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Using discrete displacement-operator expansion,s-parametrized phase-space functions associated with the
operators in a finite-dimensional Hilbert space are introduced and their properties are studied. In particular, the
phase-space functions associated with the density operator can be regarded as quasidistributions whose prop-
erties are similar to those of the well-known quasidistributions in the continuous phase space. So theQ
function (s521) is non-negative and can be measured directly in particular experiments, whereas theP
function (s51) corresponds to the diagonal form of the density operator in an overcomplete basis. Except for
theW function (s50), the introduction of discrete phase-space functions requires the choice of a special
reference state. We finally present a simple model for measuring the discreteQ function. @S1050-
2947~96!07606-8#

PACS number~s!: 03.65.Bz

I. INTRODUCTION

In quantum mechanics, the state of a system is usually
described by means of a wave function or, more generally, of
a density operator. This description contains all the informa-
tion we can get from the system. However, there are also
other possible ways to describe the system—using the so-
called quasidistributions. These functions are defined on the
phase space of the system—and one of their advantages is
that they can be directly compared to the classical stochastic
distribution functions. There are, however, differences with
respect to the classical phase-space description, originated
from the noncommuting nature of the conjugated quantities.
The first quasidistribution—the WignerW function @1,2#—
generates the proper marginal distributions of the position
and momentum and of any of their linear combinations; in
comparison to the classical distribution functions it can also
take negative values. The Glauber-SudarshanP function @3#
enables us to write the density operator in a diagonal form in
an overcomplete basis of the coherent states. Its disadvantage
is, however, that it is often highly singular and not well
behaved. The HusimiQ function @4# is the most similar to
the classical probability distribution functions, because it is
always non-negative; moreover this function can be directly
measured in experiments. However, it is too ‘‘smeared’’ so
that some information~like the quantum interference! is dif-
ficult to read immediately from it. These quasidistributions
also yield a very effective tool for calculating moments of
physical quantities: TheP function enables a direct calcula-
tion of means of normally ordered creation and annihilation
operators, theQ function that of the antinormally ordered
operators, and theW function of the symmetrically ordered
operators, e.g., of the position, momentum, and of their func-
tions. These three quasidistributions are, however, not the
only ones: Cahill and Glauber@5# showed that theW, Q, and
the P functions can be treated as special cases of an
s-parametrized class of functions. TheP function then cor-
responds to the values51, theW function tos50, and the

Q function to s521; the parameters can also take any
other real values. Other generalizations can be found, e.g., in
the Gardiner book@6# or in the recent work of Wu¨nsche@7#,
who suggested a complete class of Gaussian quasidistribu-
tions, parametrized by a three-dimensional complex vector,
and offered a very clear mathematical formalism for them.
These functions can be connected not only to the density
operators but to any other operator of the Hilbert space. In
this case we speak about phase-space functions rather than
quasidistributions.

Until recently these functions were treated only for the
continuous phase spaces, corresponding to the systems with
an infinite-dimensional Hilbert space. However, there are
many quantum systems which are profitably modeled by
means of finite-dimensional Hilbert spaces: e.g., the spin sys-
tems, several-level atoms in quantum optics, electrons on
molecules with a finite number of sites, etc. Today these
systems are again very intensively studied, e.g., with their
connection to quantum cryptography@8#, quantum teleporta-
tion, and superdense coding@9#, or the quantum computation
@10#. Also the possibilities to construct an arbitrary state of
an optical field with a limited photon number~see, e.g.,
@11#!, or to reconstruct the density matrix of such a system
~e.g.,@12#! are of current interest.

To our knowledge the first who considered theW function
for discrete systems were Wootters@13#, Galetti and de To-
ledo Piza @14#, and Cohendetet al. @15#. Their idea was
based on the moduloN algebra of the discrete quantities
(N being the dimension of the Hilbert space!, which means
that the phase space for theW function is a set of points on
a torus. SuchW functions then have the meaning that their
marginal sums over the generalized ‘‘lines’’ are probabilities
of particular values of some physical quantities. This ap-
proach was used, e.g., for calculating the number-phaseW
function in the Pegg-Barnett model in@16# and @17#. A dif-
ferent approach was suggested, e.g., in@18–21# where the
phase space was considered to be a sphere and where the
W functions for various spin or atomic states were calcu-
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lated. Here the relation to a description of measurement pro-
cedures was via calculating an overlap of this function with a
function corresponding to the measured quantity. Quite re-
cently Leonhardt@22,23# suggested a scheme for reconstruc-
tion of the discreteW function from the marginal
distributions—the discrete quantum state tomography which
brought this discrete phase-space formalism even closer to
physical measurements. He also offered a way for treating
theW functions for systems with even-dimensional Hilbert
spaces introducing a discrete phase space with both integer
and half-odd coordinates. The discreteQ function was pro-
posed in@24# and @25#; the method was based on the opera-
tional definitions of propensities introduced by Wo´dkiewicz
@26# and anticipated by Aharonovet al. @27#. Recently, a
similar phase-space function was suggested also by Galetti
and Marchiolli @28#. TheQ function can be defined as the
probability of the system to be in some coherent state; here
the definition of the coherent states is in the Perelomov sense
@29#, i.e., an overcomplete set of displacements of some ref-
erence state~which is also called the ‘‘quantum ruler’’!. In
@24,25# it was shown how to interpret this function as a set of
measurements and how to reconstruct the original density
matrix. A deep survey of the phase-space methods can be
found in the Leonhardt work@23#.

The aim of this paper is to give a unified approach to the
problem of discrete phase-space functions and quasidistribu-
tions. In particular, the known discrete quasidistributions are
generalized to a class of parametrized quasidistributions and
their properties are studied. In Sec. II the class of
s-parametrized discrete phase-space functions is introduced,
their properties are discussed, and special cases of quasidis-
tributions are considered, such as theW function, theQ
function, and theP function. In Sec. III some illustrations of
these functions are presented and a possible model of mea-
surements of the discreteQ function is suggested. Some con-
cluding remarks are given in Sec. IV.

II. PARAMETRIZED PHASE-SPACE FUNCTIONS

Let us consider anN-dimensional Hilbert space and intro-
duce two orthonormal basis-vector systemsuuk& (U basis!
anduv l& (V basis!, k, l 5 0, . . . ,N21, which are related to

each other by a discrete Fourier transformation:

uuk&5
1

AN(
l50

N21

expS 2 i
2p

N
kl D uv l&, ~1!

uv l&5
1

AN(
k50

N21

expS i 2p

N
kl D uuk&. ~2!

Note that the Kronecker symboldk,l can be written as the
sum

dk,k85
1

N(
l50

N21

expS 2 i
2p

N
~k2k8!l D , ~3!

where the difference of the arguments,k2k8, is taken
moduloN. The basis vectorsuuk& and uv l& can be regarded
as the eigenvectors of two Hermitian operatorsÛ and V̂,
respectively,

Ûuuk&5kuuk&, ~4!

