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We show that inseparability of quantum states can be partially broaddasigidd or clonegwith the help
of local operations, i.e., distant parties sharing an entangled pair of spin-1/2 states can generate two pairs of
partially nonlocallyentangled states using orlycal operations. This procedure can be viewed as an inversion
of quantum purification procedurds$1050-294®7)02905-3

PACS numbd(s): 03.65.Bz

[. INTRODUCTION entanglemen(i.e., inseparabilityas a local copyingbroad-
casting and cloningof nonlocal quantum correlations. In
The laws of quantum mechanics impose restrictions orthis case one might raise the question whether it is possible
manipulations with quantum information. These restrictionslo clone partially quantum entanglement using only local op-
can, on the one hand, be fruitfully utilized in quantum cryp-€rations. When we ask the question whether inseparability
tography[1]. On the other hand, they put limits on the pre- ¢an be broadcast via local copying we mean the following.
cision with which quantum-mechanical measurements oket two distant parties share an inseparable s,;rg\li_% Now

copying (broadcasting and cloningf quantum information  manipulate the two systenas anda,, locally, e.g., with the
can be performe¢i2—4]. One of the most important aspects help of two distant quantum copiek§ andX,, . These two
of quantum-information processing is that information canquantum copiers are supposed to be initially uncorreléigd
be “encoded” in nonlocal correlationgentanglementbe-  more generally, they can be classically correlated, i.e., the

tween two separated particles. The more “pure” the quangensity operatop, . describing the input state of two quan-

tum entanglement, the more “valuable” the given two- tum copiers is separableThe quantum copieX, (X,) cop-

particle state. This explains current interestpiarification ies the quantum subsystean (a,) such that at the output
procedure$5] by means of which one can extract pure quan-

. two systemsa, andb, (a, andb,) are producedsee Fig.
tum ent_angleme_nt from a partially entangled state. In Othei) Asya resullc of thisI c(oglalying w:alt)obtairlw3 out of g/vo sys?ems
words, it is possible taompresdocally an amount of quan- '

tum information. This is implemented as follows. Two “dis- ! and a, four systems described by a density operator

tant” parties share a number of partially entangled pairs.
They each then applypcal operations on their own particles ar
and, depending on the outcom@ghich they are allowed to
communicate classicallythey agree on further actions. By b;
doing this they are able to reduce the initial ensemble to a
smaller one but whose pairs are more entangled. This has Xy
important implications in the field of quantum cryptography
as it immediately implies an unconditional security of com- as b;
munication at the quantum level. b
Our main motivation for the present work comes from the /‘ n
fact that local compression of quantum correlations is pos-
sible. We now ask the opposite: Can quantum correlations be
“decompressed”? Namely, can two parties acting locally
start with a number of highly entangled pairs and end up X1
with a greater number of pairs with lower entanglement? brr
This, if possible, would also be of great operational value in arr
determining the amount of entanglement of a certain state

[6]. For if we could optimally “split” the original entangle- FIG. 1. An entangled pair of spin-1/2 particlas,a,, is shared

ment of a single pair into two pairs equally entangled., by two distant parties andll, which then perform local operations

having the same stateve have a means of defining half the using two quantum copierX; and X,. Each party obtains two

entanglement of the original pair. output particles that are in a separable state, while the spatially
We may view the process of decompression of quantunseparated pairg, ,b,, anda,, ,b, are entangled.
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b b, - Ifthe statep (LY andp{t) areinseparablewhile €0)=[0)a, [e1)=[1)a and [fo)=|0)p, [f1)=[1)p). The
1P I . s AT ~ .
ut) (Out) partial transpositiorp '2 of p is defined as
the statespa b, andp that are produced locally aeepa-
rable, then we say that We have partially broadcastdoned Pqu,t,ny: Pmv,nu - 3

and spli} the entanglementinseparability that was present

in the input state. As we said earlier, this broadcasting offhen the necessary and sufficient condition for the giaié
inseparability can be viewed as an inversion of the distillatwo spins 1/2 to be inseparable is that at least one of the
tion protocol. The advantage of our operational definition iseigenvalues of the partially transposed oper&®ris nega-

that we impose the inseparability condition only betweentive. This is equivalent to the condition that at least one of
two spins 1/Xi.e., either on sping, andb,, or spinsa;; and  the two determinants

