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Quantum state reconstruction and detection of quantum coherences
on different observation levels
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We apply the Jaynes principle of maximum entrg@hys. Rev.106, 620 (1957; 108 171 (1957] for a
reconstruction of Wigner functions of quantum-mechanical states of light on different observation levels. We
study how quantum interference between components of superpositions of coherent states, which is responsible
for the appearance of nonclassical effects, can be detected on different observation levels. We analyze in detail
the reconstruction of Wigner functions of squeezed states on different observation levels in the case of nonunit
detection efficiency modeled as a decay of the state under consideration into a zero-temperature reservoir.
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I. INTRODUCTION data obtained from the measurement of the sygtem from
a finite number of moments of system operato&multa-

The Wigner functiori 1] of the quantum-mechanical state neously we address the question of how to quantify the pre-
which is described by the density operaforcan, in prin-  cision with which the Wigner function is reconstructed. To
ciple, be reconstructed either via a set of single-observablaccomplish this task we utilize the concept of observation
measurementéthe so-called optical homodyne tomography levels[7], where each observation level is specified by a set
[2,3]) or via a simultaneous measurement of two noncomof linearly independent operatolS, (v=1,2,...n) for
muting observablegsee, for instance, the concept of propen-which expectation valueS, are given(measured With the
sities as discussed by Wkiewicz[4] and otherg5,6]). The  help of the Jaynes principle of maximum entrof8] (see
completely reconstructed Wigner function, or equivalentlyalso[7,9]) we will show how to reconstruct in the most re-
the reconstructed density operator, contains informatiomiable way the Wigner function of the measured state within
aboutall independent moments of the system operators, i.ea given observation level. In addition, we analyze how quan-
in the case of the quantum harmonic oscillator the knowltum coherences can be detected on different observation lev-
edge of the Wigner function is equivalent to the knowledgeels. In other words, we address the problénhich is the
of all moments((a")™a") of the creation &) and annihila- most incomplete observation level which still allows us to
tion (a) operators. distinguish between a pure state and the corresponding sta-

In many cases it turns out that the state under considetistical mixture?To model nonunit efficiency measurements
ation is characterized by anfinite number of independent we analyze the “decay” of quantum-mechanical states into a
moments((a")™a") (for all m andn). To perform acom-  zero-temperature reservoiheat bath The paper is orga-
plete measurement of these moments can take an infiniteized as follows. In Sec. Il we briefly review basic elements
time. This means that even though the Wigner function carf the phase-space formalism used in quantum optics. In Sec.
in principle be reconstructed the collection of experimentallll we introduce the concept of observation levels applied to
data takes an infinite time. In addition, the data processinguantum optics. In Sec. IV we show how with the help of the
and numerical reconstruction of the Wigner function are timemaximum entropy principle Wigner functions on given ob-
consuming as well. Therefore an experimental realization okervation levels can be reconstructed. In Sec. V we analyze
the reconstruction of the Wigner function can be question\igner functions of a squeezed vacuum state of light on
able. different observation levels. Section VI is devoted to a dis-

In practice, it is possible to perform a measurement of justussion of detection of quantum coherences on different ob-
a finite number of independent moments of the system opservation levels and description of the decay of superposition

erators. The aim of this paper is to analyze how the Wignestates of light. We finish our paper with conclusions.
function of a quantum state of a single-mode light field can

be (partially) reconstructed from not necessarily complete

Il. PHASE-SPACE DESCRIPTION OF STATES

R OF A SINGLE-MODE FIELD
Permanent address: Institute of Physics, Slovak Academy of Sci-

ences, DbravsKacesta 9, 842 28 Bratislava, Slovakia, and Depart-  Utilizing a close analogy between the operator for the
ment of Optics, Faculty of Mathematics and Physics, Comeniuglectric componeng&(r,t) of a monochromatic light field
University, MlynsKadolina, 842 15 Bratislava, Slovakia. and the quantum-mechanical harmonic oscillator, we will
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consider a dynamical system which is described by a pair oThe Wigner function can be interpreted as the quasiprobabil-
canonically conjugated Hermitian observableandp, with ity density distribution(see below through which a prob-
[q,p]=i%. Eigenvaluesgy and p of these operators range ability can be expressed to find a quantum-mechanical sys-
continuously from— to +o0. The annihilation and creation tem (harmonic oscillator around the “point” (g,p) of the
operatorsa and a' can be expressed as a complex linearphase space.
combination ofg and p:
. MAXIMUM ENTROPY PRINCIPLE

R 1 Ay 1a ~t 1 A il _1n AND OBSERVATION LEVELS

a=——=—=(Nq+iA""p), a'=—=(Aq—iN""p),
N V2h The state of a quantum system can always be described by

(2.1 a statistical density operatqr. Depending on the system

preparation, the density operator represents either a pure
quantum statécomplete system preparatioar a statistical
mixture of pure state§incomplete preparationThe degree
of deviation of a statistical mixture from the pure state can be
best described by thencertainty measurey[ p] (see[7,9)),

where\ is an arbitrary real parameter. The operatorand
a' obey the Weyl-Heisenberg commutation relation
[a,a']=1.

A particularly useful set of states is the overcomplete se
of coherent statelsx) which are the eigenstates of the anni-
hilation operator, i.e., ala)=a|a). These coher(_ant states 7[pl=—kg Tr(p Inp), (3.2
can be generated from the vacuum stfé [defined as
é}|0):0] by the action of the unitary displacement operatorwhere kAB is the Boltzmann constant. The uncgrtainty mea-
D(«) [6], sure 5[ p] is equal to zero for pure states amflp]>0 for

. . statistical mixtures. For an isolated system the uncertainty
D(a)zexqaa’f_ a*al, |a)=D(«a)|0). (2.2 measure is a constant of motion, i.@(t)/dt=0.

The parametric space of eigenvalues, i.e. phase spacéor A. Maximum entropy principle
our dynamical system, is thiafinite plane of eigenvalues

(q,p) of the Hermitian operator§ and p. An equivalent There are situations when instead of the density operator

phase space is the complex plane of eigenvalues p, expectation valuess, of a set O of operatorsG,
v=1,... ) are given. The set of linearly independent op-

(v=1 ) The set of | ly ind dent

1 erators is referred to as thabservation leveD [7]. A large

a= E(MH ix"1p) (2.3 number of density operatofsg, which fulfill the conditions

of the annihilation operata. The parameterg andp in Eq.
(2.3 can be interpreted as the expectation values of the op- Tr(f){é}éy)ZGw v=1.2,...n, (3.2b
eratorsq andp in the statd «).

The phase-space description of the quantum-mechanicgan be found for a given set of expectation values
oscillator which is in the state described by the density opG,=(G,). Each of these density operatcir@} can possess
eratorp=|W)(W¥| (in what follows we will consider mainly a different value of the uncertainty measuy[af){é}]. If we
pure statesis based on the definition of the Wigner function wish to use only the expectation valu€s, of the chosen
[1] Wiy)(§). The Wigner function of the system described observation level for determining the density operator, we
by the density operatgs is defined ag10] must select a particular density operafge,= o g, in an
unbiased manner. According to the Jaynes principle of maxi-
mum entropy[8] this density operatod;s, must be the one
which has the largest uncertainty measw[e}{é}] and si-
multaneously fulfills constraint&3.2). As a consequence,

1 o
Wiy ()= ;J TipD(n)]expén* — & nd?y, (2.4

wherelﬁ(n) is given by Eq.(2.2). . R . ~
The Wigner function can also be defined as a particular nlog]= —keTr(ogInoe) = nlpigyl
Fourier transform of the density operator expressed in the _ —kBTr(ﬁ{{;}Inﬁ{é}) 3.3

basis of the eigenvectots) of theposition operatoq:
for all possiblep;g, which fulfill Egs. (3.2. The variation

