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Using discrete displacement-operator expansseparametrized phase-space functions associated with the
operators in a finite-dimensional Hilbert space are introduced and their properties are studied. In particular, the
phase-space functions associated with the density operator can be regarded as quasidistributions whose prop-
erties are similar to those of the well-known quasidistributions in the continuous phase space. @o the
function (s=—1) is non-negative and can be measured directly in particular experiments, whereRs the
function (s=1) corresponds to the diagonal form of the density operator in an overcomplete basis. Except for
the W function (s=0), the introduction of discrete phase-space functions requires the choice of a special
reference state. We finally present a simple model for measuring the disQrefenction. [S1050-
294796)07606-9

PACS numbd(s): 03.65.Bz

I. INTRODUCTION Q function to s=—1; the parametes can also take any
other real values. Other generalizations can be found, e.g., in
In quantum mechanics, the state of a system is usuallthe Gardiner book6] or in the recent work of Wiische[7],
described by means of a wave function or, more generally, ofvho suggested a complete class of Gaussian quasidistribu-
a density operator. This description contains all the informations, parametrized by a three-dimensional complex vector,
tion we can get from the system. However, there are alsand offered a very clear mathematical formalism for them.
other possible ways to describe the system—using the sd-hese functions can be connected not only to the density
called quasidistributions. These functions are defined on theperators but to any other operator of the Hilbert space. In
phase space of the system—and one of their advantagestlis case we speak about phase-space functions rather than
that they can be directly compared to the classical stochastiguasidistributions.
distribution functions. There are, however, differences with  Until recently these functions were treated only for the
respect to the classical phase-space description, originatedntinuous phase spaces, corresponding to the systems with
from the noncommuting nature of the conjugated quantitiesan infinite-dimensional Hilbert space. However, there are
The first quasidistribution—the Wigné&t function [1,2]— many quantum systems which are profitably modeled by
generates the proper marginal distributions of the positionomeans of finite-dimensional Hilbert spaces: e.g., the spin sys-
and momentum and of any of their linear combinations; intems, several-level atoms in quantum optics, electrons on
comparison to the classical distribution functions it can alsanolecules with a finite number of sites, etc. Today these
take negative values. The Glauber-SudardRdnnction[3]  systems are again very intensively studied, e.g., with their
enables us to write the density operator in a diagonal form irtonnection to quantum cryptograpf8/], quantum teleporta-
an overcomplete basis of the coherent states. Its disadvantatien, and superdense codif@@], or the quantum computation
is, however, that it is often highly singular and not well [10]. Also the possibilities to construct an arbitrary state of
behaved. The Husin® function[4] is the most similar to an optical field with a limited photon numbésee, e.g.,
the classical probability distribution functions, because it i[11]), or to reconstruct the density matrix of such a system
always non-negative; moreover this function can be directly(e.g.,[12]) are of current interest.
measured in experiments. However, it is too “smeared” so To our knowledge the first who considered ivgunction
that some informatioitlike the quantum interferengés dif-  for discrete systems were Woottdds3], Galetti and de To-
ficult to read immediately from it. These quasidistributionsledo Piza[14], and Cohendett al. [15]. Their idea was
also yield a very effective tool for calculating moments of based on the moduldl algebra of the discrete quantities
physical quantities: Th® function enables a direct calcula- (N being the dimension of the Hilbert spacehich means
tion of means of normally ordered creation and annihilationthat the phase space for thi¢ function is a set of points on
operators, theQ function that of the antinormally ordered a torus. SuchV functions then have the meaning that their
operators, and th&/ function of the symmetrically ordered marginal sums over the generalized “lines” are probabilities
operators, e.g., of the position, momentum, and of their funcef particular values of some physical quantities. This ap-
tions. These three quasidistributions are, however, not thproach was used, e.g., for calculating the number-phtise
only ones: Cahill and Glaubgb] showed that th&V, Q, and  function in the Pegg-Barnett model jd6] and[17]. A dif-
the P functions can be treated as special cases of aferent approach was suggested, e.g.[1i8—21 where the
s-parametrized class of functions. TRefunction then cor- phase space was considered to be a sphere and where the
responds to the valug=1, theW function tos=0, and the W functions for various spin or atomic states were calcu-
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lated. Here the relation to a description of measurement pro- [J|uk>: K|uy), (4
cedures was via calculating an overlap of this function with a
function corresponding to the measured quantity. Quite re- \A/|v|>=||v|>. (5)

cently Leonhardf22,23 suggested a scheme for reconstruc-

tion of the discrete W function from the marginal Clearly, the operators) andV, which are analogies of po-
distributions—the discrete quantum state tomography whickition and momentum in the continuous phase space, repre-
brought this discrete phase-space formalism even closer ent complementary properties, i.e., the squared scalar prod-

physical measurements. He also offered a way for treatingct |(u,|v,)|?=1/N does not depend on the indickg.
the W functions for systems with even-dimensional Hilbert

spaces introducing a discrete phase space with both integer
and half-odd coordinates. The discr&efunction was pro- ] o
posed in[24] and[25]; the method was based on the opera- 10 develop a phase-space formalism for a finite-
tional definitions of propensities introduced by Wkiewicz dimensional Hilbert space, it is useful to mtrodgce a dis-
[26] and anticipated by Aharonoet al. [27]. Recently, a placement operator. For this purpose let us consider the op-
similar phase-space function was suggested also by Galeffators

and Marchiolli[28]. The Q function can be defined as the o

probability of the system to be in some coherent state; here ﬁeu(n)zex% —i —n\?), (6)

the definition of the coherent states is in the Perelomov sense N

[29], i.e., an overcomplete set of displacements of some ref-

erence statéwhich is also called the “quantum rule).’In R (m)=exp< i Z—WmU) @)
[24,25 it was shown how to interpret this function as a set of v N '

measurements and how to reconstruct the original density

matrix. A deep survey of the phase-space methods can Bhich rotate the basis vectops,) and|v)) as

found in the Leonhardt worf23].

