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Quantum copying: A network
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We present a network consisting of quantum gates that produces two imperfect copies of an arbitrary qubit.
The quality of the copies does not depend on the input qubit. We also show that for a restricted class of inputs
it is possible to use a very similar network to produce three copies instead of two. For qubits in this class, the
copy quality is again independent of the input and is the same as the quality of the copies produced by the
two-copy network[S1050-294{@7)09510-3

PACS numbd(s): 03.65.Bz

[. INTRODUCTION not two (imperfec) copies of the input state at the output, but
three. Second, we find that a very similar quantum network
Since the work of Wootters and Zurek it has been knowrcan also be used as a quantum *“triplicator,” i.e., a copying
that it is impossible to copti.e., clone perfectly an arbitrary machine that produces thréienperfec) copies of the origi-
guantum statg1,2]. These authors considered a quantumnal qubit. In general, the triplicator has the undesirable fea-
copy machine that is supposed to copy a qubit and demoriure that the quality of the copies that emerge from it is state
strated that if it copies two basis vectors correctly, it cannotdependent. However, if the original qubit is in a superposi-
copy superpositions of these vectors without introducing ertion statea|0)+ 8|1) with « and 8 real then the quality of
rors. This result follows directly from the fact that quantum the copied qubits does not depend on the particular value of
mechanical transformations are implemented by linear ope. Moreover we show that in this case the quality of the

erators. triplicated qubits is the same as those that emerge from the
If one is only interested in producing imperfect copies,UQCM, which is a “duplicator.”
however, then it is possible to design machirfastually, In addition, we discuss the gquantum entanglement of the

find unitary transformationsthat copy quantum states. A qubits at the output of our quantum copying networks. The
number of these were analyzed in recent papers by two of ugct that the copies are entangled means that they are not
[3,4]. The copy machine considered by Wootters and Zurekindependent; measuring one copy can have an effect on the
for example, produces two identical copies at its output, bubther. This feature is something that must be kept in mind
the quality of these copies depends upon the input statevhen determining how to make use of the copies.
They are perfect for the basis vectors that we denot®as The quantum logic networks that we propose consist of
and|1), but, because the copying process destroys the offene- and two-bit quantum gates for which proposed designs
diagonal information of the input density matrix, they arealready exist. They should, therefore, be useful in the experi-
poor for input states of the form{1)+e'¢|0))/\2, where¢ ~ mental realization of quantum copy machines.
is arbitrary. A different copy machine, the Universal Quan- This paper is organized as follows. In Sec. Il we briefly
tum Copy MachingUQCM), produces two identical copies review the unitary transformation that specifies the UQCM.
whose quality is independent of the input state. In additionThe quantum copying networks are described in Sec. lll,
its performance is, on average, better than that of thavhile in Sec. IV we discuss the inseparability of the copied
Wootters-Zurek machine, and the action of the machine simgubits. The quantum triplicator is described in Sec. V.
ply scales the expectations values of certain operators. In
particular the expectation value in one of the copies of any
operator which is a linear combination of the Pauli matrixes
is 2/3 that of its expectation value in the input state. Gisin Let us assume we want to copy an arbitrary pure state
has recently generalized the UQCM for the cases in whicHﬂIf}a , which in a particular basiﬁ0>a1,|l>al} is described
there areN identical inputs andN+1 outputs, that is, one py the state vecto|r*1')a
copy is produced, and also in which there &rénputs and
N+ 2 outputs, i.e., there are two copies produf@dIn both . ;
cases all of the output copies are identical and their fidelity, [W)a,=al0)a, +BlL)a,, a=sinde¥, p=cosd.
that is, their overlap with the input state, goes to INagoes 2.1
to infinity.