W, , ij dela—z02)olg+ ¢/2)ePit. (2. determining the maximum ofi[ o(g,] under the conditions
(aP) —o {a-Li2lpla+i2) @9 (3.2 leads to a generalized canonical density openfadrl]

Both definitions(2.4) and (2.5 of the Wigner function are . 1 -
identical (see Hilleryet al.[1]), providing the parameters ‘T{G}:%eXF{ _EV: MGV>, (3.9
and &¢* are related to the coordinatgsand p of the phase
space as
Z{é}()\l! e ,)\n):Tr

exp( —2 )\,,(Asy

. (39

§=J%(kq+i>\lp), §*=¢%(>\q—i7\1p)-

where N\, are the Lagrange multipliers andgy(A4,
(2.6 .. .,\,) is the generalized partition function. The Lagrange
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multipliers can be expressed as functions of the expectation D. Wigner functions on different observation levels

values A, =A,(Gy, ...,Gy). The maximum uncertainty it the help of a generalized canonical density operator
measure regarding an observation leigty will be referred 5 - \hich is associated with ouactual knowledge about
to as the entropBig;= 7 016)]= —KeTr(oygyInoyg). This  the'state of the physical system, we define the Wigner func-

entropy can be expressed exclusively in terms of the meaf,, in the ¢ phase space at the corresponding observation
valuesG,, i.e., S5 =5(Gy, . .. ,Gy).

level as
. . - 1 A
B. Extension and reduction of Athe obserAvatlon level Wiey(é)= ;f d25THD( oGy lexpént — e p). (3.7
If an observation leveD;5,={G;, ... ,G,} is extended
by including further operators,, ... ,M,, then additional . .
expectation value,=(M,), ... M,=(M,) can only in- An analogous expression can be found for the Wigner func-

crease the amount of available information about the state ot{‘on in the (@,p) phase spacfsee Eq(2.9)].

the system. This procedure is called tbrtensionof the
observation levelfrom O, to O wy) and is associated E. Maximum entropy principle and laws of physics
with a decrease of the entropy. The generalized canonical

It has been pointed out by Ja that there is a stron
density operator on the observation le@®g g, , pol ut by Jayrieg ! 9

formal resemblance between the maximum entropy formal-
ism and the rules of calculations in statistical mechanics and

n |
&{é,M}IZ%EXP(—E \G,— > KM|\”/|# , (3.6 thermodynamics. Simultan(_aous‘l‘y, he has emphasized that
{G,M} v=1 =1 the maximum entropy principle “has nothing to do with the
laws of physics.” In fact, this is the reason why the maxi-
belongs to the set of density operatgigs, which fulfill ~ mum entropy principle is applicable in so many fields of

Eqg. (3.2. The entropyS,g sy of the extended observation human activity, such as economy or socioldéyr more de-
level Oy can only be smaller than or equal to the tails, see the book by Kapur and Kesa\ai). To be more
entropy Sz, of the original observation levelO,g, specific, it is worth citing a paragraph from Jaynes’ Brandels
ie., Sem=<Se [a special case of Eq(3.3]. The lectures(see p. 183 of these lectur§8]): “Conventional
Lagrange multipliers can be expressed as functions of th@uantum theory has provided an answer to the problem of
expectation valuesx ,=\ (G, ...,G,,M;,...,M;) and setting up initial state descriptions only in the limiting case
k,=k,(G1,..., Gp,Mz,...,M)). In the special case where measurements of a complete set of commuting ob-
«,=0 the expectation valugd , are functions of the expec- Servables have been made, the density mai®y) then re-
tation valuesG,. This means that the measurement of ob-ducing to the projection operator onto a pure st#®)
servablesM, does not increase information about the sys-Which is the appropriate simultaneous eigenstate of all mea-
tem. Consequentl;ﬁ{é,,\},}zﬁ{é} _and Sem=S6- _ s_ure_d qugntltles. But there is almo;t no expenmental situa-
We can also considerr@duction of the observation level fion in which we really have all this information, and before
if we decrease the number of independent observables whici€ have a theory able to treat actual experimental situations,
are measured, e.g2a m— Oa (hereé andM  are in- ex_lstl_ng quantum theory must be supplemented with some
dependent This redL{Jciio}n i éc}companiéd by an increase of"iNciple that tells us how to translate, or encode, the results

the entropy due to the decrease of the information availabl f mehasureg:ents Into a cigflm(t)e stﬁ_tehdescrlpﬁ:(i?j). Nq:)e
about the state of the system. that the problem is not to fing(0) which correctly describes

true physical situation.” That is unknown, and always re-
. . mains so, because of incomplete information. In order to
C. Time-dependent entropy of an observation level have a usable theory we must ask the much more modest
If the dynamical evolution of the system is governed bydguestion:What p(0) best describes our state of knowledge
the evolution superoperator U(t to) such that @boutthe physical situatioridn other words, the maximum
ﬁ(t)zO(t,to)ﬁ(to),then the expectation values of the Opera_entropy pr||jC|pIe ighe mos'g conservative aSS|gnment_ in the
- . . i ) sense that it does not permit one to draw any conclusions not
torsG, on the given observation level at timere given by

~ a N ) ) warranted by the data
G,(t)=Tr G, U(t,ty)p(ty)]. By using these time-dependent

. . s We can conclude that a measurement itself is a physical
expectation values as constraints for maximizing the Uncefsrocess and is governed by the laws of physics. On the other
tainty measurey[ p;,(t)], we get the generalized canonical

[ LPA - . hand, formal procedures by means of which we reconstruct
density operatou g, [see Eq(3.4)] with the time-dependent information about the system from the measured data are

Lagrange multipliers\,(t)=X,(Gy(1), ... Gy(1)) and the  pased on certain principles which cannot be directly ex-
time-dependent entrop§;g,(t) which is associated with the pressed in terms of the physical laws.

given observation level. This generalized canonical density
operator is not governed by the von Neumann equation but it
satisfies an integro-differential equation derived by Robert-
son [11] (see also[12]). The time-dependent entropy
S;g)(t) is defined for any system that is arbitrarily far from  In our paper we will consider two different classes of
equilibrium. In the case of an isolated system the entropy canbservation levels; namely, we will consider the phase-
increase or decrease during the time evolufieee, for ex- sensitive and phase-insensitive observation levels. Phase-
ample, the book by Hobson, R¢B], Sec. 5.6. sensitive observation levels are related to operators which

IV. OBSERVATION LEVELS FOR A SINGLE-MODE
FIELD
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provide some information about off-diagonal matrix ele-so that the partition function corresponding to the operator
ments of the density operator in the Fock basis., these &y, readsZ,=n+1. Now we can rewrite the generalized
observation levels reveal some information about the phaseanonical density operatary, in the Fock basis in the form
of states under considerationOn the contrary, phase- o
insensitive observation levels are based exclusively on a . - n"
measurement of diagonal matrix elements in the Fock basis. Tth= anO Wm}(m' 4.7)
Before we proceed to a detailed description of the phase-
sensitive and phase-insensitive observation levels, we intrgsor the entropy of the thermal observation level we find a
duce two exceptional observation levels, the complete anghmiliar expression:
thermal observation levels.

Complete observation levél,={(a")*a';vk,I}. The set Sn=kg(n+1)In(n+1)—kgnInn. (4.9
of operatorsin)(m| (for all n and m) is referred to as the _
completeobservation level. The expectation values of theThe_fact that the entropySy, is larger than zero for
operatorgn)(m| are the matrix elements of the density op- @Y n>0 reflects the fact that on the thermal observation

erator in the Fock basis, level all states with the same mean photon number are indis-
tinguishable. This is the reason why Wigner functions of
(mlp|ny=Tr{p|n}{m|], Vn,m, (4.1  different states on the thermal information level are identical.

The Wigner function of the statel’) on the thermal obser-

and therefore the generalized canonical density operator (ation level is given by the relation
identical with the statistical density operator,

2 2| |2
Wo=13 2ﬁex’{ B 1J|in ' 4.9

From Eq.(4.9) it also follows that the vacuum state can be

completely reconstructed o, becauseS;,=0 for n=0.