A. Displacement-operator expansion

The aim of this paper is to give a unified approach to the Ru(m|ui)=[uisn), (8
problem of discrete phase-space functions and quasidistribu- A
tions. In particular, the known discrete quasidistributions are Ry(M)[v))=|v)+m), 9
generalized to a class of parametrized quasidistributions and

their properties are studied. In Sec. Il the class Ofwhere the indicesk+n) and (+m) are taken modulN

s-parametrized discrete phase-space functions is introduceg,hIS convention is usgd thrqughout the pap@he operators
their properties are discussed, and special cases of quasidfZ«(n) @ndR,(m), which fulfill the so-called Weyl commu-
tributions are considered, such as fé function, theQ  tation relation[2,30-32

function, and theP function. In Sec. Ill some illustrations of o

these functions are presented and a possible model of mea- Iiu(n)liv(m)=exp( —j —mn) R,(MR,(n), (10
surements of the discre€@ function is suggested. Some con- N

cluding remarks are given in Sec. IV. can be used to define a displacement operatdi3By24,25
Il. PARAMETRIZED PHASE-SPACE FUNCTIONS R R R T
D(n,m)ERu(n)RU(m)exp{i—mn)

Let us consider ai-dimensional Hilbert space and intro- N
duce two orthonormal basis-vector systefug) (U basig o
and|v) (V basig, k, | = 0, ...,N—1, which are related to IRv(m)Ru(n)eXl{ —j Nmn)’ (11)
each other by a discrete Fourier transformation:
so that
LY o -2 1 - -
|Uk>—m|:0 ex "N lv1), D D'(n,m)=D(—n,—m). (12
N—1 From the relations
-2 exfiork]] @
o= Ne TN Ui D(n,m+N)=D(n,m)(-1)", (13)
Note that the Kronecker symbd,, can be written as the D(n+N,m)=D(n,m)(—1)™, (149
sum
N_1 the operatoD(n,m) is seen not to satisfy the condition of
5= iz oxd —i Z—W(k—k’)l 3 modulo N invariance. It is therefore advantageous to work
KK N&h N ' with a displacement operator of the typdg2n,2m), where

the values ofn (andm) are the integers modull if N is
where the difference of the arguments;-k’, is taken odd[e.g., theN integers in the interval from- (N—1)/2 to
moduloN. The basis vectorfu,) and|v;) can be regarded (N—1)/2], and the integers and half odds modddf N is
as the eigenvectors of two Hermitian operatbtsand V, even[e.g., the A integers and half odds in the interval from
respectively, —N/2 to (N—1)/2]. Note that for evenN the operator
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I5(2n,2m) with integersn andm would not represent all the
possible displacementéAnother solution of the problem of

moduloN invariance was given by Galetti and Toledo Piza

[33]) A
The operatoD (2n,2m) exhibits the following trace prop-
erties. IfN is odd, we find that

Tr[D(2n,—2m)D(2n’,—2m')]=N&s _ 1 S — '

(15
which forn’=m’=0 reduces to
Tr[D(2n,—2m)]=N&, 00mo, (16)
whereas for evelN we obtain
Tr[D(2n,—2m)D(2n’,—2m’)]
=N[ 6y, —n+ (= 1%, _n 2]
X[ S, —mr + (=128 —mranids (A7)

and particularly f’=m’'=0)

Tr[D(2n,—2m)]=N(8, 0+ 8n. + nj2) (Smot r5m,+N/z>i )
18

The relationg15) and(17) enable us to expand an operator

F as
~ Ng ~ -
F=—2, f(mn)D(2n,—2m), (19
Mm n
where the discrete-number function
_ 1 N
f(m,n)EMTr[FD(—Zn,Zm)] (20

can be regarded as the characteristic functioh .oflere and
in the following the sums run in an interval of length over
M =N integers moduldN if N is odd, andM =2N integers
and half integers modull if N is even. Note that wheN is
even, the relations

~ N ~
f(m,n+§ =(—1)>"f(m,n), (21)
~ N ~
fl m+ E,n)z(—l)znf(m,n) (22)

are valid, which shows thgt(m,n) has onlyNX N indepen-
dent elements.

Let us mention some interesting properties of the charac-

teristic functions. Equatiofil9) together with Eq(16) or Eq.
(18) implies that

Tr(F)=MT(0,0), (23
that is to say, the trace of an operafbis equal to the value
of its characteristic function at the point€0,m=0). Using
Egs.(19) and(20) the trace of the product of two operators
F andG can be written as
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TH(FG)=NX T(m,mg(—m,—n), (24)
m,n

whereg(m,n) is given by Eq.(20), with G in place of F.

For operatorsk which commute with the parity operator

P, FP=PF, where

(ulPluy=6c 1, (v|Plog)=8 _s. (25)
we can prove that
F(—m,—n)=f(m,n), (26)

whereas for operators anticommuting with the parity opera-
tor, FP=—PF, we obtain

Af‘(—m,—n)=—'f-(m,n). (27)
For Hermitian operator§= F' it can be shown that
T(—m,—n)='17*(m,n). (29

Hence from Eqs(26) and(28) we see that Hermitian opera-
tors with even parity have real characteristic functions. When

T(m,n) is the characteristic functio(20) of an operatonA:,
then the characteristic functiofy;(m,n) of the displaced
operator

Fii=D(k,HFD(~k,~1) (29

is equal to

. (30)

_ ~ 4qr
fky|(m,n)=f(m,n)exp< i W(mk+nl)

Calculating the characteristic function of an operzfto'n the
U basis yields

T(m,n)=

%Z <ur+2n|ﬁ|ur>exi{ i 4W7Tm(n+ I’)
(3D

(The indexr takesN integral values.
In particular, applying Eq(19) to the density operator
p, We see that

~ N ~ A
p=+->, W(m,n)D(2n,—2m), (32)
m,n
where the characteristic function pf
~ 1 .
W(m,n)EMTr[pD(—Zn,Zm)], (33

can be regarded as the characteristic function of the quantum
state. The definition o¥W(m,n) in Eqg. (33) is equivalent to

the definition given by Leonhard®2,23, as can be seen
from Eq.(31). By means of Eq(24) the expectation value of

an operatofF can then be given by

Tr(pF)=N, W(m,n)f(—m,—n). (34
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Let us now briefly mention some properties of the char-choser{ @,a+2), then in the point - m,—n) the interval

acteristic functionlW(m,n). The zero point value is associ- must be - a—2m,—a]. This leads to the relation

ated with the normalization condition, i.e//(0,0)=1/M.