V̂uv l&5 l uv l&. ~5!

Clearly, the operatorsÛ and V̂, which are analogies of po-
sition and momentum in the continuous phase space, repre-
sent complementary properties, i.e., the squared scalar prod-
uct z^ukuv l& z251/N does not depend on the indicesk,l .

A. Displacement-operator expansion

To develop a phase-space formalism for a finite-
dimensional Hilbert space, it is useful to introduce a dis-
placement operator. For this purpose let us consider the op-
erators

R̂u~n!5expS 2 i
2p

N
nV̂D , ~6!

R̂v~m!5expS i 2p

N
mÛD , ~7!

which rotate the basis vectorsuuk& and uv l& as

R̂u~n!uuk&5uuk1n&, ~8!

R̂v~m!uv l&5uv l1m&, ~9!

where the indices (k1n) and (l1m) are taken moduloN
~this convention is used throughout the paper!. The operators
R̂u(n) andR̂v(m), which fulfill the so-called Weyl commu-
tation relation@2,30–32#

R̂u~n!R̂v~m!5expS 2 i
2p

N
mnD R̂v~m!R̂u~n!, ~10!

can be used to define a displacement operator by@33,24,25#

D̂~n,m![R̂u~n!R̂v~m!expS i p

N
mnD

5R̂v~m!R̂u~n!expS 2 i
p

N
mnD , ~11!

so that

D̂†~n,m!5D̂~2n,2m!. ~12!

From the relations

D̂~n,m1N!5D̂~n,m!~21!n, ~13!

D̂~n1N,m!5D̂~n,m!~21!m, ~14!

the operatorD̂(n,m) is seen not to satisfy the condition of
moduloN invariance. It is therefore advantageous to work
with a displacement operator of the typeD̂(2n,2m), where
the values ofn ~andm) are the integers moduloN if N is
odd @e.g., theN integers in the interval from2(N21)/2 to
(N21)/2#, and the integers and half odds moduloN if N is
even@e.g., the 2N integers and half odds in the interval from
2N/2 to (N21)/2#. Note that for evenN the operator
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D̂(2n,2m) with integersn andm would not represent all the
possible displacements.~Another solution of the problem of
moduloN invariance was given by Galetti and Toledo Piza
@33#.!

The operatorD̂(2n,2m) exhibits the following trace prop-
erties. IfN is odd, we find that

Tr @D̂~2n,22m!D̂~2n8,22m8!#5Ndn,2n8dm,2m8,
~15!

which for n85m850 reduces to

Tr @D̂~2n,22m!#5Ndn,0dm,0 , ~16!

whereas for evenN we obtain

Tr @D̂~2n,22m!D̂~2n8,22m8!#

5N@dn,2n81~21!2mdn,2n81N/2#

3@dm,2m81~21!2ndm,2m81N/2#, ~17!

and particularly (n85m850)

Tr @D̂~2n,22m!#5N~dn,01dn,1N/2!~dm,01dm,1N/2!.
~18!

The relations~15! and ~17! enable us to expand an operator
F̂ as

F̂5
N

M(
m,n

f̃ ~m,n!D̂~2n,22m!, ~19!

where the discretec-number function

f̃ ~m,n![
1

M
Tr @ F̂D̂~22n,2m!# ~20!

can be regarded as the characteristic function ofF̂. Here and
in the following the sums run in an interval of lengthN, over
M5N integers moduloN if N is odd, andM52N integers
and half integers moduloN if N is even. Note that whenN is
even, the relations

f̃ Sm,n1
N

2 D5~21!2mf̃ ~m,n!, ~21!

f̃ Sm1
N

2
,nD5~21!2nf̃ ~m,n! ~22!

are valid, which shows thatf̃ (m,n) has onlyN3N indepen-
dent elements.

Let us mention some interesting properties of the charac-
teristic functions. Equation~19! together with Eq.~16! or Eq.
~18! implies that

Tr~ F̂ !5M f̃ ~0,0!, ~23!

that is to say, the trace of an operatorF̂ is equal to the value
of its characteristic function at the point (n50,m50). Using
Eqs.~19! and ~20! the trace of the product of two operators
F̂ andĜ can be written as

Tr~ F̂Ĝ!5N(
m,n

f̃ ~m,n!g̃~2m,2n!, ~24!

where g̃(m,n) is given by Eq.~20!, with Ĝ in place of F̂.
For operatorsF̂ which commute with the parity operator
P̂, F̂ P̂5 P̂F̂, where

^ukuP̂uul&5dk,2 l , ^v r uP̂uvs&5d r ,2s , ~25!

we can prove that

f̃ ~2m,2n!5 f̃ ~m,n!, ~26!

whereas for operators anticommuting with the parity opera-
tor, F̂ P̂52 P̂F̂, we obtain

f̃ ~2m,2n!52 f̃ ~m,n!. ~27!

For Hermitian operatorsF̂5F̂† it can be shown that

f̃ ~2m,2n!5 f̃ * ~m,n!. ~28!

Hence from Eqs.~26! and~28! we see that Hermitian opera-
tors with even parity have real characteristic functions. When

f̃ (m,n) is the characteristic function~20! of an operatorF̂,
then the characteristic functionf̃ k,l(m,n) of the displaced
operator

F̂k,l[D̂~k,l !F̂D̂~2k,2 l ! ~29!

is equal to

f̃ k,l~m,n!5 f̃ ~m,n!expS i 4p

N
~mk1nl ! D . ~30!

Calculating the characteristic function of an operatorF̂ in the
U basis yields

f̃ ~m,n!5
1

M(
r

^ur12nuF̂uur&expS i 4p

N
m~n1r ! D .

~31!

~The indexr takesN integral values.!
In particular, applying Eq.~19! to the density operator

r̂, we see that

r̂5
N

M(
m,n

W̃~m,n!D̂~2n,22m!, ~32!

where the characteristic function ofr̂,

W̃~m,n![
1

M
Tr @ r̂D̂~22n,2m!#, ~33!

can be regarded as the characteristic function of the quantum
state. The definition ofW̃(m,n) in Eq. ~33! is equivalent to
the definition given by Leonhardt@22,23#, as can be seen
from Eq.~31!. By means of Eq.~24! the expectation value of
an operatorF̂ can then be given by

Tr~ r̂F̂ !5N(
m,n

W̃~m,n! f̃ ~2m,2n!. ~34!
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Let us now briefly mention some properties of the char-
acteristic functionW̃(m,n). The zero point value is associ-
ated with the normalization condition, i.e.,W̃(0,0)51/M .
The valueW̃(1/2,0) is related to the mean value of the op-
eratorÛ,

MW̃S 12,0D5 K expS i 2p

N
Û D L [r uexp~ i f̄u!. ~35!