In this case the entrop$, is determined by the density op- Extending the thermal observation level we can obtain more

eratorp as “complete” Wigner functions, which in the limit of the
complete observation level are equal to the Wigner function

So=—kgTr[ aglnoy]=—kgTr plnp]. (4.9  of the measured state itself, i.e., they are not biased by the

lack of information(measured dajaabout the state.

This entropy is usually called the von Neumann entropy

[13]. A. Phase-sensitive observation levels
As a consequence of the relati¢ef. Sec. 3.3 in14])

=5. (4.2

.1 -
Uo=z—oexﬁ{— 2 )\m,n|n><m|

m,n=0

1. Observation leveD;={a'a,a" 3}

) L (—e)k A KenAKem We can extend the thermal observation level if in addition
|n)(m|=llm8%1k20 m(a )M, (4.4 to the observablél we consider also the measurement of
I ' mean values of the operatoasanda’ (that is, a measure-

. . ment of the observableggandp is performedl. If we denote
the complete observation levél, can also be given by a set the (measureimean values of these operatorg as=y and

of operators{(a")ka';Vk,I} or {g“p';Vk,I}. The Wigner .3\ & ; ; .
function on the complete information level is equal to theﬁa )=7v*, then the generalized canonical density operator

Wigner function of the state itself, i aW%)(£) =Wiyy(¢). O+ Can Pe written as

Thermal observation leveDy,={a'a}. The total reduc- 1
tion of the complete observation lev@}, results in a thermal &1=Z—exp:—)\1(éﬁ— Y )@a-y1l, (4.10
observation levelDy, characterized just by one observable, !

the photon number operatar, i.e., quantum-mechanical wijth the partition function Z, given by the relation
states of light on this observation level are characterized only — (1 —e~*1)~1. To find the Lagrange multipliek,; we

by their mean photon number=(n). The generalized ca- have to solve the equation [B'as;]=n, from which we
nonical density operator of this observation level is the well-fjq
known density operator of the harmonic oscillator in thermal

equilibrium, =2
M= 1”_—|’)’|||2 (4.1
A 1 . +n—|y
UchZ—EXF[—Mnn]- 4.5 _
th The entropyS, on the observation leveéd, can be expressed

in a form very similar t see Eq.(4.9)]:
To find an explicit expression for the Lagrange multiplier y oS [ g ]

A\ We have to solve the equation[®r,n]=n, from which Si=kg[n—| >+ 1]In[n—|y|?+1]
we find that —  — | 12
—keln—[y[*]In[n—[~]*]. (4.12
expl — Ay) = _L (4.6) The Wigner functiork/\/f&,)>(§) corresponding to the general-

n+1 ized canonical density operatéy, reads
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where the displacement operaﬁbf v) is given by Eq.(2.2),

while the operatord) (6/2) andS(r) are given by the rela-
tions

F{ 2|&— |2
—— X ——————
1+2(n—|y|?) 1+2(n=[91?)

From the expressiofd.12 it follows that S;=0 for those
states for whicm=|y|2. In fact, there is only one state with 0(6)=exd —i 6a'a]
this property. It is a coherent state) (2.2). In other words, ’
because of the fact thé®, =0, the coherent state can be
completelyreconstructed on the observation le@|. In this
caseW(1)(£) =W(J)(&) =2exd —2/é—af?]. For other states
S,>0 and therefore to improve our information about the
state we have to perform further measurements, i.e., we have
to extend the observation levél, .

. (413

Wi (8)=

=exr{%(é*2—é2)}
(4.15

" ir . ..
S(r)=eXI{ - zl—h(qp+ Pq)

where tanhP=—|\,J/\;. The partition functionZ, in Eq.
(4.14b can be evaluated in an explicit form:

2. Observation leveD,={a'a,(a"23 2",

One of the possible extensions of the observation level Z,t=1—exd — (\2— |\, (4.16

0, can be performed with the help of observabigsand

p?, i.e., when not only the mean photon numbeaind mean o . )

values of § and p are known, but also the variances I_ns_tead of finding explicit expressions for the Lagrange mul-
((AG)?), ((AP)?), and({AGAP}) are measured. On the ob- tipliers Ay and X, we can find solutions for the parameters

servation levelD, we can express the generalized canonicaf@nnZ andy defined as

operatoro, as
1 Ay
-~ B2 a2
0> ZZeXF{ 2 (a Y )
>
-5 (@2 M@y )(E-y)|, (4143

where the Lagrange multipliex; is real while, can be
complex:k,=|\,|e”'?. We can rewritar, in a form similar
to the thermal density operator:

1. - -
02=="D(y)U(6/2)S(r)
Z;

xexd — (\2—|\,|%)Y2a%a]S () U (0/2)D (),
(4.14h

(N+1/2)|£— Y2 = (M*12)(£— y)2— (M/2)(&* — y*)?

x={exd (\i—|noHY2 -1} (4.17)

We express these parameters as

M

tanh = 97375

x=[(N+1/22—|M|?]¥2-1/2,
(4.18

whereN=n—|y|2>0 andM=|M|e '/=7— 2.
We recall that physical requiremenitk5] lead to the fol-
lowing restrictions on the parametdisand M:
N=0, N(N+1)=|M|>2 (4.19
Once tanhR and y are found we can reconstruct the

Wigner functionW(3(¢) on the observation leved,. This
Wigner function read$l15]

(2) — avl —
Wiin(6) = [(N+122—[M |2]1/2‘=XF{

Analogously, we can find an expression for the entr8py
S,=kg(x+1)In(xy+1)—kgyIny.

It has the form of the thermal entrop#.8) with a mean
thermal photon number equal jo[see Eq.(4.18].
Using the expression for the Wigner functioh.20 we

can rewrite the variances of the position and momentum op-

erators in terms of the parametédsand M as follows:

[(N+1/2)%—|M|?] (4.20
[
R h
((AQ)%)= 5[1+2N+2ReM],
4.21) 5
((Ap)H)= 5[1+2N-2ReM]. (4.22
The product of these variances reads
h2
((AQ)°)((AP)?*)= Z-[(1+2N)*~4(ReM)?].  (4.233
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From the expressiof4.2]) for the entropyS, it is seen
that those states for whichN(N+1)=|M|? can be com-
pletely reconstructed of the observation le¥®, because

and £,,(x) is the Laguerre polynomial of order.
The phase-insensitive observation le@| can be further
reduced if only a finite number of operatos, [wheren

for these stateS,=0. In fact, it has been shown by Dodonov e M] is considered. In this case, in general, we have

et al. [16] that the states for whicN(N+1)=|M|? are the

Zne mMPn<1 and therefore it is essential that apart from the

only pure states which have non-negative Wigner functionsmean values, the mean photon number is also known

For these states the product of varianc&23a reads

hZ
((AQ)°)((AP)?)= Z[1+4(ImM)2], (4.230

which means that if in addition IM =0 (see, for instance, a

squeezed vacuum state with a real parameter of squeezin

from the measurement.

2. Observation leveDg={f,Py=|N){N|}

We can reduce observation levels, when we consider
only a measurement of the mean photon numbend the
Erobability Py to find the system under consideration in the

then these states also belong to the class of minimum uncefFock stateN). The generalized density operaiog in this

tainty states. From Eq$4.18 and(4.21) it follows that all
pure Gaussian states for whibi{N+1)=|M|? can be com-
pletely reconstructed on the observation le¢gl.

