally rewrite the r.h.s. of Eq. (5.10): we insert in it a set
of functions and we perform the integration
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P I v—wld) =11 Uol " foy; i ”'\[OYQ,-—I

i

dx!

n;—1

O[x} —Tr(P;, 60)]--

n—1 ) )
<0Lxh, = TPy, o] T1 G (1—xf x|

Jj=1

(5.11)

In Eq. (5.12) we perform an integration over a volume determined by the integra-
tion boundaries y; [see Eq. (5.4)], i.e., due to the condition Z;’;l Tr(P 4,0, p=1,
there is no need to perform integration from —oo to oo.

At this point we utilize our Lemma. To be specific, first we separate in Eq. (5.11)
the term, which corresponds to the function 7 given by Eq. (5.2). Then we replace
this term by its limit expression (5.7). After a straightforward integration over
variables xj". we finally obtain an explicit expression for the conditional probability
p(pI{ } N o) which we insert into Eq. (4.4), from which we obtain the expression
for an a posteriori estimation of the density operator p({ }y_ ) on the given
observation level:

n—1

1 . A
A= [ T T LTy 0 =)} o (512

i Uj=1

Here ./ is a normalization constant determined by the condition Tr[ ({ } y_ o)1= 1.

The interpretation of Eq.(5.12) is straightforward. The reconstructed density
operator is equal to the sum of equally weighted pure-state density operators on the
manifold ©, which satisfy the conditions given by Eq. (5.1) [these conditions are
guaranteed by the presence of the functions in the r.h.s. of Eq. (5.12)]. In terms of
statistical physics Eq. (5.12) can be interpreted as an averaging over the generalized
microcanonical ensemble of those pure states which satisfy the conditions on the
mean values of the measured observables. Consequently, Eq. (5.12) represents the
principle of the “maximum entropy” associated with the generalized microcanonical
ensemble which fullfills the constraint (5.1).

VI. BAYESIAN RECONSTRUCTION OF IMPURE STATES

In classical statistical physics a mixed state is interpreted as a statistical average
over an ensemble in which any individual realizations is in a pure state. This is
also true in quantum physics, but here a mixture can also be interpreted as a state
of a quantum system, which cannot be completely described in terms of its own
Hilbert space. That is the system under considerationis a nontrivial part of a larger
quantum system. When we say nontrivial, we mean that the system under consider-
ation is quantum-mechanically entangled [ 1] (see also [36]) with the other parts
of the composite system. Due to the lack of information about other parts of this
complex system, the description of the subsystem is possible only in terms of mixtures.
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Let us assume that the quantum system P is entangled with another quantum
systemR (a reservoir). Let us assume that the composed system S (S=P @ R) itself
is in a pure state |¥ ). The density operator jp of the subsystem P is then obtained
via tracing over the reservoir degrees of freedom:

Pr=Trr[psli  ps=|¥>{YPI (6.1)

Once the system S is in a pure state, then we can determine an invariant integration
measure on the state space of the composite system .S and then we can safely apply
the Bayesian reconstruction scheme as described in Section IV. The reconstruction
itself is based only on data associated with measurements performed on the system P.
When the density operator g is a posteriori estimated, then by tracing over the
reservoir degrees of freedom, we obtain the a posteriori estimated density operator
pp for the system P (with no a priori constraint on the purity of the state of the
system P). These arguments are intrinsically related to the “purification” ansatz as
proposed by Uhlmann [37] (see also [38]).

To make our reconstruction scheme for impure states consistent, we have to
chose the reservoir R uniquely. This can be done with the help of the Schmidt
theorem (see Ref. [ 1, 39]) from which it follows that if the composite system S is
in a pure state |¥) then its state vector can be written in the form

|¥> = Z cil> p®@ 1B rs (6.2)

i=1

where o>, and |f,> g are elements from two specific orthonormalized bases
associated with the subsystems P and R, respectively, and ¢, are appropriate
complex numbers satisfying the normalization condition ¥ |¢;|*=1. The maximal
index of summation (M) in Eq. (6.2) is given by the dimensionality of the Hilbert
space of the system P. In other words, when we apply the Bayesian method to the
case of impure states of M-level system, it is sufficient to “couple” this system to an
M-dimensional “reservoir.” In this case the dimensionality of the Hilbert space of
the composite system is 2M. Using the standard techniques (see Section VIII) we
can then evaluate the invariant integration measure on the manifold of pure states
and we can apply the quantum Bayesian inference as discussed above. We stress
once again that using the purification procedure we have determined the invariant
integration measure on the space of pure states of the composite system.
We conlude this section with three comments:

(1) First, we note that there also exists another approach to the problem of
the integration measure on thespace of impure states. Namely, Braunstein and
Caves [40] used statistical distinguishability between neighboring quantum states
to define the Bures metric [41] on the space of all (pure and mixed) states of the
original system S (see also recent work by Slater [42]). The two approaches differ
conceptually in understanding what is an impure quantum-mechanical state. That
is, in our approach we assume that impurity results as a consequence of the fact
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that the system under consideration is entangled with some other system. The other
approach accepts the possiblity that an isolated quantum system can be in a
statistically mixed state (we will discuss consequences of these two conceptually
different approaches elsewhere).

(2) From our previous discussion it follows that for ensembles large enough
the two reconstruction schemes provide us with the same results. Consequently,
because the Bayesian inference is technically difficult to perform it is useful to utilize
the MaxEnt principle for the reconstruction in this case. On the other hand, if the
ensemble is small, then MaxEnt reconstruction scheme cannot be applied and the
quantum Bayesian inference has to be utilized.

(3) From the results presented in Sections VI and VII it directly follows that
as soon as the number of measurements becomes large then Bayesian inference
scheme becomes equal to the reconstruction scheme based on the Jaynes principle
of maximum entropy, i.e., in the limit of infinite number of measurements a posteriori
estimated density operator fulfills the condition of the maximum entropy. Conse-
quently, it is equal to the generalized canonical density operator. If the quorum of
observables is measured, then the generalized canonical operator is equal to the
“true” density operator of the system itself, i.e., a complete reconstruction via the
MaxEnt principle is performed.

VII. RECONSTRUCTION OF SPIN-1/2 STATES VIA
THE MaxEnt PRINCIPLE

In this section we present the reconstruction of the state of a single and two spin-
1/2 particles. Even though the MaxEnt reconstruction scenario in the case of a
single spin-1/2 is very simple we will use this example for a detailed illustration of
calculation techniques which will be later used for the reconstruction of two-spin-
1/2 states.

A. Single Spin-1/2

Let us assume that we want to reconstruct an unknown state of a single spin-1,/2.
This state is described by a density operator

PO, ¢)=L(1+7-8) (7.1)

where 7= (sin 8 cos ¢, sin 0 sin ¢, cos 0); ¢ (0, 2xn), 0 (0, x), and 1 is the unit
operator. The Pauli spin operators 6 in the matrix representation in the basis [0),
[1> of the eigenvectors of the operator &, are

0 1 0 —i 1 0
A 5 = 5= ) 7.2
Ox <1 0)’ % <i 0 >’ 7z (0 —1> (72)
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To determine completely the unknown state (7.1) of a single spin-1/2 particle we
have to measure three linearly independent (e.g., orthogonal) projections of the
spin. One possible choice of the complete set of observables (i.e., the quorum [5])
associated with the spin-1/2 are spin projections for three orthogonal directions
represented by the Hermitian operators:

i=X, )z (7.3)

o
I11
0|

After the measurement of expectation values of each observable, a reconstruction
of the generalized canonical density operator (3.5) according to the MaxEnt prin-
ciple can be performed. In what follows we will consider three observation levels
defined as 04 ={3.}, 0%’ ={3.,3,} and 0 ={5.,5.,5,} =, [superscript of
the observation levels indicates number of spins-1/2 under consideration ].