b,). Obviously, due to the quantum nature of copying em-

ployed in_ our scheme, multiparticle_quantum correlations be- poo 00 pgg o1 pog 10

tweenpairs of spinsa,b;, anda, b, (i.e., each of these sys- T,

tems is described in four-dimensional Hilbert spaceay W;=de P01,oo 901,01 Pot10| - 4
appear at the output. But presently there do not exist strict pTz pTz pTz

criteria that would allow one to specify whether these sys- 1000 71001 710,10

tems are inseparablsee beloywand, consequently, it would
be impossible to introduce operational definition of the in-
verse of the distillation protocol based on multiparticle in-
separability.

In this paper we show that the decompression of initia T,
guantum entanglement is indeed possible, i.e., that from ¥2= Pooooom o1~ Pooof’m oo However, they are positive
pair of entangled particles we can, by local operations, obtaibecause the density operafofis positive. In this paper we
two less entangled pairs. Therefore, entanglement can hgeal exclusively with nonsingular operatops2. Conse-
copied locally, i.e., the inseparability can be partially broad-quently, we do not face any problem that may arise when

W,=detp'2} ®

is negative. In principle, one would also have to check the
Iposmwty of the subdetermmants W, = pOO o and

cast. p'2 are singular.
IIl. INSEPARABILITY AND THE PERES-HORODECKI IIl. QUANTUM COPYING AND THE NO-BROADCASTING
THEOREM THEOREM
We first recall that a density operator of two subsystems is In the realm of quantum physics there does not exist a
inseparable if ittannotbe written as the convex sum process that would allow us to cofglone and broadcasan

arbitrary state with perfect accura¢2—4]. What this means
is that if the original system is prepared in an arbitrary state

Paja, % w ™ol e i (1) 5D then it isimpossibleto design a transformation

o ;)Ud)_)p(out) (6)
Inseparability is one of the most fundamental quantum phe- a ab

nomena, which, in particular, may result in the violation of
Bell's inequality (to be specific, a separable system always
satisfies Bell's inequality, but the contrary is not necessaril
true). Note that distant parties cannot prepare an inseparable
state from a separable state if they only use local operations
and classical communications.

We will not address the question of copying entanglemen
in its most general form, but will rather focus our attention
on copying of the entanglement of spin-1/2 systems. In thi
case, we can explicitly describe the transformations that are
necessary to broadcast entanglement . Moreover, in the case P
of two spins 1/2 we can effectively utilize the Peres-
Horodecki theoreni7,8], which states that the positivity of
the partial transposition of a statergcessanandsufficient
for its separability. Before we proceed further we briefly de-
scribed how to “use” this theorem: The density matrix as-
sociated with the density operator of two spins 1/2 can be
written as

wherep{%"Y is the density operator of the combined original-
);:opy guantum system after copying such that

Tropi " =pa? . Trapl"=pp?. @)

his is the content of th@o-broadcastinggheorem, which
as been recently proven by Barn@mal.[3]. The stronger
éorm of broadcasting, when

aout)_p(ld)®;)(|d) (8)

is denoted as theloning of quantum states. Wootters and
Zurek [2] pointed out that the cloning of aarbitrary pure
state is impossible. To be more specific, the no-broadcasting
and no-cloning theorems allow us to copy a singleriori
known state with absolute accuracy. In fact, also two states
can be precisely copied if it ia priori known that they are
orthogonal. But if noa priori information about the copied
. (i.e., origina) state is known, then precise copyifigroad-
P =<Eml(f .l pleN)[f.), (20 casting is impossible.

Even though ideal copying is prohibited by the laws of
where {|e)}({|f,,)}) denotes an orthonormal basis in the quantum mechanics, it is still possible to imagine quantum
Hilbert space of the firstsecond spin 1/2 (for instance, copiers that produce reasonably good copies without destroy-
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ing the original states too much. To be specific, instead of 2 1
imposing unrealistic constraints on outputs of quantum copi- 1)l )6l Qs \/;|11>ab|i>"+ \/;| Fhal e (19

grs %\;i?] t;;:}(ljiqsi(\/?g :1rr]1dc(>8)érc;?i§ncsn dae?i(r):i)tgoi mO?r: mucgjr:atlsjtmwhere|Q}X describes the initial state of the quantum copier,
PP g P d k%)b is an arbitrary initial state of modb, and|1), and

copier. For instance, a reasonable quantum copier can . !
P q P )y are two orthonormal vectors in the Hilbert space of the

specified by three conditions. . .
. - . uantum copier. In Eq(13) we use the notation such that
(i) States of the original system and its quantum co aF
J Y Ny by emen>ab: |em>a®|en>b and |+>ab: (|01>ab+|10>ab)/ V2.