In this paper we want to do two things. First, we present alhe two numbers that characterize the st@&el) can be
quantum logic network that realizes the UQCM. An analysisassociated with the “amplitudef{«| and the “phase”¢ of
of this network suggests that it should be possible to producthe qubit. Even though ideal copying, i.e., the transformation

II. UNIVERSAL QUANTUM COPY MACHINE
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|\I,>alﬂ|\1/>al|q’>a21 (2.2 1

|+>aa:_(|1o>aa+|01>aa)a (2.9
182 \E 182 182

is prohibited by the laws of quantum mechanics foraaini-

trary state(2.1), it is still possible to dgsign guantum copiers and satisfies the condition@.3—(2.6). The system labeled

that operate reasonably well. In particular, the UQEMis 5 s the original(input) qubit, while the other syste,

spe_cn‘led by the followmg pond|t|ons. , represents the qubit onto which the information is copied.
(i) The state of the original system and its quantum COPYrhis qubit is supposed to be initially in a St@?az (“blank

at the output of the quantum copier, described by denSi%aper” in a copiey. The states of the copy machine are la-

operatorsp{* and (", respectively, are identical, i.e.,  pojeq byx. The state space of the copy machine is two di-
R R mensional, and we assume that it is always in the same state
p=pt. (2.3 |Q), initially. If the original qubit is in the superposition
state(2.1) then the reduced density operator of both copies at
(i) If no a priori information about thein-state of the the output are equdkee condition(2.3)] and they can be
original system is available, then it is reasonable to requir@xpressed as
that all pure states should be copied equally well. One way ~
to implement this assumption is to design a quantum copier P = %I‘l’)aj<‘l’| + %I‘Pi)ajﬂ’il, =12, (29
such that the distances between density operators of each :
system at the outputﬁé‘j’“t), where j=1,2) and the ideal Where

density operatop® which describes then-state of the W )a=p*|0)a —a*|1), (2.10
original mode are input state independent. Quantitatively this . . !
means that if we employ the square of the Hilbert-Schmidis the state orthogonal tbll)aj_ This implies that the copy

horm contains 5/6 of the state we want and 1/6 of that one we did
~ - A not.
. . _ 2
d(p1;p2): =Tl (p1=p2)"], (24 We note that the density opera@ffj’”o given by Eq.(2.9)

as a measure of distance between two operators, then ti§8N be rewritten in a “scaled” form:
guantum copier should be such that

~ i —Si.
(out) _ (id) ] v

- i ) Py =Sipy +—%—1, j=1,2, (2.11)

di(pi™ ) =const, j=12. (2.5 a2

which guarantees that the distan@4) is input-state inde-

Here we use the subscript 1 in the definition of the distamc‘f)endent, i.e., the conditiai2.5 is automatically fulfilled. The

gga;thS|gnlw that this is the distance between smgle—qubltScalingl factor in £q(2.1) is 5= 2/3.

(iii) Finally, we would also like to require that the copies
are as close as possible to the ideal output state, which is, of

course, just the input state. This means that we want our |, \what follows we show how with simple quantum logic

Ill. COPYING NETWORK

quantum copying transformation to satisfy gates we can copy quantum information encoded in the origi-
- i - i nal qubit onto other qubits. The copying procedure can be
)y . (id L . yd |
dl(P(a?m) ypgj )= mln{dl(ngmt) ’ng N} (=12, understood as a “spread” of information via a “controlled”

(2.6 entanglement between the original qubit and the copy qubits.
This controlled entanglement is implemented by a sequence
Originally, the UQCM was found by estimating a transfor- of controlled NOT operations operating on the original qubit
mation that contained two free parameters, and then detegnd the copy qubits that are initially prepared in a specific
mining them by demanding that conditidin) be satisfied, state.
and that the distance between the two-qubit output density |n designing a network for the UQCM we first note that
matrix and the ideal two-qubit output be input state indepensijnce the state space of the copy machine itself is two dimen-
dent. That the UQCM machine obeys the conditi@r6) has  sjonal, we can consider it to be an additional qubit. Our

only been shown recently by one of [&. network, then, will take three input qubits, one for the input,
The unitary transformation that implements the UQCM one that becomes one of the copies, and one for the machine,
[3] is given by and transform them into three output qubits, two of which
5 T will be copies of the output. In what follows we will denote
N 4 the quantum copier qubit &g rather thanx.
|0>31|Q>X \[3|OO>‘3‘16‘2|T>>”L \/;|+>ala2|l>xr The operation of this network will be slightly different

from what was indicated in the previous paragraph. Rather

2 1 than have the copies appear in theand thea, qubit, they
[ Da,|Qx= \ 511 Daa,lLxt \ 51+ )asal T will appear in thea, andas qubits.
(2.7) Before proceeding with the network itself let us specify