1. Observation Level 0'p = {3}

On the observation level ¢'}) only the mean value of the spin §, is measured. This
kind of measurement can be performed with the help of a single Stern—Gerlach
apparatus (which fixes the z component of the spin). When the mean value of §, is
precisely known then the generalized canonical density operator (i.e., an a posteriori
estimation of the density operator based on the Jaynes principle) can be written as

1 1 =~
ﬁzéexp(_izé‘-z)zi [1 _(tanh lz) é‘-z]a (74)
where the partition function Z [see Eq. (3.3)] reads
Z=Tr[exp(—4,6,)]=2cosh 4,. (7.5)

The Lagrange multiplier 4, is given by the algebraic equation (3.4)
{(6,)=—=——=—tanh 4,. (7.6)

When we substitute the solution of the last equation into Eq.(7.4) we find the
reconstructed density operator

p=3(1+<6.>6.) (7.7)

This is the result one would expect intuitively. That is, once we have a precise
knowledge of the mean value of the observable 6, then the reconstructed state has
to be of the form given by Eq. (7.7). From this expression one does not obtain a
nontrivial (i.e., nonzero) estimation of unmeasured observables. This is also true
when we extend the observation level.
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2. Observation Level 03 ={3., 5.}

To be specific, let us extend the observation level ¢ so that we assume a
measurement of two spin projections §, and §,. In this case the partition function
(3.3) reads

sinh A
A

Z=Tr| cosh Al —

(A,6,+ 2,6,) | =2 cosh 4, (7.8)

where 1= (1% + A%)"2 The algebraic equations (3.4) for the Lagrange multipliers 1,
and 1, can now be written as

tanh A tanh A

<éz> = - l }“z; <6-x> = - l }“x' (79)

After we find the solutions of these equations, we can write the generalized canonical
density operator on (%) as

p=21+46.)6.+6,>6,) (7.10)
which again demonstrates that the reconstructed density operator does not provide
us with a nontrivial estimation for the unmeasured observable &,. This means that
in the case of the single spin-1/2 particle a complete measurement (i.e., the observation
level ') has to be extended by the inclusion of the operator §,) has to be performed
to determine a nontrivial mean value of {§,).

3. Observation Level O(l)_{sz’ Sy y}

Using the algebraic properties of the &, operators, the generalized canonical
density operator on the observation level 03’ can be expressed as

1 S d
p=—exp(—1.6)=— cosh [4] T — smhlAlﬁ (7.11)

where the partition function reads Z =2 cosh ||, while A= (Ays 2,y Ay) and |42 =

X y’
)Li—f—}j—kij The algebraic equations for the Lagrange multipliers can be found
straightforwardly and we find for the reconstructed density operator the expression

p=L[14(6.) 6.+<6,) 6,+(3,> 6,]. (7.12)

To complete this example we present an expression for the von Neumann entropy
of the reconstructed density operators. This entropy can be written as

So=—poln po—(1—pe)In(l - py), (7.13)

where p, is one eigenvalue of p, [the other eigenvalue is equal to (1 — p,)] which
reads as
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1+ K6 1+ /6,02 +(6.)?

Pa= ) 5 Pe= b s
1+ /602 + (6,02 + (6.3

P comp ~— 2

(7.14)

We stress here that the reconstruction scheme based on the MaxEnt principle is
perfectly well suitable for a reconstruction of both pure states and statistical mixtures;
Le., the entropy on the complete observation level can be larger then zero. That is, the
measured mean values of spin observables may be such that

(6,02 +<K6,)*+(6.)° <], (7.15)

which is in a striking contrast with the Bayesian quantum inference scheme [32]
in which it is a priori assumed that the reconstructed state has to be a pure one,
which means that on the complete observation level the condition

(G2 +(6,)*+(6.>?=1 (7.16)

has to be fulfilled, as otherwise the reconstruction scheme fails.

B. Two Spins-1/2

Let us now consider a system composed of two distinguishable spins-1/2. In
general, any density operator of the system composed of two distinguishable spins-
1/2 can be represented by a 4 x4 Hermitian matrix and 15 independent numbers
are required for its complete determination. The quorum of observables for a system
of two spins-1/2 is given by 15 operators:

s _G®L o) _1®0i )0 099,
! 27 ! 2 r 4

i, j=Xx, ),z (7.17)

These operators together with the identity operator 1®1 form the basis of operator
algebra in which any operator associated with the system under consideration can
be expressed. In Eq. (7.17) we use the notation such that the operators which stand
left (right) to the symbol ® are associated with the first (second) spin-1/2.

Using the maximum-entropy principle we can (partially) reconstruct an unknown
density operator p on various observation levels associated with observables given
by Eq. (7.17). In what follows we will consider three observation levels.

1. Observation Level 0P = {3V, §2}

Let us assume a reconstruction of a quantum state of the two spins-1/2 system
when the observation level is given by two observables [see Eq. (7.17)] §! and §»
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related to the first and to the second spin, respectively. Due to the fact that observ-
ables associated with the first spin commute with the observables of the second spin
we can express the partition function (3.3) in a factorized form of two exponentials
associated with each spin separately. Therefore the partition sum reads

Z=Tr[exp(—1,6.®1— 2,1 ®6.)] =4 cosh A, cosh A,. (7.18)

The set of algebraic equations (3.4) now separates, and the resulting density
operator can be expressed as a product of two density operators

1

p=—[(cosh 2;1—sinh 1,6,)®1][(1® (cosh 4,1 —sinh 1,6,)]

I~ - ~ A
=, [1®l +{6> 6.1+ (6> 1®6.+(G1V)<(62) 6.®6.]
Log 2Dy 4 Los 5N 4
=5 [T+ .10 [1+69) 6.1, (7.19)

Here we use the notation such that (6"}, (6*>, and {(6{V6) describe the
mean values of operators {4,®1)>, {1®4,), and {(4,®6,), respectively.

2. Observation Level 0% = {31, 3,®3.}

Let us assume an observation level given by operators §" and §§® . These
operators also commute and therefore the partition function Z can be expressed as

Z=Tr[([cosh /;1—sinh 2,6,]®1)(cosh 2,1 ®1 —sinh 1,,6.®6.)]
=4 cosh 4, cosh 4,, (7.20)
The corresponding Lagrange multipliers 4,, 4,, can be found straightforwardly and
we obtain the reconstructed density matrix
p=il1@1+¢60) .01+ 6y (66P) 1®6.+ (6162 6.®4.].
(7.21)
We point out that in this particular example the Jaynes principle of maximum
entropy provides us with a nontrivial estimation for an unmeasured mean value of
the observable 6'?. The a posteriori estimation of (6@ is equal to {6V > 6.
3. Observation Level 03 = {51, §*, 5. ®3.}

Finally we assume the observation level when the spin projections §", §® as
well as the correlation §(V§% between them is measured. All these operators
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mutually commute and so the partition function can be expressed as a product of
three independent terms

Z =Tr[([cosh 4,1 —sinh 2,6,]® 1)(1® [cosh 4,1 —sinh 1,6.])
x (cosh 41,1 ®1—sinh 1,,6.®6.)], (7.22)
from which we find
Z =4[ cosh /4, cosh 4, cosh 4, —sinh 4, sinh 4, sinh 4, ]. (7.23)
The Lagrange multipliers have to be found from the set of algebraic equations
(6" =4[ cosh J; sinh 4, sinh 4,, —sinh 4, cosh /, cosh 1,,]/Z
{6@®% =4[sinh A, cosh 4, sinh 4,, — cosh 4, sinh /, cosh 1,,]/Z (7.24)
(6¢@% =4[sinh A, sinh 4, cosh 4,, — cosh 4, cosh 4, sinh 4,,]/Z.

Having solved these equations the reconstructed density operator reads
p=L1RT+<6M)6.01+<(6P)1®6,+<(61M6?) 6.®6.]. (7.25)

For further discussion on the reconstruction of spin-states via MaxEnt principle
see Ref. [43].