the output of the quantum copier, described by density opWe do not specify the in state of mobein Eq. (13). In our

eratorsp{®"? andp{°"Y | respectively, are identical, i.e., discussion there is no need to specify this state. Obviously,

~ (out) in real physical processes the in state of mbdwuay play an

Py - 9 important role. In what follows, unless it may cause confu-
sion, we will omit subscripts indicating the subsystems.

pgout):

(ii) Once noa priori information about thén state of the
original system is available, then it is reasonable to assume
that all pure states are copied equally well. One way to
implement this assumption is to design a quantum copier Now we present the basic operation necessary to copy
such that distances between density operators of each systefitanglement locally for spins 1/2. The scenario is as fol-
at the output {®"?, wherej=a,b) and the ideal density lows. Two partiesX; and X, share a pair of particles pre-
operatorp(i9), which describes thén state of the original Pared in a state

mode, are input-state independent. Quantitatively, this means B
that if we employ the Bures distan{g] |‘P>a|an - a|00>ala” +’8|11>a|a||’ (14

IV. BROADCASTING OF INSEPARABILITY

A A Aqjon A 2 2
d 5,) = \2[ 1= Tr(pY2p,pi2) 12112 (10) where we assume and 8 to be real andv“+ B°=1. The
8(P1ip2) [ (2201 state (14) is inseparable for all values of® such that

. 2 :
as a measure of distance between two operators, then tifs<a”<1 because one of the two determinavitsfrom Egs.

guantum copier should be such that (4) and (5) is negative. Now we assume that the systam
(a;;) is locally copied by the quantum copi&; (X;;) op-
dB(;)_(out) .I‘)_(id))zconst i=ab (12) erating according to the transformatidids8). As the result of
I M ) M

the copying we obtain a composite system of four spins 1/2

(iii) It is important to note that the copiers we have indescribed by the density operatf)g‘l’t,‘lt;”b“. We are now

mind are quantum devices. This means that even though waterested in seeing two properties of this output state. First,
assume '_[hgt a quantum copier is |n_|t|ally dlsentang_ledus both states?)g"t‘,‘t) and ;)(aoubt) should be inseparable simulta-
assume it is in a pure statom the input system it is most e no

likely that after copying has been performed the copier wiII[‘eo‘tJSIy fo[ attleast some values of a”O! second, states
become entangled with the output original plus copy system?ss’ and p’f) should be separable simultaneously for
This entanglement is in part responsible for an irreversiblesome values of for which p°t? andp®4Y are inseparable.

noise introduced into the output original plus copy system . " Pap Payb
Using the transformatiofil3) we find the local output of

Consequentlyp {90 # p{) , Wherepé'ﬁ’=p§;d)®eﬂd)- Once  the quantum copieX, to be described by the density opera-
again, if noa priori information about the statg{®) of the  tor
input system is known, it is desirable to assume that the

copier is such that the Bures distance between the actual

output statep{3"Y of the original plus copy system and the

ideal output state{? is input-state independent, i.e.,

~ouy_ 20 1 2?
Pab, =3 10000+ Z[+)(+[+ —=[11(1Y, (19

while the nonlocal pair of output particles is in the state

dB(;Jg%ut) ;ﬁgg))=const. 12) described by the density operator
. . e - 240°+1 243%+1
The copying process as specified by conditi@ns(iii) can 5755):—36 |00)(00| + —35 |11)(11]

be understood as broadcasting in a weak sense, i.e., it is not
perfect, but it can serve to some purpose when it is desirable