B. Phase-insensitive observation levels

1. Observation leveD,={P,=|n)Xn|;¥n}

case reads

©

1 " A~
O-B:Z—Bexp[—)\n—)\NPN]: PnINX(N| +n;N Pa[my(nl,
(4.28

where P,,=exp(—A\n)/Zg gives the photon number distribu-

The most general phase-insensitive observation level cofion on the subspace of the Fock space without the vector

responds to the case wherll diagonal elements

If we introduce the notation x=exp(—\),

P,=(n|p|n) of the density operatop describing the state ¥=&XP(~Ay), then the Lagrange multipliessand\, can be
under consideration are measured. The observation lev&und from the equations

O, can be obtained via a reduction of the complete observa-
tion level Oy and it corresponds to the measurement of the

photon number distributio®,, such thatz,P,=1. Because

of the relation(4.4) we can conclude that the observation
level O, corresponds to the measurement of all moments of

the creation and annihilation operators of the foral)fak

(1=t
PN TNy D (1%

(4.293

x+NxN(1—x)%(y—1)
(1=x)[1+xNy—1)(1-x)]

(4.29n

or, which is the same, it corresponds to a measurement of all

moments of the photon number operator, i.e.,
Op={P,=|n)(n|;Vn}={(ahHkak vk} ={AkVK}. (4.24

The generalized canonical operatop at the observation
level O, reads

=n§0 Pan)(n|. (4.25

.1 -
UA:Z_AeXF{ —nzo Ann)(n|

The Lagrange multipliers., have to be evaluated from an
infinite set of equation®,=Tr oAP,]=€ */Z, (for Vn),
from which we find\,,= —In[Z,P,]. The entropyS, at the
observation leveD, is given by the expression first derived
by Shannori17]:

Sp=—kg >, P,InP,. (4.26)
n=0

The Wigner functiotW(y)(£) of the statd W) at the obser-
vation level©O4 can be reconstructed in the form

WIE© = 2, PaWiry(8), (4.27a

where W,,(§) is the Wigner function of the Fock state
In),

Winy(€)=2(—1)"exp(— 2| €[*) La(4]€]%), (4.27H

Generally, we cannot express the Lagrange multipheasnd
Ay as functions oin and Py in an analytical way for arbi-
trary N and Eqgs(4.29 have to be solved numerically. Nev-
ertheless, there are two cases when these equations can be
solved in a closed analytical form.

(1) If N=0 (we will denote this observation level as
Og1), then we can find for Lagrange multipliexsandX g the
following expressions:

1-Py Po

e r=1- , e MN=———
(1—Pg)*

[n—(1-Pg)],
(4.30

and after some straightforward algebra we can evaluate the
parameter$, as

n

Py for n=0,
P.={ (1—-Py)? [n—=(1-Py|" 4.3
n _( 0) (_ 0) for N>0. (4.30
n—(1—Pgp) n

From Eq.(4.31) which describes the photon number distri-
bution of the generalized density operaiog,, it follows

that the reconstructed state on the observation |&yglhas

a thermal-like character on the subspace formed of Fock
states except the vacuum. Nevertheless, in this case the re-
constructed Wigner function can be negatiunlike in the
case of the thermal observation leveThis can happen if

P, is close to zero and is small. Using explicit expressions
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for the parameter®,, given by Eq.(4.31), we can evaluate The ordering of phase-insensitive observation lev@ls,
the entropySg; corresponding to the present observationOg;, andOg, is more complex:
level:

OBl

SB].: _kBpolnPO_kB(n—_ P)In(n__ P)_szPInP OODOAD O DOth, (4373

B2
+kgninn, (4.32
which reflects the fact that observation levélg; and Og,
where we have used the notatiéh=1—P,. In the limit  cannot be obtained as a result of mutual reduction or exten-
Po—(1+n)~! expression4.32 represents the entropy on sion. The corresponding entropies are related as
the thermal observation levésee Eq.(4.9)]. In this limit
Og, reduces to the thermal observation levg),. On the Sg1
other hand, in the limiPy— 0, n— 1 the entropySg;=0 and Ses= SAg[ S ] <S. (4.37H
P,= 8,1 which means that the Fock stdtE) can be com- B2

pletely reconstructed on the observation le¢g}; . . . .
(2) If the mean photon number is an integer, then in theFor a particular quantum-mechanical state of light, the ob-

case— 1 (we il denoe s observation evel ) we 21210, Ve can be odered wi respect b ncreasig
find for the Lagrange multipliera and Ay-n=Ap7"the ex- ; ' . ;
grang P N=n—%n that if the entropyS, on the observation leveD, is equal to

ressions ; i
P zero, then the entropies on the extended observation levels
— —14T = are equal to zero as well. This means that the Wigner func-
n _ (1+n)*""—n .
e M= e M= — P (433 tion of a pure state can be completely reconstructed on the
1+n (1—PpN" " observation levelD,, i.e., the complete reconstruction can

be performed via the measurement of a finite number of ob-
The reconstructed photon number distribution has again aervables.
thermal-like character:
oM D. Choice of the observation level
Pr=(n|ogy|n)= > [1+ Sonte M —1)]. (4.39 We stress here that the entropisassociated with dif-
B2 ferent observation levels do not reflect only the purity of the
tate itself but also the degree of our knowleddata ob-
ained from a measuremergbout the state. In other words,

The corresponding entropy can be evaluated in a closed an

lytical form: .
y the entropiesS, can be taken as a measure of the error of a
Seo= — kaP-P-—Ka(1—P3N(1— P+ ka(1— P reconstruction procedure on a given observation level. The
B2 BPainPy—ke( nin( n) ke o) higher (i.e., more complefethe observation level, the better
(L+n)t+n is the reconstruction and the smaller is the valu§gaf This
XIn T (4.35  behavior is clearly seen from the chain of inequalities pre-

sented by Eqsi4.36b and (4.37D.
If a priori information that the states which are going to
be reconstructed arpure states is availabléi.e., the von

i Neumann entropys, associated with the complete observa-
reduces to the entropy of the thermal observation Igseé

) tion level is equal to zenothen the entropie§, associated
Eq. (4.8]. In such a case the reconstructed density operatqyp, O, uniquely quantify the precision with which a par-

0B2= 0y [see Eq.(4.7)] and so the reductioe;— O  ticylar reconstruction has been performed. To be more spe-
takes place. On the other handPif=1 thenSg;=0 and the  isic it 5 =0 on O, lower than®, we can conclude with

Fock statgn) can be completely reconstructed on the Obser'certainty that a complete reconstruction opare state has

vation levelOgp . been performed o), (for instance, one can perform a com-
plete reconstruction of a coherent state @p because the
C. Relations between observation levels entropysS; is equal to zerp This means that there is no need
The various observation levels considered in this sectiof® Perform any further measuremerietending the obser-
can be obtained as a result of a sequence of mutual redu¥@tion leve) because we already have complete information
tions. Therefore we can order the observation levels undefPout the state. . _
consideration. This ordering can be done separately for N the case of statistical mixtures the von Neumann en-
phase-sensitive and phase-insensitive observation levels. [fPPY So associated witld, is larger than zero. Therefore the
particular, phase-sensitive observation levels are ordered Quantification of the precision of the reconstruction with the

It is interesting to note that iPy-is given by its value in the
thermal photon number distribution then the entr@gyd5

follows: help of entropiesS, associated witl¥, is more difficult. We
do not know whether we have performed complete recon-
020,220,000, (4.363 struction before a measurement on the complete observation
level Oy has been performed. Only when we knavpriori
The corresponding entropies are related as that Sy has a given value, then §,=S, we can say that on