VIII. SPIN-1/2 RECONSTRUCTION VIA BAYESIAN INFERENCE I

In this section we study Bayesian reconstruction of spin-1/2 states on various
observation levels. That is, we investigate how the best a posteriori estimation of the
density operator of the spin-1/2 system based on an incomplete set of data (in this
case the exact mean values of the spin observables are not available) can be obtained.
We have already stressed the fact that the Bayesian inference scheme as introduced
by Jones [32] is suitable only for pure states. This means that the completely
reconstructed density operator has to fulfill the purity condition (7.16).

We start our example with a definition of the parametric state space associated
with the spin-1/2. The rigorous way to determine this parametric state space 2 is
based on the diffeomorphism between 2 and the quotient space Y|, _;,, where
n is the dimensionality of the Hilbert space of the measured quantum system. In the
particular case of the spin-1/2 we work with the commutative group U(1) and the
construction of € is very simple. The space 2 can be mapped on to the Poincaré
sphere and the parameterized density operator (i.e., the point on the Poincaré
sphere) is given by Eq. (7.1). The topology of the Poincaré sphere determines also
the integration measure for which we have dg=sin 0 d0 d) (for more details see
Section IX).

The observables associated with the spin-1/2 are spin projections for three
orthogonal directions represented by Hermitian operators §; given by Eq.(7.3).
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These observables have spectra equal to +1. In what follows we distinguish
between these two possible measurement results by the sign, ie, s= +1. The
projectors P, ;; on to the corresponding eigenvectors are

s, Si

. 1+s6
p +50;

s, 8; 2 s

i=x, ),z (8.1)

and the conditional probabilities associated with this kind of measurement can be
written as

1+sr;

p(S, §1|ﬁ(0» ¢)):T’ i:x» s Z. (82)

Now using the procedure described in Section IV, we can construct an a posteriori
estimation of the density operator p({ } 5) based on a given sequence of measure-
ment outcomes on different observation levels.

A. Estimation Based on Results of Fictitious Measurements

In Table I we present results of an a posteriori estimation of density operators
based on data obtained from “experiments” performed with three Stern—Gerlach
devices oriented along the axes x, y, and z. We first discuss in detail reconstruction
of a single spin-1/2 state under the a priori assumption that the system is in a pure
state.

1. Observation Level 0 = {3.}

The first five lines in Table I describe results of a fictitious measurement of the
spin component §, and the corresponding estimated density operators. In particular, let
us assume that just one detection event (spin “up”, i.e., T) is registered in the given
Stern—Gerlach apparatus (associated with the measurement of §,). Taking into account
the parameterization of the single spin-1/2 density operator expressed by Eq. (7.1) we
find for the corresponding conditional probability distribution p(s, §; | A(0, ¢)) (8.2)
the expression

1+4+cos @

Pls, 511 5(0, ) =——

(8.3)

Using Eq. (4.4) we can express the estimated density operator based on the registra-
tion of just one result (spin “up”) as

1 T 27 ~
p =8—f sin 0 dO f dp(1 4 cos 0)(1 + sin 0 cos ¢& . + sin 0 sin ¢ , 4 cos 0o ,)
TTJo 0

1/~ 1.
:2<1 3(;2). (8.4)
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TABLE 1
Results of a posteriori Bayesian Estimation of Density Operators of the Spin-1/2
A Oz Gy p via pure-state reconstruction S p via mixture-state reconstruction S
Lo i+ 162 0.637 | 31+ L. 0.673
2. i+ 352 0451 | i+ 16 0.562
3. 118 L[+ 6] 0.562 | 11+ 24 0.611
4. || 11042 $i+ 4. 0.520 | 31 +35. 0.562
5.4 11543 i+ 6] 0.501 || 1[i+ &4, 0.536
6. |1 1 i - L. + 302 0.578 || 3[1- Lo + Lo:) 0.653
7 13 i+ ;251 + #s.] 0.374 || Hi+ 6, + 85 0.529
8. 154 ™2 %{1 + zeol 360107 + ;23? g 0.484 %[i + 11110%”1 + 1105’7 ] 0.581
9. | 142 | 120t L+ B, + s 0.427 | 31+ S5, + 1005 0519
10. | + 1 h - 16, + 36, +6:)) 0.518 || 1[i - Lo, + L(8, +52)] 0.632
w4 i+ 385(;351 + 85, +6.)] 0.264 || 31+ 156, + B2(5, +52)] 0.446
1200450 | 142 | 15| S+ 2R RN (6, + 62)] 0.236 || 51+ 2008 5+ S808 (5, + 62)] 0.492
13| 1rog2 | gmpe | o | iy e, 4 mumR, 4 o) | 0.035 | S SRS, 1 RSO G, + 5.)] | 0388
I I I N e e ) 0481 || L1+ 435, 0.648
15 1042 | L | L+ 25 0.374 || 3[1+ 2285, 0.615
16. || 1903 | 1548 | 1618 | L[1+ 100428155 0.3d5 || 4[1+ Zippeetsaes 5 ) 0.600
17 g [ | 1o | 4+ o) 033 | 4+ e | 0591

Note. Results are presented for two different cases: (1) when it is a priori assumed that the spin is
in a pure state and (2) when no a priori constraint on the state is imposed. In this second case the
generalized Bayesian scheme has been applied. We also present values of von Neumann entropy [ see
Eq. (7.13)] associated with the given estimated density operator. In the case of a reconstruction of pure
states, the value of the von Neumann entropy reflects the fidelity of the estimation.

We stress that we started our estimation procedure with an a priori assumption
that the measured system is in a pure state, for which the von Neumann entropy S
(3.2) has to be equal to zero. But the estimated density operator (8.4) describes a
statistical mixture with the von Neumann entropy S ~ 0.637 (see Table I). There is
no contradiction here. In the reconstruction of pure states, a nonzero value of the
von Neumann entropy of the estimated density operator reflects the fidelity with
which the reconstruction is performed. That is, before any measurement is performed,
the “estimated” density operator is p = 1/2, for which the von Neumann entropy takes
the maximal value S=1In2 ~0.693. As soon as the first measurement is performed,
some information about the state of the system is acquired, which is reflected by the
decrease of the entropy and a better estimation of the density operator. The estimated
density operator is expressed as a statistical mixture because it is equal to a specifically
weighted sum of a set of pure states [ see the reconstruction formula (4.4)] which also
reflects our incomplete knowledge about the state of the measured system. Obviously,
the more measurements we perform, the better the estimation can be performed
(compare lines 2-5 in Table I). Nevertheless, we have to stress that the von Neumann
entropy is not a monotonically decreasing function of a number of measurements. To
be specific, in the case when just a small number of measurements is performed, the
estimation is very sensitive with respect to the outcome of any additional measurement.
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Comparing the lines 2 and 3 in Table I, we see that the entropy “locally” increases in
spite of the fact that more measurements are performed. Nevertheless, in the limit of
large number of measurements, the entropy approaches its minimum possible value
associated with a given measurement. Providing the quorum of observables is
measured, the entropy tends to zero and the state is completely reconstructed.