the one- and two-qubit gates from which it will be con-
where structed. Firstly we define a single-qubit rotati&](e)
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FIG. 1. Graphical representation of the UQCM network. The logical controlled RQTiven by Eq.(3.2) has as its input a control
qubit (denoted a®) and a target qubifdenoted a$). The action of the single-qubit operatBris specified by the transformatidB.1).
We separate the preparation of the quantum copier from the copying process itself. The copying, i.e., the transfer of quantum information
from the original qubit, is performed by a sequence of four controlled NOTs. We note that the amplitude information from the original qubit
is copied in the obvious direction in an XOR or the controlled NOT operation. Simultaneously, the phase information is copied in the
opposite direction making the XOR a simple model of quantum nondemolition measurement and its backaction.

(j=1,2,3), which acts on the basis vectors of qubits as  then the arbitrary statblf)g‘iffp),

Ri(6)|0);=cos 6]0); +sing|1);

S J J | W) PP = C1]00)a,a,+ C2|0D)aa, + Csl 10)aa,

R;(6)|1);=—sin 6|0);+cos 6|1);. (3.1 FCyl1)a, 3.5
We also will utilize a two-qubit operatda two-bit quan-

tum gate, the so-called controlled NOT, which has as its

ith real amplitude<C; (such thats;_,C?=1) can be pre-
inputs a control qubitdenoted as solid circles in Fig) and w piry | (su g ) P

a target qubitdenoted as open circles in Fig. The control pared by a simple quantum netwo] (see the “prepara-

qubit is unaffected by the action of the gate, and if the condion” POX in Fig. 1) with two controlied NOTsPy, and three
trol qubit is|0), the target qubit is unaffected as well. How- rotationsR(6;), i.e.,

ever, if the control qubit is in thel) state, then a NOT

operation is performed on the target qubit. The operator that |\I;>$§3FJ): Ro( 03) PaRa( 02)§23§2(91)|0>a2|0>a3_

implements this gatef’m, acts on the basis vectors of the (3.6
two qubits as follows K denotes the control qubit andthe
targe}:

Comparing Egs(3.5 and(3.6) we find a set of equations
Pul0)0)=10)[0);,  Pi[0)il1)=]0)/1),
Pal DOy =[1)d 1), Prl1)d1)=]1)0). (3.2

We can decompose the quantum copier network into two
parts. In the first part the replica qubits anda; are pre-

COS 0,C0S 6,C0S O3+ Sin §1Sin 6,Sin 6;=C,

—C0s 6;Sin #,sin O3+ sin 6,C0s 0,c0S H;=C,,

pared in a specific state)P="). Then in the second part of COS 0,C0S 6,Sin B3 —sin 6;sin 6,C0s 6= Cj,
the copying network the 0r|g|nal information from the origi-
nal qubit isredistributedamong the three qubits. That is the cos 64sin 0,c0s O3+ sin §,c0s 6,sin H3=C,, (3.7)

action of the quantum copier can be described as a sequence
of two unitary transformations
from which the anglesd; (j=1,2,3) of rotations can be
|W) '“)|0>a2|0>a3ﬂ|\P>('”)|\If)a';[§p) |‘lf>(a‘i‘;‘;a3. (3.3  specified as functions of paramet€s. In particular, for the
purpose of the UQCM we need that
The network for the quantum copying machine is displayed
in Fig. 1. 1
W) PRP = —=(2|00)a,0, 710D a0, 1100a,0,)- (3-8

J6

A. Preparation of quantum copier

Let us first look at the preparation stage. Prior to any
interaction with the input qubit we have to prepare the twoWith the help of Eq.(3.7) we find that the rotation angles
quantum copier qubitsal, and az) in a very specific state necessary for the preparation of the state given in(B@)
|W)PEP). If we assume that initially these two qubits are in are
the state

1 2 1/2
, 02=—arcsir(§—£) . (3.9

™ 3

), =10)a,0)a, (3.4) 0= 05=

aag
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B. Quantum copying The original qubit after the copying is performed is in a

Once the qubits of the quantum copier are properly preState
pared then the copying of the initial steitE)f.;:) of the origi-
~(out) _ —