The 1/2 in the argument means the number that when mul-
tiplied by 2 is equal to 1 modN. For N odd it is
2(N21)/2 if the arguments run between2(N21)/2 and
(N21)/2; for N even it is just 1/2. In the goniometric de-
composition the absolute valuer u in Eq. ~35! is related to the
Bandilla-Paul phase uncertainty measuresu

2512r u
2 @34#

which takes values between zero~sharp value ofÛ) and
unity ~completely uncertainÛ). The argumentf̄u represents
a preferred angular orientation of exp(i2pÛ/N); we can de-
fine a kind of mean value ofÛ which respects the modN
properties of this quantity byŪ[f̄uN/(2p) @for the eigen-
values ofÛ chosen symmetrically around zero and the phase
window (2p,p)#. A similar relation holds also for theV̂
operator. These quantities are studied in more detail in@35#,
and the uncertainty relations between uncertainties associ-
ated with the operatorsÛ and V̂ are discussed in@36#.

B. Phase-space-point operators

Let r̂0 be a density operator of a reference state whose
characteristic functionW̃0(m,n) has no zero elements. In
order to defines-parametrized phase-space functions, we
first introduce two kinds ofs-parametrized phase-space-point
operatorsT̂x(k,l ;s), x561,

T̂x~k,l ;s![M2s21(
m,n

W̃0
2s~m,n!D̂~22xn,2xm!

3expF2 i
4p

N
~kxm1 lxn!G . ~36!

Again, the argumentsm, n, k, andl comprise all the integers
modulo N if N is odd @e.g., between2(N21)/2 and
(N21)/2# and all the integers and half odds moduloN if
N is even @e.g., between2N/2 and (N21)/2#. The pairs
(k,l ) thus form a discrete phase space. We see that the
phase-space-point operatorsT̂x(k,l ;s) are uniquely defined
and Hermitian for integers. On the other hand, when the
functionW̃0(m,n) takes negative or complex values, then for
noninteger reals these operators are not defined uniquely.
This is due to the arbitrariness in the definition of
W̃0

2s(m,n) in this case. Nevertheless, we can formally avoid
this problem by defining this power as

W̃0
2s~m,n!5uW̃0~m,n!u2sexp$2 isarg@W̃0~m,n!#%,

~37!

where the (2p) interval for the values of arg@W̃0(m,n)#
must be fixed for each point (m,n). So as to beT̂x Hermit-
ian, we require that if in the point (m,n) the interval is

chosen@a,a12p), then in the point (2m,2n) the interval
must be (2a22p,2a#. This leads to the relation

W̃0
2s~m,n!5@W̃0

2s~2m,2n!#* , ~38!

which ensures thatT̂x is Hermitian. Note that there is no
confusion with the point~0,0!, where the characteristic func-
tion of the reference state is real and positive.

The operatorsT̂x(k,l ;s) exhibit a number of interesting
properties. For oddN they are mutually trace orthonormal,

Tr @ T̂x~k,l ;s!T̂2x~k8,l 8;2s!#5Ndk,k8d l ,l 8. ~39!

For evenN they are not orthogonal, so that the right-hand
side of Eq.~39! becomes more complicated; a simple rela-
tion can only be obtained for integers,

Tr @ T̂x~k,l ;s!T̂2x~k8,l 8;2s!#

5N@dk,k81~21!2ldk2N~s21!/2,k8#

3@d l ,l 81~21!2kd l2N~s21!/2,l 8#. ~40!

For oddN the operatorsT̂x(k,l ;s) have unity traces,

Tr @ T̂x~k,l ;s!#51, ~41!

whereas for evenN the relations

Tr @ T̂x~k,l ;s!#5H 2, k,l integers

0, k or l half odd
~42!

are valid. In any case, the operatorsT̂x(k,l ;s) resolve the
unity,

1

M(
k,l

T̂x~k,l ;s!5 Î . ~43!

When the reference state has even parity,P̂r̂0P̂5 r̂0 ,
then T̂x(k,l ;s)5T̂2x(k,l ;s). This corresponds to the usual
case of continuous phase space, where the reference state is
the vacuum state which has even parity and therefore there is
only one class ofs-parametrized phase-space-point opera-
tors. In this case, these operators are uniquely defined for any
reals, because the characteristic function of the vacuum is a
Gaussian, which is always positive. It should be mentioned
that the discretes-parametrized phase-space-point operators
Tx(k,l ;s) are quite similar to thes-parametrized operatord
functions in the continuous case~see, e.g.,@37#!.

C. Phase-space functions

The operatorsTx(k,l ;s), x561, can be used to perform
the following operator expansion:

F̂5
N

M(
k,l

f x~k,l ;s!T̂2x~k,l ;2s!, ~44!

where the discretes-parametrizedc-number functions

f x~k,l ;s!5
1

M
Tr @ F̂T̂x~k,l ;s!# ~45!
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can be regarded as phase-space functions associated with the
operatorF̂. To prove Eq.~44!, we write the right-hand side
as

N

M(
k,l

f x~k,l ;s!T̂2x~k,l ;2s!

5
N

M2(
k,l

Tr @ F̂T̂x~k,l ;s!#T̂2x~k,l ;2s!. ~46!

Using Eqs.~36! and ~20!, and taking into account that

dk,l5
1

M(
m

expF2 i
4p

N
~k2 l !mG , ~47!

we arrive at

N

M(
k,l

f x~k,l ;s!T̂2x~k,l ;2s!5
N

M(
m,n

f̃ ~m,n!D̂~2n,22m!,

~48!

which, according to Eq.~19!, is equal toF̂.
The trace of an operatorF̂ is given by the sum over all

values of an associated phase-space function,

Tr~ F̂ !5(
k,l

f x~k,l ;s!, ~49!

which follows from~43! and~45!. The trace of the product of
two operatorsF̂ andĜ is equal to the overlap,

Tr~ F̂Ĝ!5N(
k,l

f x~k,l ;s!g2x~k,l ;2s!, ~50!

which whenN is odd simply follows from the orthogonality
of the T̂ operators, Eq.~39!. For evenN we can use Eq.~24!
and write~e.g., forx51)

(
k,l

f 1~k,l ;s!g21~k,l ;2s!

5
1

M2(
k,l

Tr @ F̂T̂1~k,l ;s!#Tr @ĜT̂21~k,l ;2s!#

5
1

M4 (
k,l ,m,n,m8,n8

H W̃0
2s~m,n!W̃0

s~m8,n8!

3expH 2 i
4p

N
@k~m2m8!1 l ~n2n8!#J

3Tr @ F̂D̂~22n,2m!#Tr @ĜD̂~2n8,22m8!#J , ~51!

where we have used Eqs.~45! and~36!. Using the Kronecker
d expansion~47! and recalling Eqs.~20! and~24!, we arrive
at Eq.~50!:

(
k,l

f 1~k,l ;s!g21~k,l ;2s!