In general, increasing the number of measurements improves the a posteriori
estimation of the density operator on the given observation level (see lines 2-5 in
Table I). Using the general results of Section V we can evaluate the a posteriori
estimation of the density operator of the spin-1/2 system on the observation level
01 in the limit of infinite number of measurements of the spin component §,. We
note that in this case, when the observable has only two eigenvalues, the informa-
tion obtained in the spectral distribution (5.1) is equivalently given only by the
mean value of this observable. Once we know the spectral distribution Eq. (5.1)
corresponding to the measurement of the spin projection §, of single spin-1/2, then
with the help of Eq. (5.12) we can express the reconstructed density operator as

5 If"dgbj"sinedea«w cos 0)
= O'Z —
P=wly
x(i—l—sin@cos¢o"x+sinﬁsin¢éy+cosﬁﬁz), (8.5)

where /" is the normalization constant such that Tr p =1. Integration over the
variable ¢ in Eq. (8.5) cancels all terms in front of the operators 6, and &, and we
obtain

1 .
p”:—j sin 0 d 5({ &,y —cos 0)(1 +cos 0 6,). (8.6)
N Jo

The right hand side of this equation suggests a simple geometrical interpretation of
the quantum Bayesian inference in the limit of infinite number of measurements.
Namely, the density operator (8.6) can be understood as an equally weighted average
of all pure states with the same (i.e., measured) mean value of the operator §,. These
states are represented as points on a circle on the Poincaré sphere. When we perform
the integration over 0 in Eq. (8.6) we obtain the final expression

p=11+<6.6.). (8.7)

for the density operator on the given observation level. Formally this is the same
density operator as that reconstructed with the help of the Jaynes principle [see
Eq. (7.7)]. But there is a difference: the formula (8.7) is obtained as a result of
averaging of the generalized microcanonical ensemble of pure states, while the reconstruc-
tion via the MaxEnt principle is based on an averaging over the generalized grand
canonical ensemble of all states. The two reconstruction schemes differ by the a
priori assumptions about the possible states of the measured system. As we will see
later, these different assumptions result in different estimations (see below).
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2. Observation Level 03 ={3., 5.}

The results of a numerical reconstruction of the density operator of the spin-1/2
based on the measurement of two spin components §, and §, are presented in
Table I (lines 6-9). Lines 1-4 and 6-9 describe estimations based on the same data
for the §, measurement, but they differ in the data for the §, measurement. That is,
lines 1-4 describe the situation for which no results for §, are available, while lines
6-9 describe the situation with specific outcomes for the §, measurements. Comparing
these two cases (i.e., if we compare the values of the von Neumann entropy for pairs
of lines {x,x+5}; x=1,2,3,4) we see that any measurement performedon the
additional observable (§,) can only improve our estimation based on the measure-
ment of the original observable ($,).

In the limit of infinite number of measurements, when we have information about
the spectral distribution corresponding to measurement of spin projections §,, §,
the particular form of Eq. (5.12) reads

1

JVJ dqﬁj sin 6 dO 6({é,) —cos 0) 6({6,) —sin 6 cos ¢)

p=
><(1 + sin 0 cos ¢G, +sin 0'sin ¢ G, +cos 0 6,). (8.8)

As seen from the right-hand side of Eq. (8.8) in this case the reconstructed density
operator is represented by an equally weighted sum of points given by an inter-
section of two circles lying on the Poincaré sphere. These two circles are specified
by the two equations {(4,» =cos # and {4, ) =sin fcos ¢.

With the help of the identity

o(x —xg)
A f(x))= TR (8.9)
xg» f(3) =0 |/ (x0)]
we can perform the integration over ¢ in Eq. (8.8) and obtain
f 0% g o] S0 5(¢8,> —cos 0)
G ~ [sin 6 sin ¢, | s
><(1+<ax> Gy +sin0sin ¢o G, +cos 06.,). (8.10)

The integration boundaries .# on the right-hand side of Eq. (8.10) are defined as
Z:=0<0<n and [sin O] = |{6,>|. (8.11)

The sum on the right-hand side of Eq. (8.10) refers to two values of the parameter
¢ which fulfill the condition cos ¢, = <&, >/sin §. We note that the function in front
of the operator ¢, disappears due to the fact that it is proportional to sin ¢o/[sin ¢|,
which is an odd function of ¢,. After we perform the integration over 6§ we obtain

p=31+6,) 6,+6.6.). (8.12)
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What we see again is that in the limit of a large number of measurements the Bayesian
inference formally gives us the same result as the Jaynes principle of maximum entropy
[ compare with Eq. (7.10)].

3. Observation Level 0% ={5_,5,,3,}

Further extension of the observation level 0% leads us to the complete observation
level, when all three spin components §,, §,, and §, of the spin-1/2 are measured. Results
of the numerical reconstruction are presented in Table I (lines 10-13). Now we
compare the a posteriori estimation of density operators based on data presented in
lines 6-9. The “experimental data” in line 10 are equal to those presented in line 6
except that now some additional knowledge concerning the spin component §, is
available. We note that this additional information about §, improves our estima-
tion of the density operator which is clearly seen when we compare values of the
von Neumann entropy presented in Table L.

Providing that we have information concerning the spectral distribution associated
with the measurement of a complete set (i.e., the quorum) of operators §,, §, §, (ie.,
after an infinite number of measurements of the three spin components have been
performed), then we can express the estimated density operator as [see Eq. (5.12)]

pe (T ap j sin 0d0 8({6.> —cos 0) 8({ 6> —sin 0 cos ¢) 8({,> — sin 0 sin )
0 0

x(i—i—sin@cos $6 .+ sin 0 sin ¢, + cos 06 ,). (8.13)

The integral on the right-hand side of Eq. (8.13) can only be performed if the purity
condition (7.16) is fulfilled, otherwise it simply does not exist. When the purity
condition is fulfilled then from Eq. (8.13) we obtain

p=31+<6.) 6,+<8,) 6,+<6.) é.). (8.14)

Here we can again utilize a simple geometrical interpretation of the limit formula
(8.13) for the Bayes inference. The three functions in Eq. (8.13) correspond to three
specific orbits (circles) on the Poincaré sphere each of which is associated with a
set of pure states which posses the measured value of a given observable §;. The
reconstructed density operator then describes a point on the Poincaré sphere which
coincides with an intersection of these three orbits. Consequently, if the three orbits
have no intersection the reconstruction scheme fails, because there does not exist a
pure state with the given mean values of the measured observables.

We illustrate this failure of the Bayesian inference scheme in lines 14-17 of
Table I. Here we present a numerical simulation of the measurement in which all
three observables are measured. It is assumed that the spin-1/2 is in the state with
(6,>=1/2 and {(6,)=<6,) =0, which apparently does not fulfill the purity
condition (7.16). For a given set of measurement outcomes (line 14) the Bayesian
inference scheme provides us with an a posteriori estimation such that (§,> =101/161
which is above the expected mean value which is equal to 1/2. Moreover if we increase
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the number of measurements (lines 15-17) the a posteriori estimation deviates more
and more from what would be a correct estimation (i.e., results presented in lines 14-17
correspond to the following sequence of mean values of §,: 0.481; 0.375; 0.345; 0.332)
but simultaneously the von Neumann entropy S decreases, which should indicate that
our estimation is better and better. This clearly illustrates the intrinsic conflict in
the estimation procedure.

The reason for this contradiction lies in the a priori assumption about the purity
of the reconstructed state, i.e., the mean values of the spin components do not fulfill
the condition (7.16) and so the Bayesian method cannot be applied safely in the
present case. The larger the number of measurement the more clearly the incon-
sistency is seen and, as follows from Eq. (8.13), in the limit of infinite number of
measurements the Bayesian method fails completely. On the other hand the Jaynes
method can be applied safely in this case. The point is that this method is not based
on an a priori assumption about the purity of the reconstructed state. The Jaynes
principle is associated with maximization of entropy on the generalized grand
canonical ensemble, which means that all states (pure and impure) are taken into
account.

In the present example the discrepancy between the a posteriori estimations of
density operators based on the two different schemes has appeared only on the
complete observation level. For more complex quantum-mechanical systems the
difference between the density operator reconstructed with the help of the Jaynes
principle of maximum entropy and the density operator obtained via the Bayesian
inference scheme may differ even on incomplete observation levels. To see this we
present in the following sections an example of reconstruction of density operators
describing states of two spins-1/2.

IX. QUANTUM BAYESIAN INFERENCE OF TWO-SPINS-1/2 STATES

In order to apply the general formalism of quantum Bayesian inference as described
in Section IV we have to properly parameterize the state space of the quantum system
under consideration. Once this is done we have to find the invariant integration
measure d, associated with the state space and only then can we effectively use the
reconstruction formula (4.3). We start this section with a description of how the state
space of two spins-1/2 can be parameterized. We show how the corresponding integra-
tion measure can then be found.