The valueW(1/2,0) is related to the mean value of the op- Wo *(m,n)=[Wg *(—m,—n)]*, (38)

eratorV, which ensures thal, is Hermitian. Note that there is no
1 o . o confusion with the point0,0), where the characteristic func-

MW(—,O = < ex;{ i —U) > =r expid,). (35) tion of the reference state is real and positive.
2 N The operatorsT,(k,l;s) exhibit a number of interesting

The 1/2 in the argument means the number that when muf:_)ropertles. For oddN they are mutually trace orthonormal,
tiplied by 2 is equal to 1 modN. For N odd it is Tr['i'x(k,l;s)'i'_x(k’,l’;—s)]=N5k O (39)
—(N—1)/2 if the arguments run between(N—1)/2 and B

(N—=1)/2; for N even it is just 1/2. In the goniometric de- For evenN they are not orthogonal, so that the right-hand
composition the absolute valug in Eq. (35) is related to the  side of Eq.(39) becomes more complicated; a simple rela-
Bandilla-Paul phase uncertainty measurg=1-r¢ [34]  tion can only be obtained for integer

which takes values between zefsharp value ofU) and

unity (completely uncertait)). The argumentp,, represents Tr[Ty(k,1;8)T_x(k',1";=5)]

a} prefer.red angular orientation of. exdfU/N); we can de- :N[5k,k’+(_1)2| Seonis—1y2k']

fine a kind of mean value df) which respects the moll o

properties of this quantity by = ¢,N/(2) [for the eigen- X8+ (=170 _ns—1y20)- (40)

values ofu chosen symmetrically around zero and the phaselz: 4dN th < k1's) h .
window (—,7)]. A similar relation holds also for th¥ or oddN the operatord(k,|;s) have unity traces,

operator. These guantities are studied in more detdB%t,
and the uncertainty relations between uncertainties associ-
ated with the operatord andV are discussed if36]. whereas for evei the relations

Tr[Tu(k,1;5)]=1, (41)

B. Phase-space-point operators 2, Kk, integers

Let p be a density operator of a reference state whose TriTdklis)] 0, k or | halfodd
characteristic functiodVy(m,n) has no zero elements. In
order to defines-parametrized phase-space functions, w
first introduce two kinds o§-parametrized phase-space-point UN't:

operators:l'x(k,l ;S), X==*1,

(42

gare valid. In any case, the operatdAFQ(k,l;s) resolve the

Tu(kl:s)=1. (43)
Kk,

2|+

To(K,1;8)=M 51> W5 3(m,n)D(—2xn,2xm)
™ When the reference state has even pamy,P=p,,

then T,(k,l;s)=T_,(k,I;s). This corresponds to the usual
case of continuous phase space, where the reference state is
the vacuum state which has even parity and therefore there is
Again, the arguments), n, k, andl comprise all the integers only one class ofs-parametrized phase-space-point opera-
modulo N if N is odd [e.g., between—(N—1)/2 and tors. In this case, these operators are uniquely defined for any
(N—1)/2] and all the integers and half odds modoif reals, because the characteristic function of the vacuum is a
N is even[e.g., between—N/2 and (N—1)/2]. The pairs Gaussian, which is always positive. It should be mentioned
(k,]) thus form a discrete phase space. We see that thi@at the discrets-parametrized phase-space-point operators
phase-space-point operatdFs(k,|;s) are uniquely defined Tx(k1;S) are quite similar to the-parametrized operataf

and Hermitian for integes. On the other hand, when the functions in the continuous cassee, e.9.[37)).
functionWy(m,n) takes negative or complex values, then for

noninteger reak these operators are not defined uniquely. C. Phase-space functions

This is due to the arbitrariness in the definition of  The operatorg,(k,I;s), x=*1, can be used to perform

W, °(m,n) in this case. Nevertheless, we can formally avoidthe following operator expansion:

this problem by defining this power as

47
xexp{—iw(kxmﬂxn) . (39

~ N ~
W, S(m,n) = |Wo(m,n)| ~Sexp{ —isard Wo(m,n)1}, F:MkEJ )T w(kli=s), (44)

(37)

_ where the discrete-parametrizect-number functions

where the (2r) interval for the values of af§Vo(m,n)]
must be fixed for each pointr(,n). So as to bél', Hermit-

1 ~n
ian, we require that if in the pointng,n) the interval is f"(k’l’s):MTr[FTX(k’I’S)] (45)
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can be regarded as phase-space functions associated with

operatorlE. To prove Eq.(44), we write the right-hand side
as

N “
—> £k 1;9)T_y(k,I;—s)
M
N ~ A “
=—zk2 Tr[FT(k, 1) 1T (k.| —s). (46)
Using Egs.(36) and(20), and taking into account that

1 4
5k»':M§ exr{—iw(k—l)m, (47)

we arrive at

NE m,n)f)(2n,—2m),

N -
M% fo(k,1;8)T_y(k,I;— =W
(48)
which, according to Eq(19), is equal toF.
The trace of an operatdf is given by the sum over all
values of an associated phase-space function,

Tr(le)zg f(k,l:s), (49)

which follows from(43) and(45). The trace of the product of
two operatord andG is equal to the overlap,

Tr(ﬁé)=N; f (K 1:5)g_(k,1;—s), (50)

which whenN is odd simply follows from the orthogonality
of the T operators, Eq(39). For evenN we can use Eq24)
and write(e.g., forx=1)

; f1(k,1;8)g_1(k,l;—9)

1 - . a
=z THFTukE9ITIIGT a(kl; =)
1 ~ -
=1 2 [Wos(m,n)WS(m’,n’)
k,I,m,n,m",n’

A
Xex;ﬂ’ —i W[k(m—m’)ﬂ(n—n’)]}
xTr[IEf)(—2n,2m)]Tr[éf)(2n’,—2m’)]], (51

where we have used Eqg5) and(36). Using the Kronecker
S expansion47) and recalling Eqs(20) and(24), we arrive
at Eq.(50):

T. OPATRNY, D.-G. WELSCH, AND V. BUZEK
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g fi(k,I;8)g_1(k,1;—5)
1 . .
=W2 Tr[FD(—2n,2m)]Tr[GD(2n,—2m)]
=> ?(m,n)@‘(—m,—n)z%Tr(lA:é). (52)

m,n

When the operator under consideration is the density op-
eratorp, then the associated phase-space functions