. ; . . 5
to copy (at least partially guantum information without de- + ==(]01)(01+]10){10)
stroying it completelyeavesdropping is one of the examples 36
[10]). dap
The action of the quantum copier for spins 1/2 that satis- + T(|OO><11| +1]11)(00]). (16)

fies conditiongi)—(iii) can be described in terms of a unitary

transformation of two basis vectot®), and |1), of the
original system. This transformation can be represented a\é/e hote that due(ot:)t)thg (ii/?metr}/(gﬁ)t\Ngt(aglu;he systeansl

[4] Il we have thap{’s"=p{H andp{sY=pLH.
Now we check for which values af the density operator

10)4]€)p| Q)x— \/g|00>ab|T)X+ \/g|+>ab|l>x, ph? is inseparable. From the determinants in E@.and
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(5) associated with this density operator it immediately fol-would like to generalize our procedure such that any amount

lows thatp(°t? is inseparable if of initial entanglement, no matter how small, can be split
into two even less entangled states. We now know that an
equivalent of such a general procedure exists for purification
1 39 1 39 ; ;
_—£ga2s_+£_ (17 procedureq 11]. This, when found, would give us opera-
2 16 2 16 tional means of quantifying the amount of entanglenjémt
On the other hand, from E¢15) we find that[)g?glt) is sepa- ACKNOWLEDGMENTS
rable if This work was supported by the United Kingdom Engi-
1 48 1 48 neering and Physical Sciences Research Council, the grant
—— £sa2< —+ £ (19 agency VEGA of the Slovak Academy of Sciendemder
2 16 2 16 Project No. 2/1152/96 the National Science Foundation un-

der Grant No. INT 9221716, the European Union, the Alex-

i T (out) ; . .
Comparing Eqs(17) and(18) we observe thapy,” is Sepa-  ander von Humboldt Foundation, and the Knight Trust.

rable if p{’" is inseparable This finally proves that it is

possible to clone partially quantum entanglement using only

local operations and classical communication. Note that any |n this paper we have utilized one nontrivial quantum-

other initial state obtained by applying local unitary transfor-copier transformatio13) with the help of which broadcast-

mation will yield the same result. ing of entanglement via local copying can be performed.
This last result clearly illustrates the fact that for given Here we present a scheme by means of which one can, in

values of a? the inseparability of the input state can be principle, determine a class of local quantum-copier transfor-

broadcasted by performing local operations. To appreciatthations such that local outputs of quantum copiers are de-

more clearly this result we turn our attention to the copyinggcyiped by separable density operaigi®? andpL4? while
of a separable state of the form R i bl

APPENDIX

the nonlocal statep’,” andp{y) are inseparable.
~(in) _ A (i) o 2 (in) The most general quantum-copier transformation for a
Paja, 2 Wiba, [ ®Pa ;- (19 single spin 1/2 has the form
In this case it is easily seen that the output of our procedure 4
is of the form |O>a|Q>x_>i21 |RYal Xi)x
~ (out) :E ~(out) ~ (out) 4
Paba,b, = <« YiPa, b ®Pa, b, ;> (20)
AR peb e |1>a|Q>x_>i21 IR)abl Yi)x. (A1)
. . . . ~ OU'[) .
from which it fOIIOV_VS that in this case the OUtpp‘Eﬁbn IS where|R)ap(i=1, . .. ,4) arefour basis vectors in the four-
always separable, i.e., dimensional Hilbert space of the output modesand b.
These vectors are defined dR;)=|00), |R,)=|01),
;,g?gl?zz Ui;,g?’t:o@l;(mfit)_ 21)  |Re)=[10), and |R;)=|11). The output stategX;), and

|Yi)4 of the quantum copier in the basis of four orthonormal

o . . quantum-copier statdZ; ), read
This illustrates the fact that the inseparability cannot be pro-

4
duced by two distant parties operating locally and who can 1) = E C(i)|z
g . . . i/x k k>><a
communicate only classically. This result is not only related k=1
to our procedure, but is easily seen to be valid for general

. . . . 4
local operations and classical communications.