5
1

M2(
m,n

Tr @ F̂D̂~22n,2m!#Tr @ĜD̂~2n,22m!#

5(
m,n

f̃ ~m,n!g̃~2m,2n!5
1

N
Tr~ F̂Ĝ!. ~52!

When the operator under consideration is the density op-
eratorr̂, then the associated phase-space functions

Px~k,l ;s!5
1

M
Tr @ r̂T̂x~k,l ;s!# ~53!

can be regarded ass-parametrized quasidistributions in the
discrete phase space. Equation~44! @with r̂ andPx(k,l ;s) in
place of F̂ and f x(k,l ;s), respectively# implies that knowl-
edge ofPx(k,l ;s) is equivalent to knowledge of the quantum
state. The quasidistributions are normalized to unity,

(
k,l

Px~k,l ;s!51 ~54!

@Eq. ~49!, with r̂ in place ofF̂, and Tr(r̂)51#, and real. The
latter follows from the fact that the phase-space functions of
a Hermitian operator are always real@see Eq.~45! and recall
that T̂x5T̂x

†#. According to Eq.~50!, the quasidistributions
can be used to calculate expectation values,

Tr~ r̂F̂ !5N(
k,l

Px~k,l ;s! f2x~k,l ;2s!. ~55!

The phase-space functions of the unity operator,
ux(k,l ;s), are independent ofs and equal to

ux~k,l ;s!5HN21, k,l integers

0, k or l half odd
~56!

which follows directly from Eq.~45! and Eqs.~41! and~42!.
From Eqs.~56! and ~50! we find that for evenN

Tr~ F̂ !5 (
k,l integers

f x~k,l ;s!. ~57!

Equations~57! and ~49! reveal that the sum of the phase-
space function over points when at least one coordinate is
half odd must be zero. The phase-space functions
dx(2n,22m,k,l ;s) associated with the displacement opera-
tor D̂(2n,22m) for N odd read as

dx~2n,22m,k,l ;s!5M2s21W̃0
2s~xm,xn!

3expF2 i
4p

N
~km1 ln !G . ~58!

The convolutions of the phase-space functionsf x of an op-
eratorF̂ and the phase-space functions

P1
~0!~m,n;s!5

1

M
Tr @ r̂0T̂1~m,n;s!# ~59!
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of the reference-state density operatorr̂0 are again phase-
space functions ofF̂:

(
r ,t

f x~r ,t;s1!P1
~0!@x~k2r !,x~ l2t !;s2#

5 f x~k,l ;s11s221!. ~60!

~Using the functionP21
(0) instead ofP1

(0) would correspond to
changing the reference stater̂0 by the parity transformed
stateP̂r̂0P̂.) WhenN is even ands an odd integer we find
that the phase-space functions are zero for such points
(k,l ) wherek or l is a half odd:

f x~k,l ;s!50, s odd, k or l half odd ~61!

which can be proved correct by using Eqs.~36! and~45! and
recalling the properties~21! and ~22! of the characteristic
function.

Thes-parametrized phase-space functions can also be ex-
pressed in terms ofs-parametrized characteristic functions:

f x~k,l ;s!5
1

M(
m,n

f̃ x~m,n;s!expS 2 i
4p

N
~km1 ln ! D ,

~62!

where the s-parametrized characteristic functions

f̃ x(m,n;s) are related to the characteristic function

f̃ (m,n) in Eq. ~20! as

f̃ x~m,n;s!5M2sf̃ ~m,n!W̃0
2s~xm,xn!. ~63!

We can see that for a reference state with even parity the two
kinds of characteristic functions are equal to each other,

f̃ 1(m,n;s)5 f̃21(m,n;s) @see Eq.~26!#, and consequently
the two kinds of phase-space functions are also equal to each
other. The only important condition for the reference state is
that its characteristic function cannot have zero values; oth-
erwise it is impossible to define the phase-space functions
with s.0, see Eq.~36!. Though we can formally define such
functions withs,0, we could not reconstruct from them the
original operatorF̂. Let us mention two important examples
of states which have characteristic functions with zero val-
ues. First, a state with completely uncertain~smeared! quan-
tity U ~or V) would have zero value ofW̃(1/2,0) @or
W̃(0,1/2)#, see Eq.~35!. Second, for evenN any pure state
uc& whose expansion coefficients in theU basis^ukuc& are
real ~which could be, for example, some analog of a Gauss-
ian state! we get, e.g.,W̃(1/2,N/4)50. Let us now consider
special kinds ofs-parametrized phase-space functions of the
density operator.

D. Wigner function

We first consider the case whens50. According to Eq.
~36! the operatorsT̂1(k,l ;0) andT̂21(k,l ;0) do not depend
on the reference state and are equal to each other,
T̂(k,l )[T̂1(k,l ;0)5T̂21(k,l ;0). The quasidistribution
W(k,l )[P1(k,l ;0)5P21(k,l ;0) can be regarded as the dis-
crete Wigner function,

W~k,l !5
1

N
Tr @ r̂T̂~k,l !# ~64!

@see Eq.~53!#. In particular, for oddN the matrix elements of
T̂(k,l ) in theU basis are given by

^ur uT̂~k,l !uus&5d2k,r1sexpF i 2p

N
l ~r2s!G , ~65!

which is the Wootters definition@13# of the phase-space-
point operator, so that for oddN Eq. ~64! agrees with the
Wootters definition of the discrete Wigner function. Apply-
ing Eq.~62! @together with Eq.~63!#, Eq. ~64! can be rewrit-
ten as

W~k,l !5
1

M(
m,n

W̃~m,n!expF2 i
4p

N
~mk1nl !G , ~66!

and we recognize the Leonhardt definition@22,23# of the
discreteW function, used for both even and oddN.

The Wigner function exhibits a number of interesting
properties. The trace of the product of two density operators
can be calculated as the overlap

Tr~ r̂r̂8!5N(
k,l

W~k,l !W8~k,l !, ~67!

which follows directly from the general property~50!. As
was shown elsewhere@13,22,23#, the marginal sums of the
Wigner function are equal to the probabilities:

(
l
W~k,l !5^ukur̂uuk&, ~68!

(
k
W~k,l !5^v l ur̂uv l&. ~69!

Further, marginal sums over special sets of phase-space
points, the so-called ‘‘lines,’’ ‘‘broken lines,’’ etc.@13,23#
are non-negative and are equal to probabilities of the system
to be in some particular state.

In the case of continuous phase space it was shown
@38,39# that the Wigner function is proportional to the mean
value of the displaced parity operator. From Eqs.~25! and
~65! we see that

T̂~0,0!5 P̂. ~70!