Px(k,I;S)=%Tr[i)Tx(k,l;S)] (53
can be regarded asparametrized quasidistributions in the
discrete phase space. Equatid#d) [with p andP,(k,l;s) in
place of F and f,(k,l;s), respectively implies that knowl-
edge ofP,(k,l;s) is equivalent to knowledge of the quantum
state. The quasidistributions are normalized to unity,

; Pu(k,I;5)=1 (54)
[Eq. (49), with p in place ofF, and Tr()=1], and real. The
latter follows from the fact that the phase-space functions of
a Hermitian operator are always r¢ate Eq(45) and recall
thatT TT] According to Eq.(50), the quasidistributions
can be used to calculate expectation values,

Tr(,}ﬁ):N; P (k,1;8)f_(K,I:—s). (55)

The phase-space functions of the unity operator,
u4(k,l;s), are independent of and equal to

N~ kI integers

ux(k,I;s)= 0, k or | half odd

(56)

which follows directly from Eq(45) and Egs(41) and(42).
From Egs.(56) and(50) we find that for everN

>

k,I integers

Tr(F)= f(K,I:S). (57)

Equations(57) and (49) reveal that the sum of the phase-
space function over points when at least one coordinate is
half odd must be zero. The phase-space functions
d.(2n,—2m,k,l;s) associated with the displacement opera-
tor D(2n,—2m) for N odd read as

dy(2n,—2m,k,l;s)= M*S*1W5S(xm,xn)

(58)

AT
Xexp{—lw(kmﬂn) .

The convolutions of the phase-space functibp®f an op-
eratorF and the phase-space functions

(0) . —i s T .
1 (m,n,S)— MTI’[pOTl(m,n,S)] (59)
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of the reference-state density operafgr are again phase- 1 .
space functions of: Wik, D= GTrleT(k.D] (64)
f.(rt:s)POTX(k=1).x(1—1):s [see Eq(53)]. In particular, for oddN the matrix elements of
rE,t (s Pk x( = tis, ] T(k,1) in the U basis are given by

:fx(k,l;sl+52_1). (60)
, (69

A 2T
<ur|T(kv| )|us>: 52k,r+sexﬁ{| Wl (r—s
(Using the functiorP®) instead ofP{") would correspond to
changing the reference stajpg by the parity transformed  which is the Wootters definitiofil3] of the phase-space-
statePpoP.) WhenN is even ands an odd integer we find  point operator, so that for odd Eq. (64) agrees with the
that the phase-space functions are zero for such pointg/ootters definition of the discrete Wigner function. Apply-

(k,I) wherek or | is a half odd: ing Eq.(62) [together with Eq(63)], Eq. (64) can be rewrit-
ten as
f(k,lI;8)=0, s odd, k or | half odd (61
1 ~ A
which can be proved correct by using E¢®6) and(45) and W(k,1)= M% W(m,n)ex;{ —iy (mk+nb, (66
recalling the propertie$21) and (22) of the characteristic '
function. and we recognize the Leonhardt definitip?22,23 of the

The s-parametrized phase-space functions can also be exjiscreteW function, used for both even and ot
pressed in terms of-parametrized characteristic functions: The Wigner function exhibits a number of interesting
properties. The trace of the product of two density operators
can be calculated as the overlap

lw ~ A
f(k,1;8)= ME fx(m,n;s)exy{ —i W(km+|n)

62) THpD') =N Wk W (kD), 67

where the s-parametrized characteristic  functions

T (mn;s) are related to the characteristic function Which hfo”OWSI difeﬁ“?[/ from tge %eneral pro||oer(>'50). ;‘A\Sh
z . was shown elsewhelfd3,22,23, the marginal sums of the
f(m,n) in Eq. (20) as Wigner function are equal to the probabilities:

T (m,n;s)=M ~5f(m,n)W, S(xm,xn). (63

> W(k,1)=(uplug), (68)
We can see that for a reference state with even parity the two !
kinds of characteristic functions are equal to each other,
fo(mn;s)=Ff_;(m,n;s) [see EQ.(26)], and consequently > W(k,D)=(v||p|v)). (69
the two kinds of phase-space functions are also equal to each K
other. The only important condition for the reference state iﬁ: th inal ial sets of phase-
that its characteristic function cannot have zero values; oth- Urther, hmargma” sum_s ov,(,er“ spekma I.se s”o phase-space
erwise it is impossible to define the phase-space functiongomts’ the so-ca ed “lines, Ibro en mejls.,. etcf[lrs]’,Z?g
with s>0, see Eq(36). Though we can formally define such are no_n-negatlve a_nd are equal to probabilities of the system
functions withs<0, we could not reconstruct from them the to be in some particular state.

iinal L i ) | In the case of continuous phase space it was shown
original operatoi~. Let us mention two important examples [38,39 that the Wigner function is proportional to the mean
of states which have characteristic functions with zero vals

) ) ; value of the displaced parity operator. From E and
ues. First, a state with completely uncertésmearegiquan- (65) we see thatp party op @

tity U (or V) would have zero value ofV(1/2,0) [or

W(0,1/2)], see Eq.(35). Second, for eveN any pure state T(0,0=P. (70
|y whose expansion coefficients in thebasis(u,| ) are

real (which could be, for example, some analog of a GaussRecalling Eq.(36) (s=0), we verify that for odd\ the op-
ian stat¢ we get, e.g.W(1/2,N/4)=0. Let us now consider eratorT(k,I) can be written as

special kinds ok-parametrized phase-space functions of the . . A
density operator. T(k,)=D(k,)PD(—k,—1), (71)

which means that also in the discrete phase spacéithe
function can be defineflp to a constantas the mean of the

We first consider the case wher0. According to Eq.  displaced parity operator. Note that for obldthe displaced
(36) the operatord4(k,1;0) andT_,(k,I;0) do not depend parity operatorD(k,I)PD(—k,—1) represents all possible
on the reference state and are equal to each othetentral symmetries of the discrete phase space, the center of
T(k,1)=T,(k,1;0)=T_4(k,1;0). The quasidistribution symmetry being in the point with integer coordinatésl .
W(k,1)=P,(k,l;0)=P_4(k,I;0) can be regarded as the dis- The situation is different in the case whbhis even. First,
crete Wigner function, the central symmetry with the centek,[) (k,| integers is