A. Parameterization of Two-Spins-1/2 State Space

One way to determine the state space Q of a given quantum-mechanical system is
via a diffeomorphism Q= Y|, . This directly provides us with information
about the dimensionality of Q, which is (dim sy, — dimy, _ 1)) = 2n — 2. This means
that in our case of two spins-1/2 which are prepared in a pure state we need 6 coor-
dinates which parameterize Q (n=4). Unfortunately, it is not very convenient to
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determine the state space via the given diffeomorphism because then we have to
work with noncommutative groups.

It is much simpler to parameterize the state space Q utilizing the idea of the
Schmidt decomposition [1]. In this case we can represent any pure state |¥)
describing two spins-1/2 as

|IP>:A|T1>®|T2>+B|l1>®|l2>» (9-1)

where [];>, |1,>, are two general orthonormalized bases in H? and A, B are two
complex numbers satisfying the condition |A4|>+|B|>=1. The corresponding
density operator of a pure state in £ then reads

P=14P 1O @ 10 {Tal + 4B* 1) L@ 1155 (L
+A*B |1 <@ 2> <ol + B2 [L) <Ll @ 1) (Lal. (92)

The projectors |1,>{( 1| and [|,><{{;| (j=1,2) are given by (1+7DG|A9) and
(1—=7FYG| AY), respectively [see Eq.(8.1)], where 7" and 7@ are two arbitrary
unity vectors. The operators [];><7;| and their Hermitian conjugates |1,><];| are
determined as

1> T+ FIG9) 15 = (1—7FD¢D), (9.3)
from which the relation
1<l = eVi(k DG 4 [DGWD) (9.4)

follows. Here the vectors k) are two arbitrarily chosen unity vectors which satisfy
the condition k¥’ L 7%, and I are equal to vector products /) =7 x k¥, A parti-
cular choice of vectors k: is not important because phase factors e [y ;€(0, 2m)] rotate
them along all possible directions. We also note that the phase factors e can be always
incorporated in the phase y of a complex number 4B*. Using the parameterization
|A| =cos(a/2) and |B| =sin(a/2) we can parameterize j as

. 101 FV6F®d el 10r®é
p(OC, l//a ¢13019 ¢2’92)= 4 + 4 +COSO(|: 4 :|

—sin a sin

+sin o cos w[
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where lp: ¢19 ¢2 € (09 277:)3 a, Hla 92 € (09 ﬂ) and
kY = (sin ¢;, —cos ¢,, 0);

IV = (cos 0;cos ¢;, cos 0;sin ¢;, —sin 0,); (9.6)

7@

(sin 0; cos ¢;, sin 0, sin ¢;, cos 0;).

Once we have parameterized the state space Q2 we can find the invariant integration
measure do.

1. Invariant Integration Measure

In differential geometry the integration measure is a global object—the so called
invariant volume form w. The condition that d is invariant under the action of
each group element Ue SU(n) is equivalent to the requirement

do=dyop1<Lyo=0  i=1, .. n*—1, (9.7)

that the Lie derivative of w with respect to the fundamental field V; of action of the
group SU(n) in the space Q2 is zero. The vector fields

V= V(X1 o Xan_2) b=1,2..2n—2) (9.8)

ox,
are defined via the actions of one-parametric subgroups exp(itS;) = SU(n), te R
(one action for each generator S,). On the other hand the elements of the space Q
[see Eq. (9.5)] have a structure

) P .
P(X1, s X2n ) =Z+f (X175 e X(2n—2))S4s (9.9)

where S, are n?>—1 linearly independent, zero-trace, Hermitian, n x n matrixes; i.c.,
they are generators of the SU(n) group. Due to this we can express the vector
fields V;

124

g . 0 Can A .
Vi p=r TexplirS) pexp(—itS)1| (9.10)
Xp t t=0

as the solutions of the equation
b 0 k - ko
Vi— ff=ic} f. (9.11)
0x,, v

The complex numbers ¢% are the coefficients in commutation relations [ S, $;] = c%S;.
We note that Eq. (9.11) represents for each fixed index i an overdetermined system of
n* —1 linear equations for 2n — 2 unknown functions V% (the fact that this system is
consistent confirms the correctness of our parameterization of the state space (2).
Finally, we present an explicit coordinate form of Eq. (9.7), which determines the
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invariant volume form @ =m(xy, .., X(2,_2)) A dx; A --- A dX(,_5) as the solution
of a system of partial differential equations:

aaxb (mV?) =0. (9.12)

Here we note, that mV, in Eq. (9.12) has the meaning of a “flow” of the density of
states generated by unitary transformations associated with the ith generator. From
the physical point of view Eq. (9.12) means that the divergence of this flow is zero,
i.e., the number of states in each (confined) volume element is constant.

As an illustration of the above discussion we firstly evaluate the invariant
measure for the state space of a single spin-1/2. Using Eq. (7.1) and the definition
(9.11) we find the fundamental field of action V; (i=1, 2, 3) for the three generators
(7.2) of the SU(2) group:

Vi=cos(¢) cot(0) 0, +sin(¢) 0y  V,=sin(¢) cot(0) 0y —cos(¢) 0y V3= —0.
(9.13)

We substitute these generators into Eq. (9.12) and after some algebra we obtain the
system of differential equations

0 0
%m—o %m—m cot(69), (9.14)
which can be easily solved,
m(0, ¢) = const sin(0). (9.15)

The multiplicative factor is given by the normalization condition. This is the route
to derive the integration measure of the Poincaré sphere. Analogously we evaluate
the invariant integration measure for a state space of two spins-1/2. The calcula-
tions are technically more involved, but the result is simple:

dgp=cos? asina sin 0, sin 0, dx dy dg, d, de,, do,. (9.16)

B. Quantum Bayesian Inference of the State of Two-Spins-1/2

To perform the Bayesian reconstruction of density operators of the two-spins-1/2
system we introduce a set of projectors associated with the observables (7.17)

PS,fﬁ-l):(_’_Ziso-l)@l; Ps,§52)21®7;
(9.17)
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The corresponding conditional probabilities can be expressed as

1 1
pls S0 p(a - N =245 2B i pa ) =245 X
2 2 2 2
1) 52 o
pls, PSP ploc ) =5+ s (9.18)
S sin o

5 Leos (kDK — 1012 —sin Yk 1P + 10 k)],

where s is the sign of the measured eigenvalue (i.e., the spectrum of observables
(7.17) consists only from =+ 1/2). Here we comment briefly on the physical meaning
of the projectors defined by Eq. (9.17). Namely, the single-particle projectors of the
form PS’ s are associated with a measurement of the spin component of the first
particle in the i-direction (i = x, y, z). Obviously this spin component can have only
two values, i.e., “up” (s =1) and “down” (s= —1). In Tables I and II we will denote
outcomes of the measurements “up” and “down” as 7T and |, respectively. The two-
particle projectors PS, sg) are associated with measurements of correlations
between the two spin. Namely, if s=1, the two spins are correlated, which means
that they both are registered in the same, yet unspecified, state (that is, both spins
are registered either in the state |1;7,> or ||;/,>). In TablesI and II we will
denote this outcome of the measurement as 7. On the contrary, if the particles are
registered as anticorrelated, that is, after the measurement they are in one of the
two states |T,],> or ||;1,), then s= —1. In Tables I and II we will denote the out-
come of this measurement for 6:®6; as 1.