O a complete(i.e., the best possiblereconstruction has
SH=<S,<S;<S;,. (4.36bH been performed.
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If there is noa priori information available about the state We note that any inclusion of “errors” on a given observa-
which is going to be reconstructed, there does not exist angion level is implicitly associated with an extension of this
universal prescription which would suggest to an experimenebservation level. For instance, an error related to the mean
talist which observation level is the most suitable for thevalue of n is associated with a measurement of the mean
reconstruction of the given state. In any case, there is at leashlue of the operaton?.
one general rule which has to be satisfied, i.e., any consistent
observation level has to reveal information about the mean \, RECONSTRUCTION OF WIGNER FUNCTIONS
photon numbefmean energyof the state. This means that
the thermal observation level can be taken as the initial step As an illustration we will analyze in this section a recon-
for any state reconstruction. In successive steps this observatruction of the Wigner function of the squeezed vacuum
tion level can be extended to more and more complete obstate on different observation levels. The squeezed vacuum
servation levels. A sequence of obtained entrop®$ as-  state[18] can be expressed in the Fock basis as
sociated with the observation level®,}, or more precisely
differences between neighboring entropies in this sequence, _ o 1/a = [(2n)1]¥? N
can give us some indication how close we are to the com- |7)=(1—7°) ngo 5 77120), (5.9
pletely reconstructed statthis procedure is suitable also for

statistical mixtures We note that there are other measuresyhere the squeezing parametgifor simplicity we assume
which can also be utilized for this purpose. For example, the;7 to be real ranges from—1 to + 1. The squeezed vacuum
Hilbert-Schmidt norm (i.e., “distance”) dist(o,o) be-  state(5.1) can be obtained by the action of the squeezing
tween the density operators defined as operatorS(r) given by Eq.(4.19 on the vacuum statg),
dist &y, 6) = ||6w— 0| |=[Tr(G— )22 (4.39 i€, [7)=S(r)[0), where the squeezing parameteris
related to the parameter; as np=tanhlr. The mean
photon number in the squeezed vacu{fini) is given by the
can serve as the measure of how close the two states dgsiationn= 7% (1— 7%). The variances of the position and

scribed by density operatoig anda, are. Nevertheless, the momentum operators can be expressed in the form
distance disi§,,o,) does not tell us which reconstruction

(i.e., which density operatosr, or o) is more complete. <(A{:‘I)Z>:ho-2, <(Aﬁ)2>:ﬁa-2’ (5.2a
This can only be done with the help of the corresponding a P
entropiesS, and S, . with the parameters, and o, given by the relations
A completely different picture appears if one has sane
priori information about the state which is going to be re- , 1(1+7) 1 Jno
constructed. For instance, if from the preparation procedure 04=5| 7= )= 51 —
some properties of the state are known, then this information 2\1=n/ 2 J1+n=yn’
can significantly improve our choice of “the most efficient”
observation level which would yield, if not complete, then at o 1(1-m) 1 Vn~ (5.2
least a very good reconstruction. As an example, we can 7P72\1+ )" 2 Vi+n+yn '

briefly discuss the experiment by Raynegral.[3] in which

Wigner functions of the vacuum state .and the .squeezeq we assume the squeezing parameter to be real and
vacuum state have been reconstructed via the optical homqzg — 1] then from Eq.(5.2) it follows that fluctuations in
dyne technique. The preparation part of the setup in Raymghe momentum are reduced below the vacuum state limit
etal’s experiment was designed to generate squeezegy at the expense of increased fluctuations in the position.
vacuum states, i.epure Gaussian states. If this is taken@s  simultaneously, it is important to stress that the product of
priori information then one can conclude that the measureyariances((Ad)2) and ((Ap)?) is equal to#2/4, which

ment performed on the observation lev®l reveals the com-  means that the squeezed vacuum state belongs to the class of
plete information about the state. Consequently, instead ghinimum uncertainty states.

performing a very sophisticated homodyne tomography The wigner function of the squeezed vacuum state is of
(which in an ideal case corresponds to the measurement q85ssian form:
Ogp) one can perform a simple homodyne measurement in

which the variance of relevant quadratures can be measured 1 1 g2 1 p?
and the Wigner function of the state can be reconstructed. On W,,»(d,p) = —exr{ ~5h o2 2% —2} (5.3a
the other hand, fonon-Gaussianstates optical homodyne Tq%p Tq P

tomography can be considered as the most efficient way to. 2 2 .
gain information about the system. with the parameters and o, given by Eq.(5.3. In the

We note that if the density operatpg of the measured (Reg;Im¢) phase space the Wigner function of the squeezed

state is knowra priori, then the Hilbert-Schmidt nor#.3g9 ~ Vacuum reads

can be used to measure how close the reconstructed state is

to the original state. _ W, (€)= 1 exp{
In our previous discussion we have not analyzed the role K 0q0p

of experimental errors in a reconstruction scheme based on

the maximum entropy principle. That is, we have considered-rom Eq.(5.3) it follows that the mean values of the position

that all mean values of observables are measured preciselgnd the momentum operators in the squeezed vacuum state

(Rep)®  (Img)?
a % )

(5.3b

o
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FIG. 1. The reconstructed Wigner functions
of the squeezed vacuum statg with n=2. We
consider the observation levelsOy=0,,

A 01= 0O, Op, Og1, andOg; (see indications in
A 3
7 the figure.

A
AR,

are equal to zero, while the higher order symmetrically or- B. Observation level Oy
dered moments can be expressed in terms of the second order,o squeezed vacuum stal) is characterized by an

moments. oscillatory photon number distributioR,, such that

A. Observation levelsO, and O Pon=(1—7? G

' 0 2 2n n ) 22n(n| )2 n
The Wigner function of the squeezed vacuum staté) .

on the complete observation lev®, is given by Eq.(5.3 1 (2n)! n
and is plotted(in the complex¢ phase spagein Fig. 1 :(l+n_)1’2 222\ 1407 P2n+1=0.
(Oy). This is a Gaussian function, which carries phase infor-
mation associated with the phase of squeezing. On the ther- (5.5

mal observation levelDy,, which is characterized only by

the mean photon number; the reconstructed Wigner func- Using Eq. (4.27 we can express the Wigner function
tion of the squeezed vacuum state is a rotationally symmetriw‘(ﬁg(g) of the squeezed vacuum on the observation level
Gaussian function centered at the origin of the phase spagg, as

[see Eq.(4.9 and Fig. 1 Oy)]. On the observation level

0,, the reconstructed Wigner function is the same as on the %

i S 2n)! 2"
thermal observation level because the mean amplit(des WA (&) =2(1— ,,2)1/2e*2\§\22 (—ﬁ (41€?)
and(a") are equal to zero. On the other hand, the Wigner " o 22" (n1)z =2
function of the squeezed vacuum can be completely recon-
structed on the observation lex®}. To see this we evaluate GEE €2 &2
the entropyS, for the squeezed vacuum state. The param- = p{—(z—ﬂ— 2—2” 0(2—2— 2—;)
etersM andN can be expressed in terms of the squeezing 9q <% %q <% 5.6
parametery (we assumey to be real as :
7? 7 where |l y(x) is the modified Bessel function. We plot this
N=7_ 7 M=1= 7 (54 \wigner function in Fig. 1 ©,). We see thaw/(2)(£) is not

negative and that it is much narrower in the vicinity of the

origin of the phase space than the Wigner function of the
so thatN(N+1)=M?2. Consequently, the parametegiven ~ vacuum state. Nevertheless, the total width of the Wigner
by Eq. (4.18 is equal to zero, from which it follows that function Wfﬁg(g) is much larger than the width of the
S, [see Eq(4.21)] for the squeezed vacuum is equal to zero.Wigner function of the vacuum state.
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C. Observation level Og; pleteness of the coherent-state bassvhat leads to purely

We can easily reconstruct the Wigner function of theduantum effects.
squeezed vacuum state at the observation 1&gl. Using To be specific, let us represent the squeezed vacuum state
general expressions from Sec. IV B we find the following (°-) @S @onedimensional superposition of coherent states
expression for the Wigner functidN(Bl)(g) on a line[20] [for simplicity we assume a real squeezing
parameterp [0,1)],

-Py n+1 _ N4y _
WED(£)= ( — )W|o)(§)+(1_Po) — Wy (£), gy ST daex%_ua% 6.2
(573 N2mn J- 27

where« is areal parameter. The corresponding density op-

— (4 -1/2 H P H
where Po=(n+1) ", W(¢) is the Wigner function of erator;3|,,> in the coherent-state basis can now be expressed

the vacuum state given by E@4.27), and Wy, (€) is the
Wigner function of the thermal statd.9) with an effective

number of photons equal i R (1— 5?12 (= % -7
— p|”>zwf7 daf d,Bex;{—Wa
n=————-1. (5.7
_ -1/2 1-
Lo 5, Bl 6.2