D. Wigner function
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equivalent to the symmetries with centerg, |+ N/2), E. Husimi function

(_k+ N/2,1), and K+ N/2,| +N/2) .SO that the _function de- Next let us consider the quasidistribution

fined as the mean value of the displaced parity operator can-

not contain sufficient information of the stafe Second, 1 .

there are such central symmetries, for which the center of ~ Q(KD=P_y(kl;=1)=5Tr[pT_1(k;=1)]. (74
symmetry is in the middle of two neighboring points with

integer coordinates; as an example we can take the operatgging Eqs.(36) and (33) [with py and\TVO(m,n) in place of

T(1/2,0)=E,|u,)(q1_r| (the summation runs over integers 5 andW(m,n), respectively, we derive that
r). We can consider such symmetries as parity operators

“displaced by a half-odd value”; in contrast to the case of . .
odd N they cannot be expressed in the foff). This can Tkl =1)=rokl), (79
serve as an explanation as to why, for ewénthe phase

space should consist of points with both integer and h?llf'OdQ\/heref)o(k,l) is the displaced reference-state density opera-
coordinates. However, for evéthwe can prove the relations .,

WK, +N/2) = (— 1)2W(K,1), (72) po(k,)=D(k,)peD(—k,—1). (76)

Hence Eq(74) can be rewritten as
W(k+N/2,)=(—1)?W(k,), (73

1_ ..
Q(k)=Trlppo(k.D]. (77
so that onlyN? values are independent and just one-quarter

OI ttheA phLaste space carbriestrt]hiz tvk\:horlme Iicnf?jrdmation ab?ut th\(l?mich is the definition of the discret@ function (or Husimi
statep. (Le us remember that the hall-odd arguments arq‘unction) as given in[24,25. A similar definition was given
present also in the definition of the Wigner function in pho- .o .oy aiso by Galetti and Marchio[28]. As discussed in
ton number and phase bY Lulsad Pe||nova[40]fhere this [24,25, the Q function can be interpreted as proportional to
fact reflects the symmetries of the enlarged Hilbert space. the probability of the system to be in some state given by the

Let us also mention that the treatment of discrete phas8isplacement of the reference state—the so-called “quantum
space consisting from both integer and half-odd points Caluler.” (Note that a different normalization was used in
be used equally well foN odd. The formalism would be the [25].)

same as foN even and we could use, e.g., E(&2) and(73) Let us mention some properties of the discr&eunc-

for calculating the values in the points with half-odd coordl-tiﬁ;_ From the relatiori77) we can see that th® function is

nates. This may seem useless, but it gives us a unified look q ays non-negative. Further, from E@1) we see that for
the discrete phase-space formalism. It can also be used f VenN the Q functioﬁ is nonz'ero only .if bottk and| are

showing the correspondence between discrete systems in t : . :
limit of large N and continuous systems. Let us sketch hereb(?egers. Applying Eq(60), we find that theQ function can

the main idea, which will be presented in detail elsewhere e written. as the correlation of the Wigner functions of the
We can consider a state whose expansion coefficients in boﬁ%ate studiedW(k,1), and the reference statély(k,1),

U andV bases{u,|¢), (vi|#), are non-negligible only for

| andk inside some interval|{ K,K), whereK<N. Let the Q(k,l)=2 Wo(r, t)W(r —k,t—1). (78)
expansion coefficients vary slowly with the change of the rt

indices,|(u; 1 1|#) —(u| )| <1 and similarly for theV basis. , ,
Then in the phase space with both integer and half-odd co>nce the reference state cannot be an eigenstate of the op-
ordinates, thaV function of this state is represented by somee€ratoru orV, the discreteQ function can be interpreted as
structure in the vicinity of the origin, and by three similar, @ quasiprobability distribution obtained from a “simulta-
but highly oscillating structures shifted by (0?), neous” measurement of conjugated observatlesnd V.
(N/2,0), and N/2,N/2). The sum over all the values of the The measurement of the conjugated observables can for-
central structure is approximately unity, whereas the sums dhally be described as the “filtering” with a quantum ruler
the values of the remaining structures are approximatelysee[24], and references therginThis filtering process is
zero. The central structure is a function slowly varying with responsible” for increase of quantum noise which results in
the change of the indices by 1/2 and it can be treated as asmearing” of the Q function compared to the Wigner func-
analog of the continuoug/ function. On the other hand, if tion of the same state.
we would work only with integer coordinates, the discrete If we assume that the values of tig function are ob-
W function would be represented by the central structure, by@ined by some experiment, we can reconstruct the density
two very similar structures shifted by (0/2) and (N/2,0), ~ Operator as, on applying E¢44),

and by one more such structure with opposite sign shifted by N

N/2,N/2). The sum of values of the central structure is ap- ~_ -1

E)roximatzely 1/2; similarly for the other two “positive” P p_WkZ. Q(k’l)% Wo (m,n)

structures, whereas the ‘“negative” structure would give

—1/2. 1t would therefore be difficult to interpret the central Xexr{ i Afwﬂ(kan)

. : ; D(-2n2m). (7
structure as the discrete analog of the continudusinction. (=2n,2m) 79
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We can see that even though t@efunction can be defined valid in both cases. Consequently, using the functions
in such cases when the characteristic functigg(m,n) of P(k,I) we can express the density operator of an arbitrary
the reference state has zero values, it is then impossible fure state as a sum of density operators of statistical mix-
reconstruct from it the original density operator. This prop-tures. A similar situation was discussed in the case of
erty is not dependent on our treatment based on the charaiginite-dimensional Hilbert spacg41], where generalized
teristic functions: one could, e.g., try to reconstruct theP andQ functions with thermal reference states were stud-
N?—1 independent elements of the density matrix solving ded.
set ofN2—1 linear equations whose right-hand sides are the
N2—1 independent values of the measuf@dunction. But

in this case the set is singular and we do not obtain the
required solution. A. Examples of discrete quasidistributions

Ill. APPLICATIONS

) To start our discussion we first have to specify the quan-
F. Glauber-Sudarshan function tum reference statg,. For oddN we will consider this state
The concept of quasidistributions also enables us to introto be the ground state of the Hamiltonibip,
duce the discret® function. For this purpose we recall Eq. - - -
(44) [with p and P(k,I:s) in place of F and f,(k,I:s), Ho=—codJ —cosv. (85)
respectively, anck=s=1] and Eq.(75), which imply that
As shown in[36], such a state minimizes the Bandilla-Paul