Recalling Eq.~36! (s50), we verify that for oddN the op-
eratorT̂(k,l ) can be written as

T̂~k,l !5D̂~k,l !P̂D̂~2k,2 l !, ~71!

which means that also in the discrete phase space theW
function can be defined~up to a constant! as the mean of the
displaced parity operator. Note that for oddN the displaced
parity operatorD̂(k,l ) P̂D̂(2k,2 l ) represents all possible
central symmetries of the discrete phase space, the center of
symmetry being in the point with integer coordinates (k,l ).
The situation is different in the case whenN is even. First,
the central symmetry with the center (k,l ) (k,l integers! is
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equivalent to the symmetries with centers (k,l1N/2),
(k1N/2,l ), and (k1N/2,l1N/2) so that the function de-
fined as the mean value of the displaced parity operator can-
not contain sufficient information of the stater̂. Second,
there are such central symmetries, for which the center of
symmetry is in the middle of two neighboring points with
integer coordinates; as an example we can take the operator
T̂(1/2,0)5( r uur&^u12r u ~the summation runs over integers
r ). We can consider such symmetries as parity operators
‘‘displaced by a half-odd value’’; in contrast to the case of
oddN they cannot be expressed in the form~71!. This can
serve as an explanation as to why, for evenN, the phase
space should consist of points with both integer and half-odd
coordinates. However, for evenN we can prove the relations

W~k,l1N/2!5~21!2kW~k,l !, ~72!

W~k1N/2,l !5~21!2lW~k,l !, ~73!

so that onlyN2 values are independent and just one-quarter
of the phase space carries the whole information about the
state r̂. ~Let us remember that the half-odd arguments are
present also in the definition of the Wigner function in pho-
ton number and phase by Luksˇ and Perˇinová @40#—here this
fact reflects the symmetries of the enlarged Hilbert space.!

Let us also mention that the treatment of discrete phase
space consisting from both integer and half-odd points can
be used equally well forN odd. The formalism would be the
same as forN even and we could use, e.g., Eqs.~72! and~73!
for calculating the values in the points with half-odd coordi-
nates. This may seem useless, but it gives us a unified look at
the discrete phase-space formalism. It can also be used for
showing the correspondence between discrete systems in the
limit of large N and continuous systems. Let us sketch here
the main idea, which will be presented in detail elsewhere.
We can consider a state whose expansion coefficients in both
U andV bases,̂ ul uc&, ^vkuc&, are non-negligible only for
l andk inside some interval (2K,K), whereK!N. Let the
expansion coefficients vary slowly with the change of the
indices,z^ul11zc&2^ul uc&u!1 and similarly for theV basis.
Then in the phase space with both integer and half-odd co-
ordinates, theW function of this state is represented by some
structure in the vicinity of the origin, and by three similar,
but highly oscillating structures shifted by (0,N/2),
(N/2,0), and (N/2,N/2). The sum over all the values of the
central structure is approximately unity, whereas the sums of
the values of the remaining structures are approximately
zero. The central structure is a function slowly varying with
the change of the indices by 1/2 and it can be treated as an
analog of the continuousW function. On the other hand, if
we would work only with integer coordinates, the discrete
W function would be represented by the central structure, by
two very similar structures shifted by (0,N/2) and (N/2,0),
and by one more such structure with opposite sign shifted by
(N/2,N/2). The sum of values of the central structure is ap-
proximately 1/2; similarly for the other two ‘‘positive’’
structures, whereas the ‘‘negative’’ structure would give
21/2. It would therefore be difficult to interpret the central
structure as the discrete analog of the continuousW function.

E. Husimi function

Next let us consider the quasidistribution

Q~k,l ![P21~k,l ;21!5
1

M
Tr @ r̂T̂21~k,l ;21!#. ~74!

Using Eqs.~36! and~33! @with r̂0 andW̃0(m,n) in place of
r̂ andW̃(m,n), respectively#, we derive that

T̂21~k,l ;21!5
M

N
r̂0~k,l !, ~75!

wherer̂0(k,l ) is the displaced reference-state density opera-
tor,

r̂0~k,l ![D̂~k,l !r̂0D̂~2k,2 l !. ~76!

Hence Eq.~74! can be rewritten as

Q~k,l !5
1

N
Tr @ r̂r̂0~k,l !#, ~77!

which is the definition of the discreteQ function ~or Husimi
function! as given in@24,25#. A similar definition was given
recently also by Galetti and Marchiolli@28#. As discussed in
@24,25#, theQ function can be interpreted as proportional to
the probability of the system to be in some state given by the
displacement of the reference state—the so-called ‘‘quantum
ruler.’’ ~Note that a different normalization was used in
@25#.!

Let us mention some properties of the discreteQ func-
tion. From the relation~77! we can see that theQ function is
always non-negative. Further, from Eq.~61! we see that for
evenN theQ function is nonzero only if bothk and l are
integers. Applying Eq.~60!, we find that theQ function can
be written as the correlation of the Wigner functions of the
state studied,W(k,l ), and the reference state,W0(k,l ),

Q~k,l !5(
r ,t

W0~r ,t !W~r2k,t2 l !. ~78!

Since the reference state cannot be an eigenstate of the op-
eratorÛ or V̂, the discreteQ function can be interpreted as
a quasiprobability distribution obtained from a ‘‘simulta-
neous’’ measurement of conjugated observablesÛ and V̂.
The measurement of the conjugated observables can for-
mally be described as the ‘‘filtering’’ with a quantum ruler
~see @24#, and references therein!. This filtering process is
‘‘responsible’’ for increase of quantum noise which results in
‘‘smearing’’ of theQ function compared to the Wigner func-
tion of the same state.

If we assume that the values of theQ function are ob-
tained by some experiment, we can reconstruct the density
operator as, on applying Eq.~44!,

r̂5
N

M3(
k,l

Q~k,l !(
m,n

W̃0
21~m,n!

3expF2 i
4p

N
~km1 ln !GD̂~22n,2m!. ~79!
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We can see that even though theQ function can be defined
in such cases when the characteristic functionW̃0(m,n) of
the reference state has zero values, it is then impossible to
reconstruct from it the original density operator. This prop-
erty is not dependent on our treatment based on the charac-
teristic functions: one could, e.g., try to reconstruct the
N221 independent elements of the density matrix solving a
set ofN221 linear equations whose right-hand sides are the
N221 independent values of the measuredQ function. But
in this case the set is singular and we do not obtain the
required solution.

F. Glauber-Sudarshan function

The concept of quasidistributions also enables us to intro-
duce the discreteP function. For this purpose we recall Eq.
~44! @with r̂ and Px(k,l ;s) in place of F̂ and f x(k,l ;s),
respectively, andx5s51# and Eq.~75!, which imply that

r̂5(
k,l

P~k,l !r̂0~k,l !, ~80!

where

P~k,l ![P1~k,l ;1!5
1

M
Tr @ r̂T̂1~k,l ;1!# ~81!

