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We analyze the quantum motion of a cold, trapped two-level ion interacting with a quantized light field in
a single-mode cavity. We show that in the nonclassical Lamb-Dicke limit the time evolution of the vibrational
mode representing the quantized motion of the center of mass of the trapped ion is very sensitive to the
guantum statistics of the light field. We also show that the system under consideration may evolve into the
maximally entangled three-particle Greenberger-Horne-Zeilinger state. We briefly discuss the dynamics of a
cluster of two-level ions trapped in a cavity and interacting with a quantized light field.
[S1050-294{P@7)07209-0

PACS numbgs): 42.50.Ct, 32.80.Pj, 42.50.Dv

[. INTRODUCTION ion, and the single-mode cavity figldre coupled together.
In the present paper we propose a simple, exactly solvable
Cavity QED as currently investigatgdee, e.g.[1] and  model describing this physical situatiph0]. As we will see,
references therejrhas been plagued by fluctuations in the it adds new phenomena to the subject of the cavity QED, and
number of quantum sourcéatoms interacting with a cavity in particular allows for the construction of the fully corre-
field at any instant. These fluctuations in the number of atlated Greenberger-Horne-ZeilinggeHZz) state[11] in a re-
oms partially smear out the quantum nature of the atom-fielénarkably simple way.
interaction in a cavity. For example, the ac Stark effect could A semiclassical model describing the dynamics of trapped
result in absorption spectra being split into doublets or notjons interacting with a traveling-wave light field was intro-
depending on whether or not a single atom is present in thduced by Blockleyet al.[12]. An analogous model employ-
cavity [2,3]. A thermal beam of source atoms traversing theing standing-wave light fields was proposed by Cisaal.
cavity will result in an essentially Poisson distribution of [13]. In these models a single two-level ion undergoes quan-
source atoms at any time. For this reason a number of exized vibrational motion within a harmonic trapping potential
perimental group$4] have begun to turn their attention to and interacts with @lassicalsingle-mode light field. Block-
the problem of asingletrapped ion interacting with a single ley and co-worker$12] pointed out that in the Lamb-Dicke
quantized cavity mode. It is now routinely possible experi-regime the dynamics of trapped ion can be described by a
mentally to trap a single iofb], and if this could be done in very simple Hamiltonian similar to that of the Jaynes-
a high finesse optical cavity it would allow us to study cavity Cummings mode(JCM) [14]. Later it was shown that out-
QED dynamics when just two precisely specified quanturside of the Lamb-Dicke regime the vibrational motion of a
systems, i.e., the trapped ion and the single-mode cavitsrapped ion can be described by a strongly nonlinear JCM
field, are strongly coupled together. This means that withirf15]. Zeng and Lin have investigated the generation of non-
the lifetime of a photon in the cavity, this photon can beclassical vibrational states of atomic motion in a quantized
“exchanged” many times between the ion and the field. Astrap, based on the transfer of nonclassical features from the
a consequence of this interaction the two subsystérmas  quantized electromagnetic field to the atomic mofibé].
the internal state of the trapped ion and the cavity mode Within the framework of these Jaynes-Cummings-like
become quantum-mechanically entangf@dl On the other models, various aspects of the dynamics of trapped ions have
hand, it has been shown recen{§;7] that ions in trapping been studied. For example, quantum nondemolition measure-
potentials interacting with classical light fields can be cooledment of vibrational quanta of trapped ions has been analyzed
down to their lowest vibrational states and that from thesetheoretically[17] and several schemes propo$é8] for the
arbitrary quantum vibrational states of trapped ions can beeconstruction of quantum-mechanical vibrational states of a
prepared in a controlled wd,9]. Therefore, it is reasonable trapped ion. One of these schemes has been successfully ap-
to assume that the single trapped ion interacting with a quarplied to the experimental reconstruction of the Wigner func-
tized cavity field may be cooled down to its lowest vibra-tion of nonclassical states of the vibrational mode of a
tional state. This would represent the “ultimate” quantum- trapped ion[19].
mechanical system in which three quantum subsystéms As noted above, there exists a very close formal analogy
the internal ionic states, the quantum vibrational mode of thdetween an ion vibrating in a trapping potential and an ion
interacting with a quantized cavity field. Therefore many
ideas and effects that have been discussed within the frame-
*On leave from Department of Physics, Sogang University,work of cavity QED can now be “mapped” onto the
C.P.0. Box 1142, Seoul, Korea. trapped-ion models and vice versa. For example, cavity-QED
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56 CAVITY QED WITH COLD TRAPPED IONS 2353
models of quantum computin@0,21], quantum state engi-
neering[22], and quantum state endoscof®3] should be

mentioned. o\ — [ —

In the present paper we go beyond the formal analogy ~ heating
between the trapped-ion and cavity-QED models. t¥m- "/
binethem so that we can describe the interaction of a trapped
ion (with a quantized motional stgtevith a quantized cavity FIG. 1. A schematic description of a heating of the trapped

light field. Our motivation for this generalization is as fol- two-level ion with the internal transition enerdyn, by the external
lows: in the process of preparation of nonclassical vibraiight field (lasej with frequencyw, . The vibrational mode is ex-
tional states of a trapped ion, an appropriate sequence @fted by one quantunkv. In the opposite process the ion cools
laser pulses tuned to either the ionic electronic transition otown.