5:2 P(k,1)po(k,1), (80) uncertainties for the quantitidd andV. Increasing the di-
k1 mensionN of the Hilbert space to infinity, the Hamiltonian
(85 can be approximated by the harmonic-oscillator Hamil-
where tonian (1/2J2+(1/2)V? (for more discussion sef36]).
1 Therefore the ground state of the Hamiltonig@b) can be
P(k,1)=P;(k,1;1)= MTf[fﬁl(kJ;l)] (81  considered as an analog of the vacuum state of the harmonic

oscillator and it is a good candidate for the reference state in
. . the formalism presented in this paper.[Bb] it was chosen
[see Eq'(53)]: and the displaced density operator of the ref'as the quantum ruler state in the definition of the discrete

erence statqoo_, is given in Eq.(76). Equation(80). reV‘?a'S function. Because the ground state of the Hamiltorig
that the density operator can be expanded in displace as the even parity, the two quasidistributioRs(k,!:s)

ref_er_ence—stqte d(_ensity operat@r@(k,l), the expansion CO- (= +1) are mutually equaP(k,1:s)=P_(k,I:s).
efficients pemg g!ven'by the d|scr'et¢ Pha?e'Sp"!CG fun.Ct'OF' In Fig. 1 we plot these quasidistributions for two special
P(k,l). This is quite similar to the |nf|n|te-d|men5|onal.H|I- states in the odd-N=11) dimensional case. The first four
pert space, where the GIauber-SudarsIﬁafunctpn P(a) is .diagrams present the situation when the studied state is equal
introduced through the expansion of the (_jensny_ operator Dy the reference statg,. In Fig. 1(a) the Wigner function
coherent state der_15|ty operatots)(al, ie., displaced P.(k,I;0) of this state is presented. We see that in the vicin-
vacuum-state density operatofs] ity of the origin of the phase spadee., around the point
(0,0] this Wigner function has a form of the discrete “hill”
2»=f d?aP(a)|a)al. (820  which resembles the Gaussian shape of the Wigner function
of the vacuum state in the continuous cadsethe limit of
high N this similarity becomes closerOn the “edges” of
the phase space the Wigner function is not equal to @so
one would expect in the case of an exponentially “decay-
ing” Gaussian functiop but it exhibits rather complicated
oscillatory behavior. Actually it consists of three similar
P(K,)=8 S 11 (83  structures as the central peak—two with the same sign and
T one with opposite sign. In spite of this behavior the marginal
which is analogous to the continuous case wherePtifienc-  probability distribution functionsW, (k) =2,W(k,l) and
tion of the coherent state is the Diracfunction. W, (1) == W(k,I) associated with probabilities to “ob-
Similarly to the case of th€ function, for evenN the serve” eigenstates of the operatddsandV, respectively,
P function is nonzero only at the pointk,(), where both are non-negative and normalized to unity.
k and | are integers. From Eq60) we can see that the Figure Xb) shows the functiorP,(k,l;1); this function
Wigner function can be calculated as the convolution of theaepresents thé Kronecker symbol which is the analog of the
P function with the Wigner function of the reference state, Dirac § function (i.e., the Glauber-Sudarshdhfunction of
the vacuum state of the harmonic oscillatdPhysically it
means that for construction of the density matrix of the ref-
erence state we need only the reference state itself and not
also its displaced versions.
In our discussion we have not specified whether the quan- Figure Xc) presents the situation &= —1, i.e., the dis-
tum reference state described by the density operator is @eteQ function. Properties of this function were studied in
pure state or a statistical mixture. Our formalism is equallydetail in [25]; here let us mention again the Gaussian-like

Thus we can consider the quasidistributiB(k,l) as a dis-
crete analog of the Glauber-Sudarsharfunction. In par-
ticular, the discreteP function of the displaced reference
statepy(k’,l") is equal to the Kroneckes,

W(k,)=> P(r,t)Wo(k—r,l —1). (84)
r,t
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FIG. 1. Quasidistributions P(k,l;s)
=P_4(k,I;s) in the odd-dimensional case,
N=11. The reference state is the ground state of
Hamiltonian (85). (a)—(d) The studied state is
equal to the reference state) s=0, (b) s=1, (¢
s=—1, (d) s=—0.5. (e), (f) The studied state is
the “position state” |ug) (1), () s=1, (f)
s=-—1.

shape of the reference state; in comparison tdMfeinction  function. (Let us note that th&V function of such a state is
in Fig. 1(a) the peak is broader and the function takes onlynonzero only along the line=0 where it takes a constant
non-negative values. value 1N.)

In Fig. 1(d) we can see a transition from thé function to In Fig. 2 we present the case bf even; hereN=6. As
the Q function for the parametes= —0.5. For this case the discussed in the previous text, the phase space consists of
s-parametrized quasidistribution is not defined uniquely: we(2N)? points—for each variable the values now run all inte-
have to specify the definition of theth power of a complex gers and half odds between3 and 2.5. For this situation we
number for each phase-space poikfl. This can be done again have to specify the reference state. However, as fol-
in a variety of ways; we must only satisfy the conditi@8).  lows from the discussion at the end of Sec. Il C, in this case
In our case when the characteristic functiy(m,n) is real  we cannot use the ground state(85): such states only have
(due to the even parifythis means that if in the point real expansion coefficients in thé basis and therefore they
(m,n) the value of & 1)%is defined as exprs), theninthe have zero values of the characteristic function. To overcome
point (—m,—n) it must be defined as exp(iws). Once this problem we constructed the reference state as the super-
such a definition is adopted then the quasidistributions arposition of the ground state and the next excited state with
defined for every read and have all the important properties even parity(the superposition factor of the excited state be-
studied in the preceding section. However, as can be seeng 0.1 times the factor of the ground statélowever, the
from this figure, due to the particular choice we lose thequestion of optimal choice of the reference states in the even
symmetry. N case remains open.