1
nal qubit can be performed by a sequence of four controlled Pa, (pa“))T (3.18
NOT operationgsee Fig. 1

W) ow _p B PP |\P)('”)|\If> prep yvher(_a the superscrifit denotes_the transpose. We _note that
a1aa | 333y a3a;° 31337 13 aag in spite of the fact that the distance between this density
(3.10 operator and the ideal qubit depends on the initial state of the

When this operation is combined with the preparation stage, original qubit, i..,

we find that the basis states of the original qulat)(are

N ~ 2
copied as da(p™ ped) = g1+ 12 a|?|B|?sirfe),  (3.19
2 1 - o L
0). |00y, . — \ﬁ 0). |00, . +—|1). |+ , the output state of the original qubit still contains informa-
102,/00)2,0, 3| )23/ sz, \/§| i Haza, tion about the input state, though less than either of the cop-

(3.11) ies. In order to extract this information we note that for a
Hermitian operatoA

2 1
[1)a,/00)a,0,~ \[5|1>a1|11>a2a3+ﬁ|0>a1|+>a2a2, Tr(pgay A)=Tr (b ) TAT]. (3.20
(3.12

here| + _ (ot 110 /\3. When th ininal This means that to obtain information abd\itat the input,
where| +)a,a,= (10D, )a,a,)/ V2. When the origina we measuré\” for the original qubit at the output.

qubit is in the superposition statg.1) then the state vector We note that the flow of information in our quantum net-
of the three qubits after the copying has been performeq,,rk can be controlled by the choice of the preparation state

reads |‘lf)(p’ep) [5]. In particular, if we chose the rotation angles
|\I,>golgt;a3: |O>al|q)0>a2a3+|1>a1|q)1>a2a3’ (3.13 inour network(4 6) such that
i 1 5 2
with Ccos 2,=—=, COS 262=\/——, COS X3=—
J5 3
2 1 (3.21
|(b0>a2a2: @ \/;l 00>a2a3+ ﬁﬁ| + >a2a3,
then the stalld’)mrep) reads
|®y) ﬁ\f |11) |+> (3.14 1
#2% a2a3 o2 |\I,>(azrae3p): %(2|00>a2a3+ |01>a2a3+ | 11>a2a3)
From this it follows that at the output of the quantum copier (3.22
we find a pair of entangled qubits in a state described by the
density operator In this case the copies appear in thganda, qubits, while
the qubitas plays the role of the copying machiriancila.
Pazlét;_ |q)0>a2a3<q)0| i |‘1>1>a2a3<‘1>1| (3.15 ?;h?;a:ﬁéevzljlth the preparatio8.22) the transformation2.7)

Each of the copy qubits at the output of the quantum copier
has a reduced density operafnﬁ’”t) (j=2,3) given by Eqg.

(2.11. The dlstancedl(p("”‘) ‘gd)) (j=2,3) between the An ideal copy machine would produce two copies that are
é)mpletely independent of each other; i.e., the reduced den-

IV. INSEPARABILITY OF COPIED QUBITS

output qubit and the ideal qublt |s constant and can expresse

as a function of the scaling parametein Eq. (2.1 S|ty matrix for the two coples,@a ag: would be a product of
5 p‘,,12 and pa3. For the UQCM, however, this is not the case
dy(plow: |d))_ a-s”_ i (3.1  and there are correlations between the copies. These correla-
4 2 18 tions can be either quantum mechanical or classical, and we

would like to determine whether the two copies are quantum-
Analogously we find the dlstanaéz(pg‘;‘;z ,pgjgs) between mechanically entangled. To do so, we first recall that a den-

the two-qubit output of the quantum copying and the idealSity operator of two subsystems is inseparable dibnotbe
output to be constant, i.e., written as the convex sum

2
t) d
d2(play i Pty = >

(3.17) Paay= 2 WM @ pyY . 4.1

Ol N
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Inseparability_is one of t_he most fundame_ntal quantum Phei)gd; is also input-state independgstggests that the degree
nomenon, which, in particular, may result in the violation of * 723