to resolved vibrational sidebandse., a Raman transition

between internal ionic stateare used8]. Here the driving  the annihilation(creation operator of the quantized vibra-
laser pulse is &lassicalfield so th_e vibrational .mode can be tional motion of the iong- and &, are the Pauli spin opera-
mutually entangledcorrelated with only the mterna! de-  iors of the two-level ionA = we— w, is the detuning of the

grees of freedom. On the other hand, for quantum informayyierna jonic transition at frequenay, from the laser fre-

tion processing, an entanglement with an additional system iauencyw,_ © () is the Rabi frequency of the driven transition
in the external classicdlase) field; the parametee is de-

often required. The channel for information exchange be
by heir calective vibration modg24]. Another possiiry e 256~ VE /(1) whereE s the fecoil energy of the
may be to couple ion trap@vith singlé ions via. their com- ion. It is supposed thay the ion during its tlmg eyolutlon doe;
mon resonatofcavity), which supports one particular mode not leave t_he_trap_. Nelthe_r spontaneous emission nor the in-
of the electromagnefic field. The cavity field mode couldﬂuen(.:e of ionic m|cromot|0|1j25] 'S taken into faccount _here.

' This model, in the nonclassical Lamb-Dicke regime of
small e, with the external driving field tuned to the firgtp-

then be considered as tlgglantumchannel for information
en vibrational sidebandi.e., A= —v) shares features simi-

transfer between ions.
The model pre§enteq in the paper prowdes us W'th a f.“' ar to the JCM[14]. The difference between the Blockley-
guantum-mechanical picture of dynamics of trapped ion in5 . X
) ) ) I Walls-Risken[12] model and the JCM is the nature of the
teracting with a single-mode electromagnetic field. In par oconic field to which the atom is coupled: the quantized
ticular, the model reveals many interesting features of the pea. d

guantum-mechanical entanglement between the ionic inters—mgle'mOde electromagnetic field in the JCM is replaced by

nal degree of freedom, the vibrational mode, and the Iigh{he guantized vibrational mode, which represents the motion

. X . . é‘)f the center of mass of the ion under consideration.
field. For example, such a configuration with three entangle - :

We assume that the driving laser frequency is tuned to the
subsystems enables us to create the GHZ states of centﬁilst (blue vibrational sideband, i.eA = — v. If the ion ab-
interest in quantum-measurement theory and to test quantun# T v

mechanics versus local realisthidden variablestheories Sorbs energy from thg classical Iight field, this apsorption
[11] process is accompanied by an excitation of the vibrational

This paper is organized as follows: Section Il is devoted,[inoondf);c m@cﬁeg‘i‘iﬁsesrgsg‘gg%s I;gir?‘c’gg%nna?g (;j:Si((::rtg)c; in
to a brief description of the Blockley-Walls-Risken model. gp PP b

The model of the completely quantized system is describeg'g' 1). In the opposite process the ion emits its excitation

in Sec. lll. In this section we also present the exact analyticagggg%}]' ';:\?eéh% I|g‘:t df(';ll(_je:;]g g??ﬁedgy;b;h'gf p\:%izzir:;
solution of our model. In Sec. IV we consider two two-level P y

trapped ions interacting with a single cavity mode. In Sec. \Qggg:]aﬁgmhﬁ% Eg incz??evgmi#;fq tt;]?r:ethfa%fge-g;zsérléer;me
we present conclusions. p g g

with transitions that involve an exchange of only one trap
quantum(i.e., en,<1; n, being the average number of the
trap quantain the rotating-wave approximatioffor this de-
tuning (i.e., 1<<v) can be written as

II. TRAPPED ION INTERACTING WITH A CLASSICAL
LIGHT FIELD

First we briefly review the model proposed by Blockley
et al. [12] in which a two-level ion moves in a harmonic
potential and simultaneously interacts with the single-mode

classical field. The corresponding HamiltoniBig,yg in the
frame rotating at the light field frequency reads By analogy with the JCM14,27,28, collapses and revivals
of the ionic inversion have been predicted and obsef@ééd
when the ion, initially in a lower internal energy state, is
prepared in a coherent vibrational state. In this case the re-
vival time tg of Rabi oscillations is estimated as
i %ﬁﬂ[lﬁb(ie)fr++f)g( )01, 2.1) tR~4wﬂ{(Q§), whereg is thg initial amplitude of the co-
herent vibrational statég),=Dy(8)|0),, where|0), de-