In Figs. 1e) and Xf) we show quasidistributions of the In Fig. 2(a) we show theW function (s=0) of the refer-
“position state” (or “line state”) |uy) (1); in Fig. 1(e) we  ence state; again we can see the central peak in the point
see itsP function (s=1) which oscillates also to negative (0,0); however, its behavior around the “edges” of the
values, while Fig. {f) shows the smoothed shape of e phase space is more oscillatory than for the case ofidd
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FIG. 2. Quasidistributions Py(k,l;s)
=P_,(k,I;s) in the even-dimensional case,
N=6. The reference state is a superposition of
the ground state of Hamiltoniaf85) and of the
next excited even-parity statéa)—(c) The stud-
ied state is equal to the reference stéte,s=0,

(b) s=1, (c) s=—1. (d)—(f) The studied state is
|ug) (1), (d) s=0, (e) s=1, (f) s=—1.

Note the role of the negative values in poinksl] with half Let us mention once more the question of choice of the
oddk or |; they ensure that the marginal sums over half-oddeference state. Galetti and Marchio[l28] suggested a
lines are zero. Figure(B) shows theP function (s=1) of phase-space function based on coherent states defined as dis-
the reference state, again being equal to the Kroneéker placement of an eigenstaté,) of the Fourier transform
whereas Fig. @) presents it€ function (s= —1). Note that which was calculated by Meh{#2]:

in the cases of=*1 the corresponding quasidistributions

are identically zero for any point with a half-odd coordinate - T )

and for any state—as follows frof61). In these figures we |¢o>°‘; r;_m exp — (IN+K)%|[ug.  (86)

can see the broadening of the central peak fioril over

s=0tos=-1 These states have properties similar to those of our ground

In Fig. 2d) we can see the/ function (s=0) of the line  g51e5 of85) (which are also eigenstates of the Fourier trans-
state|uo); this Wigner function was discussed in detail by tory) "and their analytical expression contains the Gaussian
Leonhardt[23]. The marginal sum over valugsfor I=0 o of the infinite-dimensional vacuum states. Ré2
gives us the probability 1 of the state to be found with thisyngN =3 both definitions give the same result. Nevertheless,
value of U; on the other hand, such a marginal sum fore proplem of zero values of the characteristic function for

|=—3 over the oscillating terms gives zero. The negativey eyen is present also for the reference states definé@bas
values forl = —3 also ensure the zero marginals oVeor

k half odd. Figure 2) shows theP function (s=1) for this
state and Fig. @) its Q function (s=—1). Whereas now the
P function oscillates also to the negative values, h&unc- There are many physical systems for which it is useful to
tion is always non-negative. work with the finite-dimensional Hilbert space formalism,

B. A model of measurement of the discret& function
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e.g., spin systems, atomic systems, quantum optical systems

with a finite number of photons, etc. Here we would like to Ru(1) R(1) Us
present a very simple and intuitive model of such a system )
and to show the principal possibility of the direct measure- —X A¢=0 —
ment of the discret€) function. @ | m

Let us consider the system to be one monochromatic po- \ L]
larized photon, which can propagate b parallel optical @ \ Ap=2%3
fibers—i.e., we are dealing with a multimode one-photon (4 \ v
system. A pure state of this system is described by the state ae=72
vector| ), | \ . D

[)=2a4|1)1]0), - [O)n+@z]0)1|1)5- - [O)+ -
+aN|0>l|0>2"'|1>Nv (87) FIG. 3. Simple scheme for measuring the disci@téunction.

The transformatiorfRu(l) rotates the fiberdR, (1) represents phase

shifters, andLAJq) describes a cascade of couplers. The detector is
where the state vectdt), means the one-photon Fock state cgnnected to the output of the first fiber.

in the kth mode. Thus the state vectia¥) can be written as

the column vector state |®)=|®,), the corresponding element can be de-
scribed by the unitary operattf ,

a
N
) %2 , (88) U¢E|u1><¢1l+k§=:2 Ui Py (89)
ay

Here the vector$d,) form an orthonormal set. The impor-
tant property of this device is that it transforms the reference
and the squared amplitude,|* means the probability that state to the first fibefi.e., to the state when the photon is
the photon is in théth fiber. We think that this system can with certainty in the first fiber Let the detector be connected
correspond especially well to the Wootters discrete phasep this fiber; then it is described by the projection operator
space formalism, e.g., because these base states are with§jit=|y,)(u,| and it measures the quantity THpey),
any a priori preferred statein the spin systems there is al- \yherep_ . is the output state of the system. If we connect our
ways a state which is the “highest” and a state which is thejn 5t statep first to the displacement device and then the

“lowest” ). Ordering the fibers to a ring-sectioned cable, Wereg it to the reference-state device, the output state will be
can immediately see the circular geometry of the system.

Let us assume that we can reproduce the studied state an
arbitrary number of timeéve have an infinite ensembland
we want to measure it—i.e., to find its density matrix. For
this purpose we can use energy conserving optical elemen
(representing unitary transformationand photodetectors; ~
see Fig. 3. Let us first show how various unitary transforma- p(n,m)=Tr(Il1pou)
t!ons _could be performed. O_ne of the simplest transforma- =(ul|U¢,D(—n,—m)f)D(n,m)U:},|u1)
tions is represented by the displacement opergign) (8).
This would just correspond to rotatingor renum- =(®41(n,m)|p|D1(n,m)), (91
bering the fibers—from thekth position to the position
(k+n) modN. The displacemerR,(m) can also be easily where
performed—by connecting to the fibers phase elements, the
phase shifter Zk/N to thekth fiber. Combining these two |d)l(n,m)>zf)(n,m)|<l>l> (92)
devices we can obtain any displacemBx{n,m) (11).

Any other unitary transformation can be constructed fromis the displaced reference state. We can see that up to the
these elements and a cascade of couplers, or equivaleniynstant I this is just the discret® function of arguments
beam splitters(We can use the standard theory of beam(n,m). Thus, the direct measurement of tQefunctions is
splitters[43] to show that our one-photon multimode statesperformed by changing the parametarandm of the rota-
transform in the same way as the multimode qoherent stategon operatorsfzu(n) and F}U(m) and by measuring the rela-
For _proof pf the p055|b|_llty to construct any unitary transfor- ¢j,,e frequency of the detection of photons detected at the first
mation using beam splitters s#4].) fiber of the output.