Bell's inequality (to be specific, a separable system aIwaysOf entanglement between the copied qubits is also input-state

satisfies Bell's inequality, but the contrary is not necessaril))ndependem'

true). Note that distant parties cannot prepare an inseparable

state from a separable state if they only use local operations V. QUANTUM TRIPLICATOR

and classical communication chann o . - L
In the case of two qubit§.e. spin—%we can utilize the . When Itisa priori known that_the original qubit is ini-

Peres-Horodecki theoref 10]’ which states that the posi- tially in a SlﬂpeI‘DOSItlon stat@.1) with the mean value of the

tivity of the partial transposition of a state is botnecessary ~OPservabler, equal to zerdi.e., a and 8 are real then the

and sufficientcondition for its separability. Before we pro- duantum copying network presented in Fig. 1 can serve also

ceed further we briefly describe how to “use” this theorem: & & quantum triplicator. That is, out of a single original qubit

the density matrix associated with the density operator othis device can create three identical qubits with equal den-

two spin-1/2 can be written as sity operatorﬁg‘j’”", ie.,

Pryenw={Eml(F .l pl€n)|,), 4.2 I’;golut):;);(;ut):;)(aosut) (5.1)

where{|e)} ({|f,)}) denotes an orthonormal basis in the _ ~ (out) .~ ()
Hilbert space of the firs(second spin-1/2 (for instance, —Such that the distancek(ps ™ :pa ") given by Eq.(2.4) are
|€0)=10)a,; |€1)=[1)a,, and|fo)=[0)a,; [f1)=[1)a,). The  constant(i.e., they do not depend am). This quantum trip-
licator is input-state independent, but we have to remember
that the class of original qubits for which this is true is re-
4.3 stricted.
The triplicator network is exactly the same as the one

Then the necessary and sufficient condition for the Stat&onsidered in the previous section except we have to perform

~ . . . he rotationR (6,) in the opposite direction. That is, the
f 1/2 le is that at | f 3(02 e
Pa,a, Of two spin /2 to be inseparable is that at least one oanglesal and 0, are the same as specified by E8.9), but

the eigenvalues of the partially transposed operﬁllél)L(nV is 0,=arcsin(1/2- \/5/3)1/2. In this case the statda\[f)gpfp)
negative. reads 23
Now we will check whether the density operataf’;)

given by Eg. (3.15 is separable. In the basis 1
{110)a,2,:110)a,0,:/0D)a,0,,/004,5,} this density operator is |‘I’>é’;ff): \/TZ(3|00>+|01>+|10>+|11>)- (5.2
described by a matrix

partial transpositiop "2 of p is defined as

2 —
pm'u’n,,_pmv,n,u .

With the help of Eq.(3.10 we now find the output state of

2 * *
4Bl 2a*p 2a*p 0 the quantum triplicator:

* *
Agogt): 1 2apB 1 1 2a* B @4 .
2% 6| 2aB8* 1 1 2a* ' '
B "B | W)W~ (34]|000)+ a|10D) + a|110) + «|011)
0 2aB8* 2aB*  4lal? 1%2% 12
while the corresponding partially transposed operator in the +3p|111) + (010 + [001) + 8| 100)).
matrix representation reads (5.3
4B 2ap* 2a*B 1 Whena and g are real then we find that the three qubits at
- 1| 2a*B 1 0 2a* B the output of the triplicator havielentical density operators
pa§a3=€ 20" 0 1 20p* | (4.5  given by Eq.(2.11) with the scaling factos=2/3.

Moreover, we find that the three two-qubit density opera-
1 2aB* 2a*B  4|al? tors at the output of the triplicator are mutually equal. In the

matrix form they read
From the fact that one of the four eigenvalues
~(out) _ 7 (out) _ ~(oup)