. . . notes the vacuum state of the vibrational mode. The behavior
where Dy(£) =exf é'—£b] is the displacement operator; of the phase-space Husin@, function of the vibrational
hv is the energy of the trafvibrationa) quanta;b (b") is  mode[see Eq.(3.3)] also exhibits very interesting features.
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Namely, it bifurcates, and at one-half of the revival time a In the present paper we compare two models when the
pure superposition vibrational state is produced, i.e., the iorcavity field mode is treatetl) classically{see Eq(2.2)] and
can be foundsimultaneouslyin two macroscopically sepa- (2) quantum mechanicalljsee Eq.(3.1)], respectively. We
rated states within the trafthe so-called Schoinger cat  will study how the initial photon statistics of the quantized
state[29]). cavity field mode affects the time evolution of the system
One quite natural question arises: “What will happen if under consideration as well as back action of the ion on the
the single-mode light field is treatequantum mechani- cavity field.
cally?.” To answer this question we propose in the present To distinguish between pure states and statistical mixtures
paper a fully quantum-mechanical model in which theinto which the quantum-mechanical subsysteths., the
trapped two-level ion interacts with a quantized cavity modeonic internal and vibrational degrees of freedom, and the
of the light field in a high-finesse resonator. This model takedbosonic cavity modeevolve, we study the time evolution of
into consideration the effects of thack actionof the ion on  the entanglement parameter. For a particular subsystem de-
the field mode andorrelgtionsbetween the ionic_degrees_ of scribed by the reduced density operatQr= Tr{yﬂ}fa (pis
f!’eedom(lnternal and Vlbratlonaland the quantlzed cavity the density operator of the whole Systkt‘he entang|ement
field. parameter is associated with the linearized ent{@2}

l1l. MODEL WITH QUANTIZED CAVITY FIELD MODE SO=1—Tr{p2}. (3.2

In what follows we consider the situation when the This entropy is equal to zero for pure states and for any
trapped two-level ion is placed in a resonatoavity) that  statistical mixture stat&°™>0. In addition,S" represents

supports one particular mode of the electromagnetic fieldy |ower bound of the corresponding von Neumann entropy
The cavity field is treated quantum mechanically. In theSx:_ Tr[pdnpy, i.e SNty <S,(t). Thus the entangle-
X! X ydll . C] = .

i 1€ ment et an e Lsed o uanty th degree of cre-
tional sideband A=—Lv) we can write the interaction lation es_tabhshed during the_ interaction between quantum-
Hamiltonian as ' mt_achanlcal subsystem§ . involved in dynam|c§. To
“visualize” quantum-statistical properties of a particular
i bosonic mode the phase-space Husiifunction is used.
Hq_f_zihxe[6T6&+—66T&,], (3.2 Thi[s p])hase—space probability density distribution is defined
as[33

wherec (c") is the annihilation(creation operator of the Qx(a)=<a|5x|a>, (3.3
qguantized cavity field mode and is the ion-field coupling

constant in the dipole approximation. The interaction Hamil-where |«) is a coherent state with the complex amplitude
tonian (3.1) describes the process b&ating in which the a=x+ivy.

absorption of one photon excites the ion and increases its

vibrational energy by one quantufthe first term of the A. Solution of the model

Hamiltonian(3.1) is schematically depicted in FigJ].1Cool-

ing is the opposite procegdescribed by the second term in
Eq. (3.1)] in which emission of one photon deexcites the ion
and decreases the number of vibrational quanta by one. We

note that our model described by E8.1) involves a multi- associated with the Hamiltonig8.1) (i.e.,[l:lq_f,,lfik]=0)we

plicative trilinear Hamiltonian in which the internal ionic . .
degrees of freedom are coupled to both the single-mode ca\(/)-btaln the general solutl_on for t_he state vedin(t)) Of. the
ystem governed by this Hamiltonian. If we consider the

ity field and the vibrational degrees of freedom. This should>?> ) .
be contrasted with the two-mode vibrational coupling con—glg'til \féz:?)rm the ion-field system to be described by the
sidered recently by Goat al. [30], which is additive in the

sense that the internal ionic degrees of freedom are coupled

to one or the other bosonic mode additively. The analogous [4(0))="2, caln)e® D, bym)p®|g)i (3.5
additive type of interaction has been considered by Zeng and n m