Let us now show how a measurement of the disc@te  As an example, let us now show a possible measurement
function can be performed. For this purpose we need ongs the Q function in this model folN=3. Let us choose the
optical element representing th®,(n) rotations, one ele- reference state as the ground state of the “Hamiltonian”
ment representing thR,(m) phase shiftfthus having the (85). ForN=3 this operator has the matrix fortin theU as
displacement operatdd(n,m)], one element for the refer- well as in theV representation, up to an unimportant additive
ence state, and one detector. If the reference state is a purenstank

pou=UaD(—n,—m)pD(n,m)U} (90)

?gld the probability of detecting the photon is
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1 -1 -1 measure the functioR_,(k,l;—1), we can use the formula
~ 1 1 —o 1 (55), with f,(k,1;1) according to Eq(45).
HO_E ) (93) Let us mention that this measurement scheme enables also

-1 -1 1 the tomographical reconstruction of the discrétgunction,
as suggested by Leonhaf@?2]: for this we need to measure
The matrix of Eigenvectors for this case can be written as the projections of our state on the “discrete quadrature”_
the so-called line states, precessed line states, and broken
a a & line stateqfor their definition and more details sE22,23).
Up=|as as as [, (94)  This would require a suitable change of the oper&d8) so
that it transforms a particular quadrature state into one fiber.
Then the characteristic function of the probability distribu-
tion for such quadratures is proportional to the characteristic

as 0 —ag

where function of the discrete Wigner function.
a;=[2(3+3%3)]712 (95)
IV. DISCUSSION AND CONCLUSION
a,=[(3+3Y%/6]'2, (96)
In this work we were dealing with discrete phase-space
a;=—[2(3—-313)]"12 (97)  formalism and we were trying to offer a consistent way for
introducing s-parametrized phase-space functions to the
a,=[(3—-3Y2)/6]"2, (98)  duantum systems with a finite number of independent states.
To summarize the main properties of these functions and to
as=2"12 (99) compare them to the situation in the infinite-dimensional Hil-

bert space we can draw the following conclusions.

The first row of this matrix corresponds to the reference state (i) The s-parametrized phase-space functions are associ-
|®). Because this matrix has one zero element, it can bated with a particular “reference” state. In the case of

constructed using only two couplers: infinite-dimensional Hilbert space of a harmonic oscillator
this reference state is usually implicitly assumed to be a
Ugp=B,B,, (100  vacuum state, even though sometimes also more general

states are considere.g., for the squeeze® function,
where the coupleB; operates between the first and the sec-squeezed function, etc).

ond fibers, (i) The reference state can be chosen quite arbitrarily, the
only condition is that its characteristic function must not
1 1 have zero values. It is even possible to choose the reference
state to be a statistical mixture.
V3+y3  \3-43 (iii) Thes-parametrized phase-space functions are equiva-
élz 1 1 , (101 lent descriptions of the operators. If the related operator is a
density operator, we call these functions quasidistributions.
—3- V3 V3+ V3 From the quasidistribution we can calculate the density ma-
0 0 1 trix and vice versa.

A (iv) Properties of these functionéand of the phase
while the coupleB, operates between the first and the third spacesare different for the case of odd and evdrdimen-
fibers, sion of the Hilbert space. Fdt odd the phase space consists

of NXN integer numbers, whereas fiNreven it consists of

1 1 2NX2N numbers—integers and half odds. This follows
E 0 E from the different symmetries of the phase spaces. However,
we can consistently use the formalism of half-odd phase-
[3,2— 0 1 0 (102 space points also in the caseNfodd; this provides no new
information, but it may be useful for observing the corre-
i 0 _i spondence between the continuous phase-space functions
V2 J2 and their discrete counterparts in the limit of lafge

(v) Generally there are two kinds of phase-space functions
Let us notice that for this simple model we can also easilyfor eachs, P;(k,l;s) andP_,(k,I;s); the exceptions are for

avoid the noisy effect of the nonunity efficiency detection.s=0 and for the case when the reference state has even
Placing another detector to the remaining outputs we caparity, in which cases these two functions are equal. To our
disregard those measurements for which no detector detedtmowledge this situation was not discussed for the continu-
the photon. Then the fraction of the number of “clicks” ous case, where only even-parity reference states were con-
from the first detector to the total number of clicks is pro- sidered.
portional(in the limit of infinite number of measuremejts (vi) With a properly chosen reference state the
the value of theQ function. Results of such measurementss-parametrized phase-space functions are uniquely defined
enable us to perform simple calculations to evaluate meafor every integers. For s real (noninteger an ambiguity
values of any operatdf in the state of interest: because we stems from a nonunique definition of real powers of complex
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numbers. Specifying these powers we can define discrete; of the reference state is a phase-space function of the
phase-space functions for arbitrary reateven though such operatorf.

a choice is artificial and there will always be other alternative We also offer a very simp|e measurement scheme which
definitions. This problem has not occurred in the continuougnhows a connection of the discrefefunction to an experi-
case becauséo our knowledgg only Gaussian reference ment. It is based on the possibility to construct physical re-

states were considered, which have real positive characterigsization of the discrete displacement operators and of the
tic functions. , . operator which transforms the reference state to the detector
(vii) The most important cases of these quasidistributiong, ;¢ Because the reference state cannot be an eigenstate of
are fors=0, Py(k,1:0)=P_(k,1;0)=W(k,), the Wigner gy of the phase-space-variable operatdisof V), we
function, fors=~1, P_;(k,1;=1)=Q(k,l) t_heQ function, can look at such measurements as smeared simultaneous
and fors=1, P,(k,I;1)=P(k,1) the P function. The mean- measurements of these quantities. This scheme also enables

ing of theQ function is that it is proportional to probabilities he discrete tomographical reconstruction of Weunction.
of the state to be in a displaced reference state, whereas tﬁe

P function enables us to write the density matrix of the stud-
ied state as a sum of displaced reference-state density matri-
ces. Contrary to th&V function in the case ol even, both
P andQ functions(and any other phase-space function with  We are grateful to J. Bajer, |. Jex, U. Leonhardt, A. Mira-
s odd) are nonzero only in points with integer coordinates. nowicz, J. Tolar, A. Vourdas, and A. Wsche for useful
(viii) Similarly to the continuous case, the discussions. This work was supported by the Deutsche For-
s-parametrized quasidistributions enable us to simply calcuschungsgemeinschaft. One of (.B.) acknowledges the
late squared scalar products of two states and/or mean valug@pport by the East-West Program of the Austrian Academy
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