11 2_\/§ 2+\/§ Pa,a;~ Paja,” Paja,
66 6 " 6 | 49 86%+1 4af 4af 3
1| 4apB 1 1 dapB

of this partially transposed operator is negative for all values =— (5.4)
of « (i.e., for arbitrary state of the original quhiit follows 12\ 4ap 1 1 4ap
that the two qubits at the output of the quantum copier are 3 4aB 4aB 8a’+1

nonclassically entangled. The fact that the eigenvalues of the

transposed density operator are input-state indeperieiedt  This quantum triplicator operates in such way that all dis-
combined with the fact that distanch betweenpg‘;gz and tances between output qubits and ideal copies, i.e.,
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d (IS(OUt)-;)(id)):i d (;)(out).,‘)(id)):z dl(;)g?uo;;)gjd)) is almost two timES(tO be preCise, 16/9
BWay Py /7 qgr “2WFaja »Faja /™ g times larger than with ours. In fact, there exists a general
tradeoff between tha priori knowledge of the state of the
da(plu ol } (5.5 original qubit and the quality of the copying: the better we
3 Pajazay0Pasazay) ~ ' know the initial state of the original qubit the better copying
transformation can be. For example, if we know exactly the
are constant for arbitrary real values @f state of the original qubit, we can produce as many perfect
We note that the two-qubit density matricgs4) are in- copies as we want.
separable, because one of the eigenvalues Finally we analyze the output state of the triplicator net-
work described in Fig. 1 when the original qubit is in an
_ E E 5+ 17 5- V17 (5.6) arbitrary superposition stat®.1) (with & and 8 complex.
6’3" 12 ' 12 ' Using the general expressigh.3) for the output of the trip-
licator we find that the individual qubits at the output are

of the corresponding partially transposed matrix is negative, S~ (ou)_ ~(ou)_ S (out)  p . .
Because this negative eigenvalue does not depend, and 99”3" 1.€..Pa _paz. ~Pag with the density matrices
the fact thatd, is input-state independent, we can concludediven by the expression

that the quantum triplicator creates a specific class of two- 1/ 4g2+1 3a* B+ ap*

qubit states characterized by the same degree of entangle- plow—— j=1,2,3.
ment. 3 6\3aB*+a*B  4la)?+1 )’ =
Next we turn our attention to the fact that the scaling (5.7

factor s=2/3, which relates the output qubits to the original
qubit, is in our case larger than that found in Gisin’s tripli-
cation procedurg6], where it iss=5/9. While our scaling
factor is larger, there is a price to pay. Namely, our triplica-
tion network requires priori knowledge; the original qubit
must be described by the state vedtai) with real« andg. ~ cout . A id) 1 ol 1o

Gisin's scheme is more general, because it triplicates all qu- dilpa, " ipa; )= 7g(1+ 12a|? B|? sirfe).  (5.8)

bits (2.1) and the quality of the copies is independent of the

input state. However, the quality of his copies is not as good, The two-qubit density operators at the output of the trip-
which can be seen directly from the fact that for his procedicator are also equal, and they can be described by the den-
dure the distance between the copied and original qubitsity matrix

In general, these density operators cannot be written in the
scaled form(2.11) and consequently, the distance between
the output and input qubits depends on the initial state of the
original qubit, i.e.,

8/8I°+1  3a*B+aB* 3a*Btap 3
"(out):"(out):"(OUt):i 3a18*+a*ﬁ 1 1 3a*,8+a’,3* 5.9
Pasas™ Pasa,™ Pasas™ 12| 308 +a* B 1 1 3a* B+ aB* '
3 3aB*+a*B 3af*+a*B  8lal?+1

From this expression we can easily find that the two-qubit From the explicit expressio(b.9) we find that the two-
distancesd,(p®W; pi9 y petween the actual output of the qubit density matrices are inseparable for an arbitrary state of
K1k the input qubit. This means that quantum triplication “cre-
‘ates” very specific quantum correlations between the output
qubits. Namely, one of the eigenvalues of the partially trans-

triplicator and the ideal case are input-state dependent, i.e

“ np 2 . . ) .
dy(pW;pld) ) = = (1+ 12 |2 B|%sirPe), posed matrix5.9) is negative fomrbitrary values|«| and¢.
TRET 9 Moreover, there exists correspondence between the behavior
K1=123 Kl (519 Ofthe distancejl(f)g‘j’”t);f)gjd)) and the value of the negative

eigenvalueE of the partially transposed matrix. In particular,
Analogously for the three-qubit diSta”dg(f’STéZag?/3§fiza3) when =0, this eigenvalue does not depend e and is
we find equal to—1/6. The corresponding distandg in this case is
minimal and equal to 1/18rrespective of a|). As the dis-

dy(p_:plid y=1(1+12a|?B|%sirte). tanced, increases, this eigenvalue decreases. Specifically,