@see Eq.~53!#, and the displaced density operator of the ref-
erence state,r̂0 , is given in Eq.~76!. Equation~80! reveals
that the density operator can be expanded in displaced
reference-state density operatorsr̂0(k,l ), the expansion co-
efficients being given by the discrete phase-space function
P(k,l ). This is quite similar to the infinite-dimensional Hil-
bert space, where the Glauber-SudarshanP functionP(a) is
introduced through the expansion of the density operator in
coherent-state density operatorsua&^au, i.e., displaced
vacuum-state density operators,@3#

r̂5E d2aP~a!ua&^au. ~82!

Thus we can consider the quasidistributionP(k,l ) as a dis-
crete analog of the Glauber-SudarshanP function. In par-
ticular, the discreteP function of the displaced reference
stater̂0(k8,l 8) is equal to the Kroneckerd,

P~k,l !5dk,k8d l ,l 8, ~83!

which is analogous to the continuous case where theP func-
tion of the coherent state is the Diracd function.

Similarly to the case of theQ function, for evenN the
P function is nonzero only at the points (k,l ), where both
k and l are integers. From Eq.~60! we can see that the
Wigner function can be calculated as the convolution of the
P function with the Wigner function of the reference state,

W~k,l !5(
r ,t

P~r ,t !W0~k2r ,l2t !. ~84!

In our discussion we have not specified whether the quan-
tum reference state described by the density operator is a
pure state or a statistical mixture. Our formalism is equally

valid in both cases. Consequently, using the functions
P(k,l ) we can express the density operator of an arbitrary
pure state as a sum of density operators of statistical mix-
tures. A similar situation was discussed in the case of
infinite-dimensional Hilbert space@41#, where generalized
P andQ functions with thermal reference states were stud-
ied.

III. APPLICATIONS

A. Examples of discrete quasidistributions

To start our discussion we first have to specify the quan-
tum reference stater̂0 . For oddN we will consider this state
to be the ground state of the HamiltonianĤ0 ,

Ĥ0[2cosÛ2cosV̂. ~85!

As shown in@36#, such a state minimizes the Bandilla-Paul
uncertainties for the quantitiesU andV. Increasing the di-
mensionN of the Hilbert space to infinity, the Hamiltonian
~85! can be approximated by the harmonic-oscillator Hamil-
tonian (1/2)Û21(1/2)V̂2 ~for more discussion see@36#!.
Therefore the ground state of the Hamiltonian~85! can be
considered as an analog of the vacuum state of the harmonic
oscillator and it is a good candidate for the reference state in
the formalism presented in this paper. In@25# it was chosen
as the quantum ruler state in the definition of the discrete
Q function. Because the ground state of the Hamiltonian~85!
has the even parity, the two quasidistributionsPx(k,l ;s)
(x561) are mutually equal,P1(k,l ;s)5P21(k,l ;s).

In Fig. 1 we plot these quasidistributions for two special
states in the odd- (N511) dimensional case. The first four
diagrams present the situation when the studied state is equal
to the reference stater̂0 . In Fig. 1~a! the Wigner function
Px(k,l ;0) of this state is presented. We see that in the vicin-
ity of the origin of the phase space@i.e., around the point
~0,0!# this Wigner function has a form of the discrete ‘‘hill’’
which resembles the Gaussian shape of the Wigner function
of the vacuum state in the continuous case~in the limit of
high N this similarity becomes closer!. On the ‘‘edges’’ of
the phase space the Wigner function is not equal to zero~as
one would expect in the case of an exponentially ‘‘decay-
ing’’ Gaussian function! but it exhibits rather complicated
oscillatory behavior. Actually it consists of three similar
structures as the central peak—two with the same sign and
one with opposite sign. In spite of this behavior the marginal
probability distribution functionsWu(k)5( lW(k,l ) and
Wv( l )5(kW(k,l ) associated with probabilities to ‘‘ob-
serve’’ eigenstates of the operatorsÛ and V̂, respectively,
are non-negative and normalized to unity.

Figure 1~b! shows the functionPx(k,l ;1); this function
represents thed Kronecker symbol which is the analog of the
Dirac d function ~i.e., the Glauber-SudarshanP function of
the vacuum state of the harmonic oscillator!. Physically it
means that for construction of the density matrix of the ref-
erence state we need only the reference state itself and not
also its displaced versions.

Figure 1~c! presents the situation ofs521, i.e., the dis-
creteQ function. Properties of this function were studied in
detail in @25#; here let us mention again the Gaussian-like
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shape of the reference state; in comparison to theW function
in Fig. 1~a! the peak is broader and the function takes only
non-negative values.

In Fig. 1~d! we can see a transition from theW function to
theQ function for the parameters520.5. For this case the
s-parametrized quasidistribution is not defined uniquely: we
have to specify the definition of thesth power of a complex
number for each phase-space point (k,l ). This can be done
in a variety of ways; we must only satisfy the condition~38!.
In our case when the characteristic functionW̃0(m,n) is real
~due to the even parity! this means that if in the point
(m,n) the value of (21)s is defined as exp(ips), then in the
point (2m,2n) it must be defined as exp(2 ips). Once
such a definition is adopted then the quasidistributions are
defined for every reals and have all the important properties
studied in the preceding section. However, as can be seen
from this figure, due to the particular choice we lose the
symmetry.

In Figs. 1~e! and 1~f! we show quasidistributions of the
‘‘position state’’ ~or ‘‘line state’’! uu0& ~1!; in Fig. 1~e! we
see itsP function (s51) which oscillates also to negative
values, while Fig. 1~f! shows the smoothed shape of theQ

function. ~Let us note that theW function of such a state is
nonzero only along the linel50 where it takes a constant
value 1/N.)

In Fig. 2 we present the case ofN even; hereN56. As
discussed in the previous text, the phase space consists of
(2N)2 points—for each variable the values now run all inte-
gers and half odds between23 and 2.5. For this situation we
again have to specify the reference state. However, as fol-
lows from the discussion at the end of Sec. II C, in this case
we cannot use the ground state of~85!: such states only have
real expansion coefficients in theU basis and therefore they
have zero values of the characteristic function. To overcome
this problem we constructed the reference state as the super-
position of the ground state and the next excited state with
even parity~the superposition factor of the excited state be-
ing 0.1i times the factor of the ground state!. However, the
question of optimal choice of the reference states in the even
N case remains open.

In Fig. 2~a! we show theW function (s50) of the refer-
ence state; again we can see the central peak in the point
(0,0); however, its behavior around the ‘‘edges’’ of the
phase space is more oscillatory than for the case of oddN.