We plot the Wigner functioWV(5(£) in Fig. 1 (Og,), from
which the dominant contr|but|0n of the vacuum state is transAs follows from the above the off-diagonal elements
parent. It is due to the fact that the squeezed vacuum state){8| of the density operator in the coherent-state basis

has a thermal-like photon number distribution. carry information about the nonclassical properties of quan-
tum states of light, i.e., these elements are associated with

quantum-interference effects in phase space. The quantum
phase-space interference leads to quadrature squddfhg

If the mean photon number is an integer, then one may as well as to oscillations in the photon number distribution in
consider the observation lev€lg, for a nontrivial recon-  the squeezed vacuum state.
struction of the Wigner function of the squeezed vacuum For comparison purposes we can consider a statistical
state. After some algebra we find that this reconstructegnixture associated with the squeezed vacuum stai®.
Wigner function reads This mixture can be represented as a one-dimensional mix-
ture of noninterfering coherent states on a line. The corre-

+1 . i
(B2)(§) (1_ 7Wn>(§)+ = — W (8), (5.9 sponding density operator reads

D. Observation level Og,

12 ~
_ . - 1-
whereW5(£) is the Wigner function of the Fock stafe) pmix:(_~77> f da exp{ - Tna2‘||a><a|. (6.3
andWy,(£) is the Wigner function of the thermal state with ™7 - n

the mean photon number equal o If n is eventhen for

P-[see Eq/(4.33] we find The von Neumann entropy of the statistical mixtgée3) is

larger than zero because the density operé@@ does not

— —h describe a unique statghe information about the interfer-
. m n_- __ _ (5.9  ence between coherent components is inevitably lost even on
"2 [(n2)1]2 (L Nyt the complete observation levél).

The mean photon numberin the statistical mixturg6.3)
We plot this Wigner function in Fig. 1®g,). It has a is
thermal-like charactefcompare with Fig. 1 Q)] but the _
contribution of the Fock stafe=2) is more dominant com- — 7
pared with the proper thermal distribution. ff is an odd - 2(1-T7)°
integer, therP7=0 and the corresponding Wigner function
can again be reconstructed with the help of E&s8) and and the thermal-like photon number distribution associated

(6.9

(4.33. with this mixture reads
VI. DETECTION OF QUANTUM COHERENCES 120 2 "@2n)!
' ? =93] e

Within the framework of the phase-space formalism one
can interpret a reduction of quantum fluctuations as a direct B 1 2n \" (2n)! 5
consequence of quantum interference between component " (1+2n)2 1+ 2n] 22'(n1)%" ©.9
(coherent states[19]. Coherent states form a position-
momentum patch of minimum area and may be regarded aEhe variances of the position and momentum operators in the
the quantum analogue of classical points in phase space. THeixture state(6.3) can be expressed as
guantum interference between coherent-state components in s —> - >
phase spacéwhich is intrinsically related to the overcom- ((AQ))=thog, ((Ap))=tfiay, (6.6a
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FIG. 2. The reconstructed Wigner functions
of the statistical mixture(6.3) with n=2. We
consider the observation levelsOy=0,,
01= 04, Op, Ogy1, andOg, (see indications in
the figure.

where The Wigner function of the statistical mixtu(6.3) on the
complete observation leveQ, is the same as for the
~p_ 1 1+7 ~_ 1 squeezed vacuum stdteee Eq.(5.3b] except for the vari-
o=zl ——= oL==, (6.6b . ; ) . X
“ 2\1-% P2 ances, which are given by E(6.6), i.e., the statistical mix-

ture (6.3 is described by a Gaussian Wigner function which
which means that due to the absence of quantum interferengg not squeezed in the quadraturdsee Fig. 2 Op)].
between coherent components the quadrature squeezing in From our discussion in Sec. IV it follows that the Gauss-
the p quadrature is completely deterioratptbmpare with  jan Wigner functions can be completely reconstructed on the
Eq. (5.2b]. The expression for the varian@y in terms of  observation levels?, and the corresponding entropS,
the parameter, looks exactly the same as in the case of the[given by Eq.(4.21)] is equal to the von Neumann entropy.
squeezed vacuum stafsee Eq.(5.20], butE,zJ is not re-  The von Neumann entropy of the squeezed vacuum state is
duced below the vacuum-state limit. We can express thequal to zerdthis is a pure staje while the von Neumann

varianceg6.63 in terms of the mean photon numbegiven  entropy of the statistical mixturés.3) is given by Eq.(4.21)

by Eq. (6.4 and we find that with the parametey given by the relation
~. 1+4n __ 1 1/1+7\¥? 1 1
oo= > 0’%:5. (6.60 X=3\175 3 2(1+4n)1’2 > (6.9

Comparing Eqs(5.2 and (6.6) we see that for thesame The difference between the von Neumann entropy of the
mean photon number the varian'é% (the variance associ- squeezed vacuum stdi& 1) and of the corresponding statis-
ated with the statistical mixtuyeés always smaller tharar tical mixture(6.3) reflects the presencabsenceof quantum

(i.e., the variance in the] quadrature of the squeezed coherencesi.e., the off-diagonal terms in the coherent-state
vacuum state which reflects the fact that quantum interfer- basis in our one-dimensional representation of the squeezed
ence not only reduces fluctuations in fhguadrature but, on vacuum stateand can be used for a quantification of the
the other hand, enhance fluctuations in the conjugd@ted degree of quantum interference in the phase space between
quadrature in a very specific way; namely, from the above icoherent components of superposition states. In the case of
follows that the sum of vanancel% andg for the squeezed Gaussian states this degree of quantum interference can be
vacuum isequalto the sum of variances for the correspond-completely determined on the observation leggl. On the

ing statistical mixture: other hand, on the observation lev@} both the squeezed
vacuum state and the corresponding mixture are described by
oi+oh=05+T5=1+2n. (6.7  the thermal Wigner functiofithis is due to the fact that for

both these state&)=(a'")=0). Consequently, their entro-
It is interesting to note that both coherent states and squeezgiks are equdlsee Eq(4.8)] and therefore, in this particular
vacuum states belong to the class of minimum uncertaintgase, we cannot recover the presence of the quantum-phase-
states(MUS) in the sense thatr p =1/4. Nevertheless, the space interference on the observation le®gl
relation(6.7)shows us that in the class of MUS the coherent In Fig. 2 (O,) we plot the Wigner function of the statis-
states play an exceptional role, because these are the ortigal mixture (6.3) reconstructed on the observation level
states for which the sum of the varianog§ and Urz) takesa O, (for details see Sec. IV For completeness we plot in
minimum value equal to 1. Fig. 2 (Og1) and Fig. 2 (Og,) the Wigner functions of the
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~ (a) (o) FIG. 3. The entropie§|x”>(n_)
3.0 3.0 - =T (short-dashed line and S{™(n)
: =7 - e (long-dashed lingof the squeezed
R0 1 CeemmmT T T oR0 T vacuum state and the correspond-
1 ST 1 ing statistical mixture, respec-
Lo 10y /7 tively, on different observation
0o ] . oo ¥ . levels O as functions of the mean
a0 4:0 photon numben: (a) Oy=0,, (b)
1(c) 1(d) O, and(c) Og; . On the observa-
3.0 - T 2.0 4 i tion level Og, [see(d)] entropies
] - SeA(n) (+) andSyz(n) (A) are
S20 1 ez S20 1 evaluated only for discrete values
1 £ 1 of n. For reference purposes we
Lo /7 Lo+ /* plot the entropySy,(n) (solid ling)
¥ 1 associated with the thermal obser-
%% T 50 w0 %5 T T Tse T ioo vation levelOy, .
n n

statistical mixturg6.3) reconstructed on the observation lev-  Generally speaking, the lowére., less compledehe ob-
els Og; and Og,, respectively. We see that the shape ofservation level is, the smaller is the difference between the
W|(f7‘>l)(§) and vv}f‘_’(g) are essentially the same except theentropy of the squeezed vacuum state and the corresponding

value OfW‘(B>1)(§) at the origin of the phase space is much stat!stical mixturg(see Fig. 3. The maximum diffgrence can
K obviously be found on the complete observation lefgl,

larger than the value aV{®Y)(¢). This is associated with the > . ; :
g _ _Pmix(g) : while there is no difference on the thermal observation level
fact that the contribution of the vacuum state into theOth_
squeezed vacuum state is more dominant than into the statis-
tical mixture. The difference between the reconstructed