Now we can apply general rules of Bayesian inference presented in Section IV for
a two-spins-1/2 system. We will consider three specific incomplete observation levels
and we will derive asymptotic expressions for the density operators in the limit of
large number of measurements. We stress here that we assume the measured system
to be prepared in a pure state. To be specific, let us suppose that the two spins are
prepared in a state described by the state vector (obviously, this can be determined
only after an infinite number of measurements on the complete observation level is
performed)

¥>=411>1)+B|l>®I[L, (9.19)

where |1) and || ) are eigenstates corresponding to the observable of the spin projec-
tion into the z-direction (ie., {(4,®1> ={1®6.> =|4|>—|B|?> and {(6,®6.> =1).
When we assume the coefficients | 4| and B| to be real, then we can rewrite the density
operator (9.19) in the form (9.5), i.e.,

’1* ’i A A AZ_BZ . N
(f +O'z<:.)0-z+ 1 (OA.Z®1+1®O-Z)+7(o"'x®6'x—6'y®6'y), (920)

p= 2
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TABLE II
Results of a posteriori Bayesian Estimation of Density Operators of the Two-Spin-1/2 System
.91 |1®6, | 6. ®6. | reconstructed density operator 5 S
Lt HMiel+isewl]=1[1+16]el 1.366
2.0 HMel+io,ell=4i+is]stl 1.255
3. 15 Hiel+2s. 1] =11+ 2%6]251 1.304
4. || 1oy Hiwl+is. l]=4[1+46.]011 1.255
5.0 1 1 eol+i.0l+i0s.)+Ld. 04, 1.346
6. || 1 Hiel+ 2G.0l+ies)+ 2806 1.078
7. 18 15 Miol+#B0.01+106.) + 4256. 6. 1.207
S s Miel+ 128928 ol+104.)+ 288225 g4, 1.091
9. + ligl+is. ®6.] 1.366
10. 14 fiel+is. ed.] 1.255
11. 16 iel+is ws.) 1.194
12. 112 igl+is 6] 1.070
13. 4 4+ Mel+io.ol+ ties. + 16, 94, 1.346
14. || 14 14 Hiol+ 2o 0l+ Ri0s, + 256 ©6.) 1.078
15. | 1841 16 MHiol+ 284 i+ 82106, + $2L6. 06 1.079
16. || 1042 112 Hiol+ £2005 1+ 220106, + 0806.06.] 0.889
17. 4| ¢ 1 1 Hiel+ip.0l+iw6.)+16, 046 1.303
18. | 14 N Mel+ B, 0l+ins,)+ 8%, 04, 0.883
o |15 L 10 | Hielt BB G el 1es,) + M0 05 0.958
20. || #1042 | 41042 | 12 il 4 JRuusseiisi. o 1+ 1©4,) + LSSi888188105. 0 6.] | 0.831

Note. We also present explicit values of the von Neumann entropy associated with given measured
data.

with ¥ =0,¢,=7/2,0,=0,¢,=n/2,0,=0 and sina/2=A. In what follows we
perform a posteriori estimation of the density operator based on incomplete data
obtained from three different fictitious measurement sequences.

1. Observation Level 07 = {3V, §*}

In the first sequence of measurements we reconstructa density operator from data
which refer to a measurement of the first spin-1/2 in the direction z, i.e., only the
spin component §!) is measured (see lines 1-4 in Table IT). We see that if only one
spin is measured, then the reconstructed two-spin density operator can be factorized,
while, as expected, the state of the unmeasured spin is estimated as p = 1/2. Obviously,
in this kind of measurement, correlations between the two spins cannot be revealed, i.e.,
the estimated value of 4, ® &. is equal to zero. As in the case of the reconstruction of
a single-spin-1/2 state, the reconstructed density operators describe statistical mixtures
and the corresponding von Neumann entropy is directly related to the fidelity of the
reconstruction. The maximum value of the von Neumann entropy is in the case of two-

spins-1/2 equal to S =1n 4 ~ 1.386. This entropy is associated with the “total” mixture



RECONSTRUCTION OF QUANTUM STATES 485

of the two-spin-1/2 system and in our case it reflects a complete lack of information
about the state of the measured system (i.e., we have no knowledge about the state
before a measurement is performed). As soon as the first measurement is performed, we
gain some knowledge about the state of the system and the entropy of the estimated
density operator is smaller than In 4 (see line 1 in Table II).

Let us assume now that data from the measurement of the spin components §)
and §2 of the first and the second particle (spin-1/2), are available. In Table II
(lines 5-8) we present results of a reconstruction procedure based on the given
“measured” data. We see that though correlations between the two spins have not
been measured directly our estimation procedure provides us with a nontrivial estima-
tion for this observable (i.e., the density operator cannot be factorized). Obviously, this
estimation is affected by the prior assumption about the purity of the reconstructed
state. We see that with the increased number of detected spins the von Neumann
entropy of the estimated density operator decreases (we note that it does not decrease
monotonically as a function of the number of measurements).

In the limit of large (infinite) number of measurements spectral distributions
Eq. (5.1) associated with observables on a given incomplete observation level are
precisely determined by the measured data. Using the parameterization introduced
earlier in this section [see Egs.(9.5) and (9.16-9.18)] we can write down the
expression (5.12) for the Bayesian a posteriori estimation of the density operator in
the limit of large number of measurements. After we perform some trivial integra-
tions and when the substitution cos « = x, cos 0, = y, cos 0, = z is performed we can
write the reconstructed density operator as

s a [ av [ dzo(cow 5((6?
p=p | wd | dy | dzo(C60) —xy) 6(<HP) —xz)
x(1@1+x06, @1+ x21Q6,+ yz6.® 6.). (9.21)

The right-hand side of Eq. (9.21) can casily be integrated over the variables y and
Z SO We can write

1 . A X )
p=—] dx<1®1+<&gl>> &Z®1+<a§z>>1®&z+<ffz>§<’z>&z®éz>’
P .

(9.22)
where the integration is performed over the interval &,
Zi={=1L1} and  |xX[>5p (9.23)

with 5, =max{|{6">|, [(6P)|}. After we perform the integration over the
variable x we find

GIGDP

max

1/~ = ~ ~
p:4<1®1+<&9>>&Z®1+<6§2)>1®éz+ z®6z>~ (9.24)
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Comparing Egs. (7.19) and (9.24) we see that on the observation level 0% the
quantum Bayesian inference and the Jaynes principle of maximum entropy provides
us with the different a posteriori estimations of density operators. To be specific, the
density operator (7.19) obtained with the help of the MaxEnt principle can be
expressed in a factorized form while the density operator (9.24) cannot be factorized
into a product of two density operators describing each spin separately [ the only
exception is when s,,,. =1].

2. Observation Level 0% = {5, 35}

Here we start our discussion with an assumption that only correlations between
the particles are measured, while the state of each individual particle after the
measurement is unknown (see lines 9—12 in Table II). In this case we are not able
to make any nontrivial estimation for the mean values of the spin components of
the individual particles. In order to have a better estimation we also have to
measure at least one of the spin components of the first or the second spin.

Let us assume that the z-component of the first spin and the correlation §("§%
are measured. That is, the z-component of the second spin §% is not directly
observed. The question is, What is the estimation of the density operator on this
observation level and in particular, what is the estimation for the mean value of the
observable §2? In Table I (lines 13-16) we present numerical results for the a
posteriori estimation of the density based on a finite set of “experimental” data. We
see that the Bayesian scheme provides us with a nontrivial (i.e., nonzero) estimation
of the mean value of §. But the question is whether in the limit of a large number
of measurements this is equal to the mean value estimated with the help of the
Jaynes principle of maximum entropy. The expression for the a posteriori Bayes
estimation of the density operator in the limit of infinite number of measurements
on the given observation level [for technicalities see Appendix A] reads

1M~ < . DN 52N
p=y| 1@T+0 6,01+ 52002 15 1 (50605 6,04,
(9.25)
where s,,,, =max{|[(6")], [(6V6P)|}. Here again the Bayesian a posteriori

estimation (9.25) is in general different from the estimation (7.21)) obtained with
the help of the Jaynes MaxEnt principle. We see that these two results coincide only
when s,,,.=1. For instance, if {(§,®46,> =1, then s,,,, is equal to unity and the
estimated density operators given by Egs. (7.21) and (9.25) are equal and read

max

P=L1@1+W) 6.1+ 1®6,+6.®6.]. (9.26)

In the case when (6> =1 the von Neumann entropy is equal to zero, ie., the
measured state is completely reconstructed, and is described by the state vector

|5”>:|T1T2>~
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3. Observation Level 02 = {51, §2) g2}

Finally, we will consider a measurement of both the spin projections §V, § as
well as the correlation §(V§%). Results of an estimation of the density operator
based on a sequence of data associated with this observation level are given in
Table IT (lines 17-20). If an infinite number of measurements on the given observa-
tion level is performed then we can evaluate the a posteriori density operator
analogously to that of the previous example [see Appendix A] and after some
algebra we find

pob ] e[ D

| x| 1/a—l—bz—i—cz

<x[1®1+ <a<;>> 6.1 +x21®6.+(606D>6.®6.1. (9.27)

Due to the presence of the Jd-function the integration over the parameter z on the
right-hand side of Eq. (9.27) is straightforward and we obtain

—ij dx
Nz Ja+bzy+ cz?

x[1@T+¢60) 6.@1+ (62> 1®6,+ (662> 6.®6.],  (9.28)

where zo=(6®>/x. From Eq. (9.28) we directly obtain the reconstructed density
operator which reads

P=L1@T+616.01+(6P>1®6,+ (616D 6,®6.]. (9.29)

We see that on the present observation level the density operator (9.29) estimated
via Bayesian inference is equal to the density operator (7.25) estimated with Jaynes
principle of maximum entropy.