FIG. 1. Quasidistributions P1(k,l ;s)
5P21(k,l ;s) in the odd-dimensional case,
N511. The reference state is the ground state of
Hamiltonian ~85!. ~a!–~d! The studied state is
equal to the reference state,~a! s50, ~b! s51, ~c!
s521, ~d! s520.5. ~e!, ~f! The studied state is
the ‘‘position state’’ uu0& ~1!, ~e! s51, ~f!
s521.
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Note the role of the negative values in points (k,l ) with half
oddk or l ; they ensure that the marginal sums over half-odd
lines are zero. Figure 2~b! shows theP function (s51) of
the reference state, again being equal to the Kroneckerd,
whereas Fig. 2~c! presents itsQ function (s521). Note that
in the cases ofs561 the corresponding quasidistributions
are identically zero for any point with a half-odd coordinate
and for any state—as follows from~61!. In these figures we
can see the broadening of the central peak froms51 over
s50 to s521.

In Fig. 2~d! we can see theW function (s50) of the line
stateuu0&; this Wigner function was discussed in detail by
Leonhardt@23#. The marginal sum over valuesk for l50
gives us the probability 1 of the state to be found with this
value of U; on the other hand, such a marginal sum for
l523 over the oscillating terms gives zero. The negative
values forl523 also ensure the zero marginals overl for
k half odd. Figure 2~e! shows theP function (s51) for this
state and Fig. 2~f! itsQ function (s521). Whereas now the
P function oscillates also to the negative values, theQ func-
tion is always non-negative.

Let us mention once more the question of choice of the
reference state. Galetti and Marchiolli@28# suggested a
phase-space function based on coherent states defined as dis-
placement of an eigenstateuF0& of the Fourier transform
which was calculated by Mehta@42#:

uF0&}(
k

(
r52`

`

expF2
p

N
~rN1k!2G uuk&. ~86!

These states have properties similar to those of our ground
states of~85! ~which are also eigenstates of the Fourier trans-
form!, and their analytical expression contains the Gaussian
form of the infinite-dimensional vacuum states. ForN52
andN53 both definitions give the same result. Nevertheless,
the problem of zero values of the characteristic function for
N even is present also for the reference states defined as~86!.

B. A model of measurement of the discreteQ function

There are many physical systems for which it is useful to
work with the finite-dimensional Hilbert space formalism,

FIG. 2. Quasidistributions P1(k,l ;s)
5P21(k,l ;s) in the even-dimensional case,
N56. The reference state is a superposition of
the ground state of Hamiltonian~85! and of the
next excited even-parity state.~a!–~c! The stud-
ied state is equal to the reference state,~a! s50,
~b! s51, ~c! s521. ~d!–~f! The studied state is
uu0& ~1!, ~d! s50, ~e! s51, ~f! s521.
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e.g., spin systems, atomic systems, quantum optical systems
with a finite number of photons, etc. Here we would like to
present a very simple and intuitive model of such a system
and to show the principal possibility of the direct measure-
ment of the discreteQ function.

Let us consider the system to be one monochromatic po-
larized photon, which can propagate inN parallel optical
fibers—i.e., we are dealing with a multimode one-photon
system. A pure state of this system is described by the state
vector uc&,

uc&5a1u1&1u0&2•••u0&N1a2u0&1u1&2 •••u0&N1•••

1aNu0&1u0&2 •••u1&N , ~87!

where the state vectoru1&k means the one-photon Fock state
in the kth mode. Thus the state vectoruc& can be written as
the column vector

uc&↔S a1a2A
aN

D , ~88!

and the squared amplitudeuaku2 means the probability that
the photon is in thekth fiber. We think that this system can
correspond especially well to the Wootters discrete phase-
space formalism, e.g., because these base states are without
any a priori preferred state~in the spin systems there is al-
ways a state which is the ‘‘highest’’ and a state which is the
‘‘lowest’’ !. Ordering the fibers to a ring-sectioned cable, we
can immediately see the circular geometry of the system.

Let us assume that we can reproduce the studied state an
arbitrary number of times~we have an infinite ensemble! and
we want to measure it—i.e., to find its density matrix. For
this purpose we can use energy conserving optical elements
~representing unitary transformations! and photodetectors;
see Fig. 3. Let us first show how various unitary transforma-
tions could be performed. One of the simplest transforma-
tions is represented by the displacement operatorR̂u(n) ~8!.
This would just correspond to rotating~or renum-
bering! the fibers—from thekth position to the position
(k1n) modN. The displacementR̂v(m) can also be easily
performed—by connecting to the fibers phase elements, the
phase shifter 2pk/N to thekth fiber. Combining these two
devices we can obtain any displacementD̂(n,m) ~11!.

Any other unitary transformation can be constructed from
these elements and a cascade of couplers, or equivalently
beam splitters.~We can use the standard theory of beam
splitters@43# to show that our one-photon multimode states
transform in the same way as the multimode coherent states.
For proof of the possibility to construct any unitary transfor-
mation using beam splitters see@44#.!

Let us now show how a measurement of the discreteQ
function can be performed. For this purpose we need one
optical element representing theR̂u(n) rotations, one ele-
ment representing theR̂v(m) phase shifts@thus having the
displacement operatorD̂(n,m)#, one element for the refer-
ence state, and one detector. If the reference state is a pure

state uF&[uF1&, the corresponding element can be de-
scribed by the unitary operatorÛF ,

ÛF[uu1&^F1u1 (
k52

N

uuk&^Fku. ~89!

Here the vectorsuFk& form an orthonormal set. The impor-
tant property of this device is that it transforms the reference
state to the first fiber~i.e., to the state when the photon is
with certainty in the first fiber!. Let the detector be connected
to this fiber; then it is described by the projection operator
P̂1[uu1&^u1u and it measures the quantity Tr(P̂1r̂out),
wherer̂out is the output state of the system. If we connect our
input stater̂ first to the displacement device and then the
result to the reference-state device, the output state will be

r̂out5ÛFD̂~2n,2m!r̂D̂~n,m!ÛF
† , ~90!

and the probability of detecting the photon is

p~n,m!5Tr~P̂1r̂out!

5^u1uÛFD̂~2n,2m!r̂D̂~n,m!ÛF
† uu1&

5^F1~n,m!ur̂uF1~n,m!&, ~91!

where

uF1~n,m!&[D̂~n,m!uF1& ~92!

is the displaced reference state. We can see that up to the
constant 1/N this is just the discreteQ function of arguments
(n,m). Thus, the direct measurement of theQ functions is
performed by changing the parametersn andm of the rota-
tion operatorsR̂u(n) andR̂v(m) and by measuring the rela-
tive frequency of the detection of photons detected at the first
fiber of the output.