1727 0 1 (5.11) for a given value of a| the distanced, is maximal when
' o= /2. Correspondingly, the negative eigenvaki®f the
Here the minimum values of the distanags(j=1,2,3) are partially transposed matrix for a giver| takes its minimal

obtained whenp=0,7 and in this case they do not depend value wheng= /2. In this caseE can be approximated by

on the particular value dfx|. its upper bouncE:
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_ 1+4(\5-2)| |} 8|2 tem and spreads it among several. It would be nice to be able
E<E=-— 5 , (5.12  to see how this happens qualitatively, but, at the moment, it
is not clear how to do this. The problem is that we are inter-

which clearly reveals a dependence between the distnce ©Sted in how only a part of the information flows through the
[given by Eq.(5.8) with ¢=/2] and the negative eigen- machine. It is only the information in the input state, and not
valueE. This observation suggests that the copying scheme@at in the two input qubits, XVh'Ch enter the machme”ln stan-
analogous to the triplication network discussed above caffa"d states, the so-called “"blank pieces of paper,” which
serve as specific “quantum entanglers” and that the measurdatters, but it seems to be difficult to separate the effect of

of entanglement can be operationally related to a specifif® two in the action of the machine. o
distanced,. This issue is connected to another, which is how to best

use the copies to gain information about the input state. In a
previous paper we showed how nonselective measurements
of a single quantity on one of the copies can be used to gain

It is possible to construct devices that copy the informa-information about the original and leave the one-particle re-
tion in a quantum state as long as one does not demar@liced density matrix of the other copy unchanged. An inter-
perfect copies. One can build either a duplicator, which proesting extension of this would be to ask, for a given number
duces two copies, or a triplicator, which produces three. Botlof copies, how much information we can gain about the
of these devices can be realized by simple networks of quareriginal state by performing different kinds of measurements
tum gates, which should make it possible to construct thenon the copies.
in the laboratory. It is clear that quantum copying still presents both theo-

There are a number of unanswered questions about quaretical and experimental challenges. We hope to be able to
tum copiers. Perhaps the most obvious is which quanturaddress some of issues raised by the questions in the preced-
copier is the best. Recently it has been shdWhthat the ing paragraphs in future publications.
UQCM described in this paper is the best quantum copier
able to produce two copies of the original qubit. It is not
known, however, how to construct the best quantum triplica-
tor (or, in general, a device that will produce multiple copies, We thank Nicolas Gisin for communication of his recent
the so-called multiplicatgr There exist bounds on how well results to us. We also thank Peter Knight and Artur Ekert for
one can do, which follow from unitarity, but they are not useful discussions. This work was supported by the United
realized by existing copiefd 1]. This is at least partially the Kingdom Engineering and Physical Sciences Research
fault of the bounds, which are probably lower than they haveCouncil, by the grant agency VEGA of the Slovak Academy
to be. of Sciences(under the project 2/1152/96and by the Na-

A quantum copier takes quantum information in one sys+tional Science Foundation under Grant No. INT 9221716.

VI. CONCLUSION

ACKNOWLEDGMENTS

[1] w. K. Wootters and W. H. Zurek, Naturt@ondon 299, 802 [7] D. BruR, D. P. DiVincenzo, A. Ekert, C. Macchiavello, and J.

(1982. A. Smolin (unpublishedl
[2] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schu-[8] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
macher, Phys. Rev. Letf6, 2818(1996. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
[3] V. Buzek and M. Hillery, Phys. Rev. &4, 1844(1996. Phys. Rev. A52, 3457(1995.
[4] V. Buzek, V. Vedral, M. Plenio, P. L. Knight, and M. Hillery,  [9] A. Peres, Phys. Rev. Letf7, 1413(1996.
Phys. Rev. A55, 3327(1997. [10] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A
[5] V. Buzek and M. Hillery, Acta Phys. Slov7, 193(1997. 223 1(1996.

[6] N. Gisin and S. Massar, Phys. Rev. Létg, 2153(1997). [11] M. Hillery and V. Buzk, Phys. Rev. A6, 1212(1997).