C. Inseparability and Quantum Bayesian Inference

We first recall that a density operator j,, describing a system composed of two
subsystems j, and p,, is inseparable if it cannot be written as the convex sum

Par=Y WP @ Py (9.30)

Inseparability is one of the most fundamental quantum phenomena, which, in
particular, may result in the violation of Bell’s inequality (to be specific, a separable
system always satisfy Bell’s inequality, but the contrary is not necessarily true).
Note that distant parties cannot prepare an inseparable state from a separable state
if they only use local operations and classical communications.

In the case of two spins-1/2 we can effectively utilize the Peres—Horodecki theorem
[38] which states that the positivity of the partial transposition of a state is necessary
and sufficient for its separability. Before we proceed further we briefly described how
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to “use” this theorem: The density matrix associated with the density operator of two
spins-1/2 can be written as

Py mv = | Sl P len> 11,0, (9.31)

where {|e,,>} ({|f,>}) denotes an orthonormal basis in the Hilbert space of the
first (second) spin-1/2 (for instance, |e,> =10>,; le;> =|1>,, and |fo> =10>p;
[f1> =1|1)>,). The partial transposition p”2 of j is defined as

Iy —
pmit,nv_pm"snﬂ'

(9.32)

Then the necessary and sufficient condition for the state p of two spins-1/2 to be
inseparable is that at least one of the eigenvalues of the partially transposed
operator (9.32) is negative.

1. Inseparability of Estimated States

To determine whether the data obtained from a incomplete measurement on a
given observation level would allow us to draw any conclusion about nonclassical
entanglement between two spins-1/2, we have to make sure that the used observa-
tion level is suitable for a “detection” for quantum entanglement. For instance, the
density operators reconstructed on the observation levels 0% — 02 in the basis of
eigenstates of &, operators are diagonal. Consequently, the partially transposed
density matrix is equal to the original density matrix. This means that all eigen-
values of the partially transposed matrix are positive irrespective of the number of
measurements performed on these observation levels [ see for instance, Eq. (9.29)].
From here it follows that the given observation levels are not suitable if we want
to analyze whether the measured state is quantum-mechanically entangled. It is
interesting to note that the estimation (9.29) has been made under the assumption
that the two-particle system is in a pure state. Obviously, there are pure two-
particle states which are disentangled (ie., |¥),,=|¥>,|¥)>,) but all other pure
two-particle state are inseparable. But because we have chosen “very bad” observa-
tion levels we are not able to reconstruct density operators which are inseparable.

To overcome this problem we have to extend our observation level. Namely, to
detect any quantum entangled (which for instance can be seen through a violation
of Bell inequalities [1]) we have to rotate the Stern—Gerlach apparatuses with
which the measurement is performed. In particular, we can rotate them so that the
projector Iss, ss@ (see Eq. (9.18) is measured. In this case the reconstructed density
operator will contain nontrivial information about the quorum of operators, i.e.,
information about the mean values of the observables ¢,® ¢, and ¢,® &, which
would allow us to check whether the measured state is separable.

To be specific, let us assume an extension of the observation level 0@ =
{51, 52 s s such that the operator §(§? is included. We will study two
estimations of the density operator after the measurement over N (N=5, ..., 8)
pairs, respectively,of two spins-1/2 is has been performed (we present results of the
recontsruction in Table IIT). From the “measured” data we can estimate the
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TABLE III
Results of a posteriori Bayesian Estimation of Density Operators of the Two-Spin-1/2 System
5,91 |i®6, | 6.96. | 6, 98, | reconstructed density operator j S
L1 | t iel+ #28s, 00, - 1X%5, 96, + %515, 864 1.219
2. | 1202 |1 | 12 fel+ U8, g4, - B85 g6, + 005, 5. 1.146
300120 [ 12 lel+ s, 05, ~ L25, ®6, + j990e26. ©6.] 1.081
401242 (2 M s ilel+ 1B50s, 95, — MB8I85, g4, + Ha8085, ®6) | 1.029

Note. We also present explicit values of the von Neumann entropy associated with given measured
data.

two-spins-1/2 density operators as shown in the table. The estimated density operator
in line 1 is separable, but the density operators in lines 2-4 are inseparable. That
is, with the particular outcomes of the measurement, we can declare (with a certain
degree of fidelity associated with the corresponding von Neumann entropy) that the
system under consideration is inseparable.

X. RECONSTRUCTION OF IMPURE STATES VIA
QUANTUM BAYESIAN INFERENCE

In this section we apply the purification ansatz as shown in Section VI for a
reconstruction (estimation) of an impure state of a single spin-1/2. To do so, we
apply the results of the previous section where we have discussed the Bayesian
estimation of pure two-spins-1/2 states. In particular, in lines 1-4 of Table II we
present results of the estimation of a two-spin density operator based on “results”
of measurements of the ¢_-component of just one spin-1/2. We see that in this case
the two-spin density operator can be written in a factorized form, p,,=p,®11. In
this case we can easily trace over the unmeasured spin and we obtain the estimation
for the density operator of the first spin (compare with lines 1-4 in Table I). This
estimation is not based on the a priori purity assumption.

Comparing results of two estimations which differ by the a priori assumption
about the purity of the reconstructed state we can conclude the following:

(I) In general, under the purity assumption the reconstruction procedure
converges faster (simply compare the two columns in Table I) to a particular result.
This is easy to understand, because in the case when the purity of measured states
is a priori assumed, the state space of all possible states is much smaller compared
to the state space of all possible (pure and impure) states.

(2) When the measured data are inconsistent with an a priori purity assumption,
then estimations based on this assumption become incorrect. For instance, for the
“measured” data presented in lines 14—17 of Table I we find that the estimated mean
values of &, diverge from the expected mean value 1/2 (i.c., this is the mean value of
6. when we detect in a sequence of 4N measurements 3N spins “up” and N spins
“down”). As we have shown in Section VIII.A.3 in the limit N — oo the reconstruction
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can completely fail when the purity condition is imposed. On the other hand, if it is a
priori assumed that the measured state can be in a statistical mixture, then the Bayesian
quantum inference provides us with estimations which in the limit N — oo coincide
with estimations based on the Jaynes principle of maximum entropy.

A. Estimation in the Limit of N — oo Measurements

1. Observation Level 0} = {5V}

Using the techniques which have been demonstrated in Section IX we can express
the estimated density operator on the given observation level in the limit N — oo
[see Eq.(5.12)]. We note that on the considered observation level, Eq.(5.12)
contains many terms, which are odd functions of the corresponding integration
variables. Therefore the integration over these parameters (0,, ¢,, ¥, ¢,) is straight-
forward. Moreover, if we perform the trace over the “second” (reservoir) spin we
can express the density operator of the spin-1/2 under consideration as

1 1 7 .
pzjf yzdyj sin 0, d, 5({6D> — ycos 0,)(1+ ycos 0,6,), (10.1)
—1 0

where the variable « is substituted by y =cos . When we perform integration over
y we obtain the expression

2 sin 0,

— B —" 5D 10.2
N e cos? 0, |cos 01|( +<9:70 62), (10.2)

with & defined as

& :={0,n} such that [cos 0,| > [<6M)]. (10.3)
After we perform the integration over #; we obtain the expression for the density
operator identical to that obtained via the Jaynes principle of maximum entropy
[see Eq.(7.7)].