|Yi>x:k21 D§<i)|zk>x- (A2)
V. CONCLUSION ) )
, _ _ _ The amplitudeC{” andD{" specify the action of the quan-
In conclusion, using a simple set of local operations that,m copier under consideration. From the unitarity of the

can be expressed in terms of quantum state copi@ve  {ransformatior(Al) three conditions on these amplitudes fol-
have shown that inseparability of quantum states calobe

low:
cally copied with the help ofocal quantum copiers. We will 4
investigate elsewhere how close the distilled copied states > |c2=1,
p &Y andp 2V are to the distilled input stafe{?) and in k=1
particular whether the efficiency of the quantum copying can 4 _
be improved when we do not average over all possible out- > |DP2=1,
put states of the quantum copier but perform measurements k=1
on the quantum copigiconditional output stateésThis will 4
give us a qualitative measure of how well a pure quantum E Cf(an(i):l_ (A3)

entanglement can be broadcasted. More importantly, we k=1
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The further specification of the amplitude€}”’ and D"
depends on the tasks that should be performed by the quan-
tum copier under consideration. This means that we have to
specify these amplitudes in terms of constraints imposed on + oo+ 03 Y3, (A9)
the output of the copier. These constraifihich can take
form of specific equalities or inequalitieshen define do-

0223 [+ of20ff?
kI

mains of acce.p.table values Gﬁ') and D(k') . QGBI 2 DCEIRCE w( (4.1
To be specific, let us assume that the entangled &idje = LK Tk o
is going to be broadcasted by twdentical local quantum

copiers defined by EqAL). In this case the density operator + oY+ 0P o],
pg?gg”b” describing the four-particle output of the two copi-

ers readgin what follows we assume the amplitudgg’ and

D{" to be real Q“‘*‘“z% [oi? 0t + od? od?

3,4 (3,4 4,4 (4,4
;)(OUD - PRULITPPRS T +w(kl )w(kl )+wl(<l )w(kl )]'

BBt TR TR T TR ]
XlRi|>a|b|<Rj|||Ri||>a||b||<Rj|||’ (A4)  For the off-diagonal matrix elements we find
where
Q= [off 20t + off 2 uff?
i D~ (i D (i kI
o) =ac’clV+pD{'DV. (A5)

1,4) 1,3 2,4) 2,397 _ 1,2)
ool + o Yol 1=012,
The local output of the quantum copi¥f is now described

by the density operatqw("“t) which can be expressed as

Q3= [off Vol off Poff?

Slout) _ =uinii=} )
Pab, i% ENWVIR; Yan (R |, (AB) 030l 0 23] = 019,

where the matrix elementg (/) of this density operator in

the basigR; ), read Q4= [0 ol + ol Pwif?
kI
(i — (in i (inp ) o+ o Yo d1=009,
:(I|J|)_2k aZCk' Ckl _,_BZDkl Dkl ' (A7) Wy Wy wp o]

(Al10)
In our discussion of broadcasting of entanglement we have
assumed that local outputs of quantum copkrandX,, are

separable. This implies restrictions on the density operator 9(3'2)22 [w<k}'2)wfjl +w 22>w{(‘|11
pg?”t), i.e., the four eigenvalues of the partially transposed K

operator[p("“t)]T2 have to be positivd7,8]. So these are +oi? ol ¥+ o Yo ?1=029,

four additional constraints on the amplitude§’ and D{"
[the first three constraints are given by E#2)]. Further

constraints are to be obtained from the assumption that the Q2= [w? 03V + 0@ w\}?
density operatop("”‘) is inseparable. The explicit expression K
for this density operator can be expressed in the form + ol o3+ 03Pl ¥1=029,
~(out) _ E Qi R; A8
Pa,b | >ab||< J||| (A8) 3,0, (3,2 4,1) (4,2
T Q(3’4)=% [P 032+ oY ol}?
where the diagonal matrix elemer@s'/i) read 33 (39 1 (43 (44
g + 03303+ 0@ =043,

(10— LD (1), (21 (2] _ , _
Q % [wi ™ o™ + o oy If the density operator is supposed to be inseparable then at

least one of the eigenvalues of the partially transposed op-

1,3 1,3 2,3 2,3 . .
+ ol Yol ? + 0if o7, eratorp{’s” has to be negative. This represents another con-
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dition that specifies the amplitud&{’ andD{" . the amplitudes uniquely, so more constraints have to be
We have to note that the conditions we have derived refound. Obviously, it will then become more difficult to check

sult in a set of nonlinear equations that are very difficult towhether there exist some amplitudgg’ andD{" that fulfill
solve explicitly. Moreover, these equations do not specifythese constraints.
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