Lin [1(.5]' These authors have studied the far off—resqnant_cast%en in the resonant case the general solution in the interac-
when internal atomic degrees of freedom can be adlabatlcaII%{On icture reads

eliminated. In this case the effective Hamiltonian P

Heg=iN(bTc—bcT) describes an effective linear coupling

Utilizing the existence of two integrals of motion

R,=b'b+c’'c  and R,=b'b-o,0_ (3.9

between the two bosonic modése., the vibrational mode |1,0('E)>=%1 bmCal cOL Qm nt)[M)p[N)c| Q)i
and the single mode of the cavity figldbviously, this bi- '
linear Hamiltonian differs from the trilinear Hamiltonian —isin(Qmat)m+1),n—1)e)], (3.6

(3.1) discussed in the present paper. We also note that Gerry

and Eberly{31] studied a trilinear Hamiltonian analogous to where|n). and|m), are numberfFocK states of the cavity
Eq. (3) within the context of two-photon transitions of a field and the vibrational mode, respectivelg); (|e);) de-
two-level atom interacting with a bichromatic field in a cav- notes the internal lowefuppe) ionic level. The generalized
ity. Rabi frequency, , is given by the relation
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Qm'n:%Ke\n(m‘i'l). (37) 17.0

It is instructive to start our analysis of the dynamics of the
system governed by the Hamiltonig® 1) for the initial state
vector

[4(0))=[B)p®|N)c®|9)i, (3.9

i.e., where the cavity mode is prepared in the Fock state
IN)., the vibrational mode is initially in a coherent state
with amplitudeg (for simplicity we assumeg to be real and

the ion is in its internal lower statgy);. We remind our-
selves that the initial average number of triqibrationa)
quantan,=3? has to be chosen such that the condition

€?np<1 is fulfilled. This condition implies restriction on the

[}
range of parameters for which the Hamiltonians given by .
Egs. (2.2 and (3.1) are relevant. The initial stat€3.8) S
evolves according to E43.6) with b,,=e#“28™ /ml and moo - - (F)
Ch=0\n- In this case the dynamics is characterized by a 0 50 100
perfect correlation between the internal ionic energy states scaled time

and the cavity field. Because of this perfect correlation, each ) _ _
t>0, in a statistical mixture. We note that tional quantan, and (b) the entanglement parametes§™ of the
lg(N))Y=|N)clg); and||e(N)))=|N—1)|e); form collec-  Vibrational modefc) ST of the cavity mode, which evolves iden-
tive ion-field states. The expression for the state vectofically with S™" of the internal ionic system. The initial state vector

e . b . Is of the form (3.8) with the cavity field in the number state
| (1)) fulfilling the initial condition (3.8) can be written as IN=64),, the vibrational mode in the coherent sthe=4), . and

the ion in its ground statég);. The scaled time isct/27 and
|¢(t)>:§ Bin[ COL Q1) | MYp] [G(N)Y) €=0.05,

—isin(Qpmnt)|m+1)p||e(N)))]. (3.9 is the same as within the modé€2.2) with a classically
treated light field. On the other hand, the time evolution of
From here it follows that the time evolution of the vibra- the internal ionic energy states is significantly affected by the
tional mode isthe sameas for the case of the Hamiltonian dquantum nature of the cavity mode. Namely, within the
(2.2) with a classically treated field mode, providing that themodel(2.2) with a classical light field, the ion is, at one-half
parametef) in Eq. (2) is chosen such tha&t =« JN. Thisis  Of the revival time, in thepure superpositiory); =(1/12)
in correspondence with an intuitive picture in whigiv is ~ <(/9)i+€'?|e};). On the contrary, if the light field is quan-

associated with the amplitude of the equivalent classicafized[i.e., the ion-cavity-field dynamics is governed by the
field, with no fluctuations in the intensity. Hamiltonian (3.1)] then at one-half of the revival time the

Obviously, the mean number of the trap quaﬁ@(t) ion evolves into a statistical mixture described by the density

exhibits collapses and revivals analogous to the collapse2Perator pi= 3 (|g); (9] +e)i i(el). The corresponding
revival effect in the JCM14,27. We plotn,(t) as a func- entanglement paramet&°" is equal to 1/2, which reflects
tion of the scaled time in Fig.(8). The corresponding re- the degree of mutual entanglement between the cavity mode

vival timet(Rb), and the internal ionic levels. This is illustrated in Fidc2
Note that for the cavity mode initially prepared in a Fock