2. Observation Level 0 = {5, 3N}

In the limit of infinite number of measurements one can express the Bayesian
estimation of the density operator of the spin-1/2 on the given observation level as
(here the trace over the “reservoir” spin has already been performed)

1 1 n 2n
p=p| vy | sinfdoy | " dpyo(<6P) —y cos 0,) A(<EY) — ysin b cos )

X (I + ysin0; cos ¢, 6, + ysinb,;sind,G,+ ycos0,6.). (10.4)
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When we perform integration over the variable y we find

1

27 sin 6,
p=—1| d o, —5———— (6> —tan 0 5
P JVL ¢1f$’ 1005261 Icos 0, | (6y’) —tan 0, cos ¢,{6."))

x (1+¢6M) tan 0, cos ¢,6,+ <61 tan 0, sin $,6,+<6yé,).  (10.5)

The integration over the variable ¢, in the right-hand side of Eq. (10.5) gives us

A_Lf 0wy Lo
P=l, lj:1 cos? 0, |sin ¢4 |
< (14+¢6Wy 6.+ (60 tan 0, sin ¢26, + (6036.), (10.6)

where the integration is performed over the interval

G
(1)>
(10.7)

2" :={0,n} such that |cos 0;] > [<{6>], and [tan 0, | >

The sum in Eq. (10.6) is performed over two values ¢{” of the variable ¢, which are
equal to the two solutions of the equation

A(1
G

COS = .
& (6MY tan 0,

(10.8)

Due to the fact that the term in front of the operator &(y” is the odd function of ¢{/,
we can straightforwardly perform in Eq. (10.6) the integration over 6, and we find
the expression of the reconstructed density operator which again is exactly the same
as if we perform the reconstruction with the help of the Jaynes principle [ see Eq. (7.10)].

3. Observation Level 0P = {5V, 50V, '}

On the complete observation level, the expression for the Bayesian estimation of
the density operator of the spin-1/2 in the limit of infinite number of measurements
can be expressed as (here again we have already traced over the “reservoir” degrees
of freedoms) [see Eq. (10.4)]

5 =%J11y2 dy j: sin 0, do, f:” b,

x0({6M) —ycos 0) 6({6YP) — ysin b, cos ¢;) (6> — ysin b, sin ¢,)

X (T + ysin 0, cos ¢, 6, + ysin 0, sin ¢, 6, + y cos 0,6,). (10.9)
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Performing similar calculations as in the previous subsection we can rewrite Eq. (10.9)
as

A

2
1
~ do —_—
’ Lf" lj:1 cos? 0 |sin ¢ |

x (1460 6,+<6V) tan 0, sin 96, + (6> 6.)®1,  (10.10)

5((6;”) —tan 0, sin ¢(6My)

where #” and ¢{ are defined by Eqgs.(10.7) and (10.8), respectively. Now the
integration over #, can be easily performed and for the density operator of the
given spin-1/2 system we find

p=31+60) 6.+ 1) 6,+<61) 6.1, (10.11)

where the mean values (6" do not necessarily satisfy the purity condition (7.16).

XI. CONCLUSIONS

In the paper we have analyzed in detail the logical connection between three
different reconstruction schemes: (1) If measurements over a finite number of
elements of the ensemble are performed then one can obtain the a posteriori estima-
tion of the density operator with the help of Bayesian inference. If nothing is known
about the reconstructed state one has to assume a constant prior probability distri-
bution on the parametric state space under the assumption that the system is in a
statistical mixture. (2) As soon as the number of measurements becomes large the
Bayesian inference scheme becomes equal to the reconstruction scheme based on
the Jaynes principle of maximum entropy; i.e., in the limit of infinite number of
measurements a posteriori estimated density operator fulfills the condition of the
maximum entropy. Consequently, it is equal to the generalized canonical density
operator. (3) If the quorum of observables is measured, then the generalized
canonical operator is equal to the “true” density operator of the system itself, i.e.,
a complete reconstruction via the MaxEnt principle is performed. It is a matter of
technical convenience which reconstruction scheme on the complete observation
level is utilized (for instance, quantum tomography can be used), but all of these
complete reconstruction schemes can be formulated as a maximization of the
entropy under given constraints.

APPENDIX

Bayesian Inference on O in the Limit of Infinite Number of Measurements

On the given observation level we can express the estimated density operator in
the limit of infinite number of measurements as [see Eq. (5.12)]
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) 1 (2= 1, 1 1
p—]jo dys J_lx dxj_1 dy j_l dz
x3(<EWY —xp) 6(<ENEDY — yz+ [(1—x2)(1 — y)(1 —2%)]1" cos )
X{T®T+xya”z®i+xzi®&z
+[yz—((1=x*)(1—y*)(1—z%)cos Y16, ®6.}. (A.1)

We integrate Eq. (A.1) over the variable y and we obtain

| o 2
p”=jf: iy Lﬂﬁdxﬁldz

AL\ 2\ 71/2
x5<<621)622)>—<6§1)>i+{(1—x2)(1—22)<1—<622> ﬂ cos¢>

X

x{I®T+<éQ>> 6.01+x:1®6,

A ( /:
+[ My z— <(1 —x2)(1—22) <1 - <"212)>2>>1 " cos wﬂ 6Z®6z}, (A2)

X

where the integration boundaries are defined as
Pri={—-1,1} and |x] =<6y (A.3)

Now we will integrate Eq.(A.2) over the variable . There are two values
(j=1,2) of ¥, such that

(6062 — (61> z/x

- A4
COoS lﬂo [(l—xz)(l—zz)(l—(<&il)>/x)2)]1/2’ ( )
providing that inequality
A(1) 2(2)\ __ /A1)
1 6,767 —<(6%7) z/x (AS)

>
[(1—x%)(1—2)(1— ({60 /x)%) ]2

holds. The last relation can be rewritten as the condition a + bz + cz? > 0, where the
explicit forms of the coefficients a, b, and ¢ are

a= 1 _ <OA_21)>2/X_2+ <OA-(21)>27 <Of~_(zl)of\_22)>27x2;

(A.6)

b=2{6MY(6M6P)/x;  c=x>—(6"H2—1.
The coefficient ¢ is always negative, which means that we have a new condition for
the parameter z, that is, ze€ {z,, z,», where z, and z, are two roots of the quadratic
equation a + bz + cz?=0. However, these roots exist only providing the discrimi-
nant b?> —4ac >0 is nonnegative. Taking into account Eq. (A.6)we see that the last
relation is a cubic equation with respect to the variable x2 which imposes a new
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condition on the integration parameter x. That is, the interval #"” through which
the integration over x in Eq. (A.2) is performed is defined as

g JUGELT for (606> <[<4M)];
T HIKEO L1+ 606082 for (816D =<6,
(A7)

Taking into account all conditions imposed on parameters of integration we
canrewrite Eq. (A.2) as

ﬁzijg x* dx rz d-

Nder Xl 2 Ja+ bz + cz?

x(1@T+(6WY 6,01 +x21Q6,+(6WV6?) 6.®3,). (A.8)

Using standard formulas [see, for example, [ 37, Eq. (2.261) and Eq. (2.264)]] the
integration over parameter z in Eq. (A.8) can now be performed and we obtain

1 x2 1 ~ - “
A /\(1) A /\(1) /\(2) A A
P= L, ey (@14 .01+ 6.0
2 A(1) A(1) 2(2) .
¥ X _(0; )<0: 6: ) (14 (A.9)

o m (1+ (6(21)>2—x2)3/2

After performing integration over x in Eq. (A.9) we obtain final the expression
(9.25) for the a posteriori estimation of the density operator on the given observa-
tion level.
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