Wigner functionsW(>?(¢), and W(bifx)(g) and the Wigner A. Decay of quantum coherences

function W™ (¢) [see Eq(4.9)] consists in the contribution  From our previous discussion it follows that the detection
P(n) of the Fock stat¢2) into the given state. To be more of quantum coherences depends on the choice of the obser-
specific, forn=2 we have PY”(n)>P4{"(n)>Psm*(n)  vation level. The highefthe more completethe observation
[compare Eqs(5.5), (4.7), and(6.5)]. level is, the better we can distinguish between a pure super-
In what follows we will address the problem of whether Position state and the corresponding statistical mixture. This
we can quantify the degree of guantum interference on thgifference can be quantified with the help of the correspond-
phase-insensitive observation lev@), with the help of the ing entropies. In addition to the choice of the observation
entropyS, associated with this observation level. Using thelevel, the measurement process can be affected by nonunit
general expression for the Shannon entrdjy [see Eq. efficiency of the measurement apparatus itself, i.e., the mea-
(4.26)] and the expressions for the photon number distribusured data are biased by an additional noise in an uncontrol-
tion (5.5 and (6.5 of the squeezed vacuum state and thelable way. One possibility to model this deterioration of in-

corresponding statistical mixture, respectively, we find theformation about quantum-mechanical systems is to consider
relation the interaction of the system under consideration with a large

reservoir(heat bath

For simplicity we will consider a zero-temperature heat
bath to model a nonunit efficiency quantum-mechanical mea-
surement. We can interpret this model as the detection of
where guantum coherences of the single-mode light field decaying
into a zero-temperature heat bath. We will analyze the time
evolution of entropies associated with different observation
levels and we will discuss how the quantum coherences are
ang o2 af_fected by the presence of the rese_rvoir. In other V\_/ords,_we
K E b (n_)ln<2 (n!) ) 6.10 will study to what extent the entropies under consideration

B& T (2n)! )’ ' can be used for quantification of the degree of quantum co-

herence associated with the state.

andP,(n) is given by Eq.(6.5. From Eq.(6.10 it follows To be specific, we shall assume that the density operator

= . . . p for the field mode obeys a zero-temperature master equa-
that the entropﬁ/’i’“ (n) is an increasing function af. Con- tion in the Born-Markov approximation. This equation in the

sequently, from Eq. (6.9 it then follows that yieraction picture can be written as
S7(ny< S."*(n) which means that the Shannon entropy re-
flects the presence of quantum interference in phase space.
We plot these functions in Fig.(8B).

S (2m) =S (n), 6.9

2n+1

Drmix( Ty — kB N Nk
Sy (n)—;ln(2n+l)+nkBln

= =(2apa’-a'ap-pa'a), (6.11

2|
N
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wherey is the decay constant. Following Barnett and Knightform (5.3 with the time-dependent paramete’r"sé(t)
[21] we find the time-dependent expression for the density;lnd’,}g(t) given by the relations

matrix of the squeezed vacuum st&be?) decaying into the
zero-temperature heat bath as

~ 1 — - 1
i (1— Y2 = " 1-p Uq(t):§+2/m, U;(t)=§. (6.1
p|77)(t): Wfﬁmdafixdﬂ exr{ - W(az—Fﬂz)}

Here we briefly turn our attention to the fact that the relation

X{ B ayt# ua)(ut28), (6.12  (6.7) is valid also in the case when the squeezed vacuum
state and the corresponding statistical mixture are decaying
where u=exp(— ). into the zero-temperature heat bath, i.e., for any tim®

The Wigner function of the decaying squeezed vacuunwe have
state(6.17) reconstructed on the complete observation level
O, is given by Eq.(5.3b with the time-dependent param- (1) +o5(t) =7 5(1) + 7 5(1) =1+ 2un=1+2n(1).

etersod(t) ando5(t) given by the relations (6.19
2(¢) = }_‘_ yn 2(p) = 1 yn- The photon number distribution of the decaying statistical
T Ty T T Jn Ty T Ty o mixture (6.16) reads
(6.13 o
. . . — 2un (2n)!
We see that the decaying squeezed vacuum state is described P,(n;t)= — 220 ()2 (6.19
by a Gaussian Wigner function with time-dependent param- (1+2un) 1+2pn '

eters. We note that the Wigner function of the decaying o .
squeezed vacuum state can be obtained from the Wignéie note that the photon number distribution of the decaying
function (5.3b of the squeezed vacuum statetatO via a  thermal state and the statistical mixtui@16 can be ob-
coarse-graining procedure, which can be used to model tined from their initial {=0) values by simple rescaling of
nonunit efficiency measurement proc¢gg]. the mean photon number, i.eR,(n;t)=P,(n(t);t=0),
From Eq.(6.13 it follows that at timet>0 the decaying Wheren(t)=un. This is in sharp contrast with the time

squeezed vacuum staterist a minimum uncertainty state €volution of the photon number distribution of the decaying
anymore, i.e., squeezed vacuum stat@. 195, because in this case quantum

coherences are decaying on a different time scale than the

. . 2 5 h? y— mean photon numbdfor more details see Ref19]).
(AN (AP))=Aog(op(t)= - [1+4(p—pu)n] Both the decaying squeezed vacuum state and the corre-
sponding statistical mixture are described by Gaussian
52 Wigner functionst>0 and consequently can be recon-
BZ. (6.19 structed in the most reliable way on the observation level

O,. The corresponding entropi§§’7>(t) andS’;?mix(t) (which
The photon number distribution of the decaying squeezeéh the present case are equal to the von Neumann entropy

vacuum stat€6.12 can be written in the form are given by Eq(4.21), where the time-dependent param-
. o eters for the squeezed vacuum sttg(t) and for the cor-
(2k)! (Mﬂ) responding mixturey; (t) read
p =(1— 12 1/2 =7 Pmix
n(lu') ( n ) k=[(nz+l)/2] (k' )2 2 B
1 1| 260 2k X (O =[(—p?)n+1/4142-1/2, (6.203
I

Xp,. (D) =[pn+1/4"—1/2, (6.200

The mean photon numba(t) evaluated with the help of the
distribution (6.195 describes exponential decay induced byrespectively.
the zero-temperature reservoir, i.8(f) = un=exp(-y)n. The von Neumann entropy of the statistical mixture de-

Analogously, we find the solution of Eq6.11) for the caying into the zero-temperature heat bath is a monotonically
density operator describing the decay of the statistical mixdecreasing function, while the von Neumann entropy of the
ture (6.3): squeezed vacuum state decaying into the zero-temperature

heat bath increases during the first period of its time evolu-
1/2 . . . .
1-79 o tion and after reaching its maximum starts to decrease. To
Tr_?;) fﬁmd“ find the moment at which the entropﬁé’”(t) reaches its
maximum value we solve the equation
X ex;{ - 1,.—77a2
n

The Wigner function of the decaying statistical mixture re-
constructed on the complete observation le@gl has the Using the explicit expression foy|,(t) we find that

ﬁmix(t) =

|M1/2a><,u1/2a|_ (6.16 x| (1)

ot

1+ X[nM®

In X| (1)

%S‘z’”(t):ks ):o. (6.213
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FIG. 4. The time evolution of the von Neumann entropies F|G. 5. The time evolution of the Shannon entropfs@(t)
S(t) (dashed ling and Si™(t) (solid ling) of the squeezed (dashed linpandS;™(t) (solid line) of the squeezed vacuum state
vacuum state and the corresponding statistical mixture, respe@nd the corresponding statistical mixture, respectively, on the

tively, on the observation levéD,= O, for the initial mean photon  gbservation level, for the initial mean photon number=1 (a)
numbern=1 (a) andn=4 (b). andn=4 (b).