4nB state the correlation paramet&8S" and S™°" evolve identi-
tP(N)~ ——, (3.10  cally. What one finds at one-half of the revival time is the
ke VN Bell-like state, withperfectcorrelations between the internal

states of the ion and the states of the cavity mode, i.e.,
is exactly the same as in the model with a classical fie'q‘!/)cﬂ:(1/\/5)(|N>c|g>i+ei¢|N_1>c|e>i)-
mode, governed by the Hamiltoni&®), providingQ = xyN. In our second example we will consider the cavity field to
In Fig. 2(b) we plot the time evolution of the entanglement pe initially prepared in a coherent state .. Comparing this
parameterS;™", which at one-half of the revival is almost example with the previous case when the field was supposed
equal to zero. It can be checked by direct calculations that ab be prepared in a Fock state we find that the quantum
one-half of the revival time the vibrational mode is in a purestatistical properties of the cavity mode significantly affect
superposition statfl2] composed of two coherentlike states the vibrational motion of the trapped ion. To be specific, let
that are mutually rotated around the origin of phase space bys consider the initial state vector
7 (the so-called Schainger cat stat¢29]).

The dynamics of the vibrational mode within the model

described by the Hamiltonia(8.1) for the initial state(3.9) [4(0))=]8)p®|¥)c®|9)i, (3.11
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i.e., the vibrational and the radiation modes are prepared in

) . 17.0
coherent states with amplitudgs v (taken to be real for
simplicity) and the ion is in its lower internal statg);. In
our discussion we will consider the initial mean number of 516.5 H#e AR
vibrational quanta to be fixedn(,= %) and we will assume ]
various intensities of the initial coherent state of the cavity 604 (a)
mode. The time evolution of the initial stat€3.11) is 1'0
given by Eq. (3.6 with c,=e "2y"n! while by, '
= e*ﬁz’zﬁm/\/m!. The average number of trap quanta at time .
t can now be written in the form 5057
£ n
, oo ()
= — 5 2 2 12 . — T
p(t) =7+ »_ 2 > b2 sin?(Qn nt) ‘o
n m
()
_ 'k . £ 0.5 -
=7+ ) b2 ) cZsin?(Qnat). wn
o oo ()
(3.12 ’ C
0.5 \Y/Y v v
Eq. (3.12 describes the double coherent summation of terms ] \/
oscillating at generalized Rabi frequenci8s,, [see Eq. 5 ]
(3.7)]. This Poissonian averaging results in the appearance of S
two time scales on which collapses and revivals of the aver- (2
age number of vibrational quanta appear. These two time o0+ (fi)
scales are indicated in E(B.12. One of them is associated 0 1130 ¢ 200
with the characteristic time scaled time
() 473 FIG. 3. The cavity mode prepared in the coherent $tate8).. .
e~ Key' (313 (4 time evolution ofny; (b) SO: (0) SEO; (d) (¢) ST, Other

parameters are the same as in Fig. 2.
while the other time scale is given by the relation

scopically” distinct peaks in phase space. If we et «y
t0) < 4my (3.14 [this substitution corresponds to the naive semiclassical re-

KeP’ placement ofa— y in the Hamiltonian(3.1)] then the time

20 2 () . _ scale associated with the characteristic titffé is equal to

|F°r Y f>tﬁ » the F'dmetR. y related to (;GE)"V?LS of the PVE” the revival time in the model2.2) when the light field is

(()tf))e_o he raF’('j re\_nv?s fghoverne y be refvn_/s ime Itreated classically. Setting the two time scales equal we see

tr",1.e., the rapid revivals o t“e mearl number of vibrationaly, ¢ att(Rb)IZ the Q, functions in both models have two dis-

quant?)are modulated on the “overall” time scale associate inct peaks. We stress that tig, function of the vibrational

with tg”. We illustrate this modulation of rapid revivals in e in the fully quantized model describes a statistical mix-

Fig. 3@ in which we plot the time evolution of the mean 1o while in the Blockley-Walls-Risken model the corre-

number of vibrational quanta. spondingQ,, function describes a pure superposition state.
The behavior of the mean vibrational quanta, and also the, anyy+0 the process governed by the Hamiltoni&rt)

quantum entanglement between the ionic internal states, g characterized by an inevitable loss in the initial purity of
ionic vibrational states, and the quantized cavity mode iNyhe states of the bosonic subsystems, due to their mutual
duced by the interaction Hamiltonia(3.1) all very sensi-

tively depend on the quantum statistics of the light field. We
have seen that when the cavity mode is initially prepared in

the Fock state, then at=t®)/2 the linearized entropy of the
vibrational modeS{°" is approximately equal to zero, which 2
means that the vibrational mode during its time evolution x0.2
evolves into a pure state. On the contrary, as can be see &
from Fig. 3b), if the cavity mode is initially prepared in a
coherent state, then the entanglement parameter of the vibre Sk
tional mode is significantly larger than zero for a0, i.e.,
the vibrational mode igin this case¢ always in a statistical
mixture. We note that ify, 3>1 then theQy, function of the FIG. 4. TheQ, function of the vibrational modéa) at the half
vibrational mode bifurcates into two components. Moreover of the revival time andb) at the revival time® . The cavity field
as seen from Fig. (), at one-half of the characteristic time s prepared initially in the coherent stdte=8).. Other conditions
t® | this probability density distribution has two “macro- are the same as in Fig. 2.
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tions reduced below the coherent-state lgappearing at the
initial stages of time evolution.