As an example, let us now show a possible measurement
of theQ function in this model forN53. Let us choose the
reference state as the ground state of the ‘‘Hamiltonian’’
~85!. ForN53 this operator has the matrix form~in theU as
well as in theV representation, up to an unimportant additive
constant!

FIG. 3. Simple scheme for measuring the discreteQ function.
The transformationR̂u(1) rotates the fibers,R̂v(1) represents phase
shifters, andÛF describes a cascade of couplers. The detector is
connected to the output of the first fiber.
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Ĥ05
1

2 S 1 21 21

21 22 21

21 21 1
D . ~93!

The matrix of eigenvectors for this case can be written as

ÛF5S a1 a2 a1

a3 a4 a3

a5 0 2a5
D , ~94!

where

a15@2~3131/2!#21/2, ~95!

a25@~3131/2!/6#1/2, ~96!

a352@2~3231/2!#21/2, ~97!

a45@~3231/2!/6#1/2, ~98!

a55221/2. ~99!

The first row of this matrix corresponds to the reference state
uF&. Because this matrix has one zero element, it can be
constructed using only two couplers:

ÛF5B̂1B̂2 , ~100!

where the couplerB̂1 operates between the first and the sec-
ond fibers,

B̂15S 1

A31A3
1

A32A3
0

1

2A32A3
1

A31A3
0

0 0 1

D , ~101!

while the couplerB̂2 operates between the first and the third
fibers,

B̂25S 1

A2
0

1

A2
0 1 0

1

A2
0 2

1

A2

D . ~102!

Let us notice that for this simple model we can also easily
avoid the noisy effect of the nonunity efficiency detection.
Placing another detector to the remaining outputs we can
disregard those measurements for which no detector detects
the photon. Then the fraction of the number of ‘‘clicks’’
from the first detector to the total number of clicks is pro-
portional~in the limit of infinite number of measurements! to
the value of theQ function. Results of such measurements
enable us to perform simple calculations to evaluate mean
values of any operatorF̂ in the state of interest: because we

measure the functionP21(k,l ;21), we can use the formula
~55!, with f 1(k,l ;1) according to Eq.~45!.

Let us mention that this measurement scheme enables also
the tomographical reconstruction of the discreteW function,
as suggested by Leonhardt@22#: for this we need to measure
the projections of our state on the ‘‘discrete quadrature’’—
the so-called line states, precessed line states, and broken
line states~for their definition and more details see@22,23#!.
This would require a suitable change of the operator~89! so
that it transforms a particular quadrature state into one fiber.
Then the characteristic function of the probability distribu-
tion for such quadratures is proportional to the characteristic
function of the discrete Wigner function.

IV. DISCUSSION AND CONCLUSION

In this work we were dealing with discrete phase-space
formalism and we were trying to offer a consistent way for
introducing s-parametrized phase-space functions to the
quantum systems with a finite number of independent states.
To summarize the main properties of these functions and to
compare them to the situation in the infinite-dimensional Hil-
bert space we can draw the following conclusions.

~i! The s-parametrized phase-space functions are associ-
ated with a particular ‘‘reference’’ state. In the case of
infinite-dimensional Hilbert space of a harmonic oscillator
this reference state is usually implicitly assumed to be a
vacuum state, even though sometimes also more general
states are considered~e.g., for the squeezedQ function,
squeezedP function, etc.!.

~ii ! The reference state can be chosen quite arbitrarily, the
only condition is that its characteristic function must not
have zero values. It is even possible to choose the reference
state to be a statistical mixture.

~iii ! Thes-parametrized phase-space functions are equiva-
lent descriptions of the operators. If the related operator is a
density operator, we call these functions quasidistributions.
From the quasidistribution we can calculate the density ma-
trix and vice versa.

~iv! Properties of these functions~and of the phase
spaces! are different for the case of odd and evenN dimen-
sion of the Hilbert space. ForN odd the phase space consists
of N3N integer numbers, whereas forN even it consists of
2N32N numbers—integers and half odds. This follows
from the different symmetries of the phase spaces. However,
we can consistently use the formalism of half-odd phase-
space points also in the case ofN odd; this provides no new
information, but it may be useful for observing the corre-
spondence between the continuous phase-space functions
and their discrete counterparts in the limit of largeN.

~v! Generally there are two kinds of phase-space functions
for eachs, P1(k,l ;s) andP21(k,l ;s); the exceptions are for
s50 and for the case when the reference state has even
parity, in which cases these two functions are equal. To our
knowledge this situation was not discussed for the continu-
ous case, where only even-parity reference states were con-
sidered.

~vi! With a properly chosen reference state the
s-parametrized phase-space functions are uniquely defined
for every integers. For s real ~noninteger! an ambiguity
stems from a nonunique definition of real powers of complex
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numbers. Specifying these powers we can define discrete
phase-space functions for arbitrary reals—even though such
a choice is artificial and there will always be other alternative
definitions. This problem has not occurred in the continuous
case because~to our knowledge! only Gaussian reference
states were considered, which have real positive characteris-
tic functions.

~vii ! The most important cases of these quasidistributions
are for s50, P1(k,l ;0)5P21(k,l ;0)5W(k,l ), the Wigner
function, fors521, P21(k,l ;21)5Q(k,l ) theQ function,
and fors51, P1(k,l ;1)5P(k,l ) theP function. The mean-
ing of theQ function is that it is proportional to probabilities
of the state to be in a displaced reference state, whereas the
P function enables us to write the density matrix of the stud-
ied state as a sum of displaced reference-state density matri-
ces. Contrary to theW function in the case ofN even, both
P andQ functions~and any other phase-space function with
s odd! are nonzero only in points with integer coordinates.

~viii ! Similarly to the continuous case, the
s-parametrized quasidistributions enable us to simply calcu-
late squared scalar products of two states and/or mean values
of operators.

~ix! A convolution of a phase-space functionf 1 ~or cor-
relation of f21) of some studied operatorF̂ with the function

P1 of the reference state is a phase-space function of the
operatorF̂.

We also offer a very simple measurement scheme which
shows a connection of the discreteQ function to an experi-
ment. It is based on the possibility to construct physical re-
alization of the discrete displacement operators and of the
operator which transforms the reference state to the detector
input. Because the reference state cannot be an eigenstate of
either of the phase-space-variable operators (Û or V̂), we
can look at such measurements as smeared simultaneous
measurements of these quantities. This scheme also enables
the discrete tomographical reconstruction of theW function.
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@31# P. Šťovı́ček and J. Tolar, Rep. Math. Phys.20, 157 ~1984!.
@32# A. Vourdas and C. Bendjaballah, Phys. Rev. A47, 3523

~1993!.
@33# D. Galetti and A. F. R. Toledo Piza, Physica A186, 513

~1992!.
@34# A. Bandilla and H. Paul, Ann. Phys.~Leipzig! 23, 323 ~1969!.
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