B. Generalizations of the model

In recent experiments with trapped iofi8] one can
choose the type of the generalized Jaynes-Cummings-like
interaction by tuning the laser field to an appropriate re-
solved vibrational sidebar{d 9]. In particular, tuning a laser

FIG. 5. TheQ, function of the vibrational modés) at the haif 0 the first lower(red sideband means that in the Lamb-
of the revival time andb) at the revival timet® . The cavity field ~ Dicke limit dynamics of the trapped ion interacting with a
is prepared initially in the coherent stdte=1) . Other conditions ~ classical light field is described by the effective Hamiltonian
are the same as in Fig. 2. RHUD=(i/2)hQe[bTo_—bo.]. When the cavity field is
considered to be quantized, then the effective Hamiltonian

entanglement. The only exception is the internal ionic degreeadsH{"=(i/2)ike[b'c’o_—bco,]. We note that if

of freedom. As Fig. &l) suggests forn?s>B?>1 an almost the system under consideration is initially prepared in a state
pure ionic coherent state is produced & . Note that si- |4(0))=10),®|0)c®e); then at half of the generalized
multaneously apure state in the “complementary” system Rapl cycle it will evolve into the Greenberger-Horme-
composed of the vibrational and cavity modes has to appeafeilinger ~ state  [11] |4(th))=(1/12)(|0)1|O)cl ),

For example, withy=2p one finds at®/2 a structure +|1)o|1)clg)i) atz xety= /4. This seems to us to be one of
close to a pure two-mode Schiinger catlike state for the the most straightforward ways to realize a GHZ state in
vibrational and cavity modes, which consists of four compo-quantum optics.
nents. Each particular bosonic mode is in a two-component When the laser field is tuned to the second upper vibra-
mixture (in the vibrational mode the components are mutu-tional sideband the effective Hamiltonian describing interac-
ally rotated byr att®/2 while in the cavity field mode they tion of an ion with a classical light field in the Lamb-Dicke
are rotated byr/4 as 4= 4{). The loss of the initial limit reads 3= 14Qe’[b'?0, —b%_]. This two-
purity of the vibrational mode is reflected in Fig(b3 in phonon model is almost completely periodfor a theoreti-
which the time evolution of the entanglement param&fg¥  cal description of the two-photon JCM model 4&@5] and
is presented. From this figure we also see that a partial re$or a recent experimental realization of the ion-trap version
toration of the initial quantum-statistical properties of the of this model see the paper by Wineland and co-workeps
vibrational mode can be observed at the titfé. Namely, ~The periodicity is given by the specific dependence of the
in Fig. 4b) we see that the one-peak structure of Qg Rabi frequency on the vibration numbean, i.e., the Rabi
function is recovered at this momeffor y?,82>0). This  frequency is proportional tm(m-+1), which implies that
means that®® can be associated with the restoratiga- its values are commensurate for various valueamsf1l.
vival) time of theQ,, function in phase space. Analogously Therefore forB2>1 the time evolution is quasiperiodic. The
t(®) is associated with the revival in phase space of the quarfeVival time tg)=4/(€2€?) corresponds to the restoration
tized cavity mode, i.e., with a partial restoration of the initial Of the initial Q, function (just rotated bym) and to the ion in
shape of th&), function. In other words, the time scalé:g) the opposite internal state. One peculiarity of the two-photon

andt(RC) represent the main characteristics of the dynamics iﬁ“Odel is that at one-half of the revival time, the vibrational

H H orr__
those particular phase spaces that are not affected by qua'r‘ﬁ'-oOle s in a mixture state &&'~1/2. On the other hand,

i 3
tum entanglement. the entanglement parameter is close to zergtatand 3tg,

For completeness we mention that for small intensities of-€-» Schralinger's catlike states with components mutually
the cavity field mode 4=1) the Q, function of the vibra- rotated by /2 are established. With the quantized cavity

tional mode splits into three rather than two components ai€!d: the effective two-phonon interaction is described by the
in the case when> B8 [compare Figs. &) and 4a), respec- HamiltonianHA'= {7 ke’[b'%co_ —b%cTo, ]. We briefly
tively]. One of the three peaks is “stationary” in the given note that this nonlinear interaction between three quantum
rotating frame, while the other two peaks move clockwisesubsystems results in very complex dynamics. In particular,
and anticlockwise around the origin of the phase space. Thigt us assume that the cavity field mode is initially prepared
existence of the stationary peak is associated with the presd a coherent stat¢y).. In this case the paramet&™"
ence of the statg8),,|0)|g);, which does not evolve under describing the entanglement between the internal degree of
the action of the Hamiltoniaf8.1). We note that analogous freedom of the ion and the two bosonic modes., the vi-
behavior in a three-level atomic system has already beehrational mode and the cavity figldonverges to the station-
seen by Knight and Shoif@4]. ary value of 1/2 via a sequence of minima at times

One can also demonstrate that in the mo@lwith a  [(2n+1)4]t&), wheret®=4x/(kye?). At the first mini-
classical light field a considerable degree of squeezing ofnum it the value ofS®"is close to zerdfor 82,y?>1),
fluctuations of the position of the trapped ion can be found afvhich means a coherent superposition of the two internal
the revival timet® [26]. In the model(3) with a quantized ionic levels is created at this moment. Simultaneously, the
cavity field mode being initially coherently excited, this combined system of the vibrational mode and the cavity field
squeezing behavior is less pronounced, with moderat& in a pure state — the two-mode Sctimger catlike state
squeezing and sub-Poissonian statistasiplitude fluctua- (see for instancg36]).
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IV. TWO TRAPPED TWO-LEVEL IONS IN A CAVITY tr=2my/|\|. The time evolution of populations of the inter-
nal ionic levels is also the same as within the Tavis-

In the previous section we have analyzed dynamics of th?:ummings model but any kind of ionic coherence between

trapped two-level ion interacting with the quantized cavity : : S )
field. Now we address the question of what will happencollectlve Dicke leveld41] is inevitably lost owing to the

. ! ; erfect entanglement of the internal ionic energy states with
when a cluster of trapped two-level ions interacts with the,f)he vibrational number states. Namely, the states

same cavity mode. Recent work on collections of more than i) — IPNG) () — (D1 ()
one trapped ion has already demonstrated the existence %.Q(N)» =IM;e’lg)i”, le(N))P=IM;+1)p’le);

observable collective effectssee [37] and references (= 1:2) form collective ionic states. Consequently, the vi-
therein brational mode of each ion is for-0 in astatistical mixture

For this purpose we generalize the Hamiltoni@h and Further we assume that all bosonic modes of the model

we propose the interaction Hamiltonian for a cluster ofdr® initially in coherent states, i.e.,
trapped two-level ions interacting with a quantized cavity

mode: [9(0)=IncolBt o) e BV 1N, (4.4
i N Because the modégiven by Eq.(4.1)] totally neglects mu-
ﬂfﬂ?=5ﬁ62 K,-[BIE&(J)—BJ@(}Q)]. (4. tual |on|c“coII|s_|ons,: it is natural to assume that initially the
j=0 ions are “localized” at different sites within their respective

) S ) ) ) ) traps. When one of the trapped ions is cooled down to the

with the light field and it describes the dynamics of trappedkhe vibrational motion of the first ion is not affected by the
ions in the Lamb-Dicke limit. In Eq(4.1) b (bJ-T) denotes presence of the second ion, which does not then enter the
the annihilation(creation) operator of the vibrational motion interaction governed by E@4.1). We have studied the non-

of the jth ion described by the spin-flip operatar§’. We  trivial casep; = — 8,= 8, when the ions are initially “local-

focus our attention on comparison of the results for theized” at opposite sides of their respective traps. We remind
model describing one trapped ioN€1) and the results in ourselves that the initial average number of vibrational
the case of two identical iondN(=2). To simplify our dis- quantan,= 82 in each of the vibrational modes has to be

cussion we assume that the ions interact with the cavity fiel¢hosen to obey the conditioe?n,<1 to ensure that we
with the same intensity, i.ex=«;=«,. This model could gperate in the Lamb-Dicke limit. The results obtained for
address the situation when two ion treesich with a single  y>1 suggest that vibrational motion of one ion is not af-
ion) are enclosed by the same resonator; i.e., they sharefacted by the presence of other ions. The characteristic
quantized cavity field mode that mediates an indirect couy;y)) time t%) in the vibrational phase space of each ion is
pling between the ions. We could extend our analysis toagain equal td(Rb’~47rB/(Key) [see Eq.(3.13]. In other

descrlbg Iaser-coqled atoms trapped in optical Igtt[@@ . words, during a time period of the order of few tint§Q the
The optical potential generated for neutral atoms in standing-

wave laser beams possesses sufficient periodic structure fops evolve independently. Only the maximum value of the

the effects we have been concerned with to be relevant an éa dni?eliinceglj r;i?]rar:fettﬁ(re 2;3;:3 fnagétg :éeﬁ(;?;fj;:sstilﬁsto
thus one can even imagine the case when the atoms are lo- It is interes?in gto note thatyiB —B,—B (e theytwo '
calized at the sites of different potential wells. . L 9 1B1=B2=5 (e.9., .

ions are initially located at equivalent points of two spatially

We start our analysis with an observation that if the cavity enarated trans which are coupled throuah the cavitv field of
field is initially prepared in a coherent state and the ions ar P P coup 9 avity.
he resonatgrthe Q, function in the corresponding vibra-

in their lower internal states and, in addition, if we assumetional hase space has the same dynarfdesept a phase
the ions to be in the Fockhumbey vibrational states, i.e., P P y ptap

shift) as in the case when initiallg, = — 8,= 8.
0))= @MDY DM, 2|g) 2, 4.2 For completeness we should comment in some detail on
[0 =172 M) lgh M2)y”10) “2 the behavior of the cavity field. The time evolution of the

then the dynamics of the cavity field the sameas that cavity field depends on the initial average numbEg%) and
within the framework of the collective Tavis-Cummings n{2) of vibrational quanta. If the time scales{

model[39], with the interaction Hamiltonian :477[?&1)]1/2/(,(67/) and t&2)=4w[ﬁg2)]1’2/(1(67) are of
N the same order then th@, function of the field mode splits
AN, =% [xcoV+a*cfall). (4.3  into three components with one dominant static peak. Other-
=1 wise there are two independent bifurcation processes that

result in a splitting of the) . function into four components.

This isomorphism between the two models is valid providingThis reflects the fact that the cavity mode interacts with each
the interaction constant\ is given by the relation jon jndependently.

A= (i/2)ke\(M;+1)(M,+1). In this case we observe an
interesting effect: splitting of th€, function of the cavity
field into three componentsr, generally, intdN+1 compo-
nents if the cluster consists & ions) [40]. The time at One of the main results of our investigation is that in the
which theQ, function of the cavity mode returns again to its nonclassical Lamb-Dicke limit the time evolution of the vi-
initial shape is equal to the time at which the revival of thebrational mode representing the quantized motion of the cen-
mean photon number appears and is given by the relatioter of mass of the trapped ion is very sensitive to the nature

V. CONCLUSIONS
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of the light field. If the light field is treated quantum me- within the modek4.1) does not influence the dynamics of the
chanically, then a strong entanglement between the ionic inions on the time scalé® providing the number of ions is
ternal and vibrational degrees of freedom and the light fieldnuch smaller than the mean photon number of the cavity
leads to a change in the quantum-statistical properties of thiteeld mode and the mean number of trap quanta. We have
vibrational mode. Nevertheless, an isomorphism between thgointed out further modifications of the model with a quan-
two models described by the Hamiltoniaf® and (3) is  tized cavity field mode. They can be of interest in the cre-
achieved when the quantized light field is initially in a Fock ation of fully correlated Greenberger-Horne-Zeilinger states
state with a precisely defined number of photons. In thisas well as for transfer of information between trapped ions
casea pure superposition state of the vibrational mode is prdhough a quantum channel provided by a quantized cavity
duced at one-half of the characteristic tirje. The other field mode.
subsystemsi.e., the cavity mode and the internal degree of Finally, the physical situation described by the model
freedom of the ioh are in statistical mixtures, which is in Hamiltonian(3.1) requires a combination of the strong cou-
contrast with the behavior of the system described by theling regime of cavity QED with the resolved sideband ex-
model (2) with the classical light field. citation of a trapped ion. Whereas strong coupling is realized
When the quantized cavity mode is initially in other than typically with a strong(dipole) transition, resolved sideband
a Fock state then the initial purity of the vibrational mode isexcitation is performed on a wedkjuadrupole or Raman
inevitably lost due to the entanglement between theransition. In order to realize a transition with both strong
guantum-mechanical subsystems. Consequently, instead obupling and resolved sidebands one would need to ensure a
the superposition statesdatistical mixturein the vibrational radio frequency drive to the trap high enough such that secu-
mode is created. Also the cavity field evolves into a statistilar frequencies are sufficiently large. There is no reason in
cal mixture. On the other hand, owing to the entanglement @rinciple why such a trap cannot be by#2]. For instance,
two-mode superposition state in the system composed of vhigh-frequency combined rf Penning traps have been re-
brational and cavity field modes can be established in certainently reported by Hasch and co-workergt3]. Such prob-
circumstances. We found that two different time scales charlems of realization take us beyond the scope of the present
acterize dynamics of the quantum-mechanical systenpaper, which is concerned with conceptual matters.
Namely, as soon as the cavity mode is initially prepared in a
superposition of Fock statds)., i.e., |#(0)).==cu|n)., ACKNOWLEDGMENTS
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