IXp(t) yun(l-2up) ence of quantum coherence associated @itussianstates
=- ——=0 (6.21bh g
at 2\(w—p?)n+1/4 at least for the detector efficiengy=1/2.
As we have said earlier, the lowére., the less complete
for w=1/2 irrespectiveof the initial mean photon num- the observation level, the smaller is the difference between
bern of the squeezed vacuum state. the entropy of the pure squeezed vacuum state and that of the
The other important property of the von Neumann entro-corresponding statistical mixturesee Fig. 3 This differ-
pies S (t) and SEmi(t) is that S|27I>(t)<sfz’mix(t) for any  ence, which reflects the presence of quantum coherences, is

t>0 andn>0, that is, using the entropy associated with the€Ven smaller when a nonunit efficiency measurement is un-
observation levelD, we can discriminate between the pure d€r consideration. In particular, in Fig. 5 we plot the time
squeezed vacuum state and the corresponding mixture, i.eyolution of the Shannon entropiSS”(t) andS;™(t) of the

we can “detect” the presence of quantum coherences eveglecaying squeezed vacuum state and of the decaying statis-
in the case of nonunit efficiency measurement. It is interesttical mixture with the initial mean photon numberequal to

ing to note that at the moment when the von Neumann ens [Fig. 5a)] and 4[Fig. 5(b)], respectively. Here we stress
tropy of the decaying squeezed vacuum states reaches if$y; for Gaussian states the observation l&gls identical
maximum valug(i.e., atu=1/2) the parameterg,,(t) and 5 the complete observation levély: consequently(, is
Xim,(1) re2d reduced with respect t@,.

X1y (O = 10= [+ 14142~ 172,
B. Decay of quantum coherences of a superposition
Xp, (1) |M:1/2: [n/2+ 1/4)%%—1/2, (6.22 of two coherent states

From our previous discussion it follows that quantum co-
which means that at this moment the von Neumann entrophierence observed d@,, which is responsible for quadrature
of the decaying squeezed vacuum state with the initial measqueezing of the squeezed vacuum state, is kaEsystwith
photon number equal to is equalto the von Neumann en- respect to dissipative processes. This robustness is reflected
tropy of the decaying statistical mixture with the initial meanby a significant difference between entropiS|§7>(t) and
photon numper equa_ll tan/2. _ In other words,> even at S;Z’mix(t) even at timeyt=In2 whenS‘z”>(t) reaches its maxi-
p=1/2 there is a significant difference betweBf'(t) and  1m value irrespective of the initial intensity of the
S’z’""x(t). In Fig. 4 we plot the time evolution of these entro- squeezed vacuum state.
pies forn=1 [Fig. 4a)] andn=4 [Fig. 4b)]. We see that on To illuminate this property more clearly, we will consider
the observation leveD, we can clearly “detect” the pres- now superposition of just two coherent statgs) and



818 V. BUZEK, G. ADAM, AND G. DROBNY 54

| — ) (we will assume the amplitude to be real. It is well
known that for a proper choice of the relative phase between
coherent components the corresponding superposition state
exhibits significant squeezing.9]. This effect appears as a
consequence of quantum interference betweéah and

| - a). To be more specific, let us consider the so-called even
coherent stat¢23] described by the density operator in the
coherent-state basis as

Plag=Nella)(al+[—a)(—al+[a)(—al+|-a)al},

1

Ne:Z[l—exp(—Zaz)] '

(6.233

The mean photon numbem in the even coherent state
(6.233 is given by the relatiom= atanhw?, which in the
limit of large a is equal toa?. The quantum interference
terms in the superposition staf@.233 are described by the
off-diagonal elementsa)(—a| and|—a){«|.

A statistical mixture corresponding to the pure superposi- 0.0 N ——
tion state(6.233 is described by the density operajay;, , 0.0 1.0 2.0 . 3.0 4.0 5.0
Y
Prnix= {|a)(a|+|—a)( al}. (6.23b FIG. 6. The time evolution of the von Neumann entropies

S"’e>(t) (dashed lingand S”m'x(t) (solid line) of the decaying even
The von Neumann entropy of the statistical mixtgge23b coherent state and the corresponding statistical mixture, respec-
is nonzero fora#0. The maximum value of the von Neu- tively, for the initial mean photon number=1 (a) andn=4 (b).
mann entropy of the mixture of two coherent states equals
kgln2 in the limit «—o0, which corresponds to the entropy

; . 1 e*2p.a2_,’_ e 2(1- p)a?
of a “two-state” quantum-mechanical system with equal H'.”‘e>(t)= Zl1+ . . j=12.
probabilities of population of each state. J 2 1+e 2@
Density operators describing the decay of the even coher- (6.263

ent state and the corresponding statistical mixture into the

zero-temperature heat bdfhe., the solutions of Eq(6.11) A

with the initial conditions(6.233 and (6.23h, respectively  The von Neumann entro;ﬁgmix(t) of the decaying statistical

read mixture (6.240 has the form(6.29 but with the eigenvalues
Hfmix(t) of the density operatop,,(t), which read

ap(D=Ne 2 (—Dka|(—1)'a)* #|(- 1) u'w)

- 1
X{((—1)' uY?al, (6.24a Hfmix(t)zi[lie’z“az], j=12. (6.26b
and

) 1 12 )k The entropysgmix(t) of the statistical mixture is a monotoni-
Pmix(t)zi kZO |(=1) a){(— al(. (6.24b cally decreasing function of time. On the other hand, the
entropyS‘()“"‘)(t) of the decaying even coherent state rapidly

To describe the deterioration of quantum coherence of thincreases during the first instants of the time evolution, and
even coherent state due to the interaction with the zeroafter reaching its maximum at timgt=In2 it starts to de-
temperature heat bath, we evaluate the von Neumann entrogyease. We have to stress here that, unlike the von Neumann

Slwe>(t) of this state at time and compare it with the von entropy of the squeezed state, the increase of the von Neu-
Neumann entropy of the corresponding statistical mixturgMann entropy of the even coherent state during the first in-

Sgux(t) The von Neumann entropy in the case of the decaystants of the time evolution depends on the intensity of the
ing even coherent staté.243 can be expressed as mean photon number in the field. To be more specific, the
larger the mean photon number is, the faster the entropy

S'O‘*e>(t) increases, and after a very short time its value be-
comes essentially equal to the entrdﬁﬁyﬂx(t) of the corre-
sponding statistical mixturésee Figs. B In particular, at
whereI11°?(t) (j=1,2) are the eigenvalues of the density time yt=In2 the e|genvalue§l|”‘e>(t) and H"m'x(t) are re-
operatorp‘a&(t) and they read lated as

2
S0 =—kaZ, I ONw), (625
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g 1xe . _ G2=2a’+1/2=2n+1/2, G2=1/2. (6.280
M) | = ™ () =12
u=12 1+e ¢ w=1/2, o i i ) .
(6.27 It is interesting to note that the Wigner functions of statistical

mixtures corresponding to the squeezed vacuum state and the

from which it follows that fora large enough the corre- even coherent state, respectively, are on the observation level
sponding eigenvalues are almost equal, and, consequentkp, identical [compare Eqs(6.60 and (6.28h for the vari-

the entropiess{™*(t) and S|0“9>(t) are equal as well. This is @nces characterizing the corresponding Gaussian Wigner

in contrast with the case of the squeezed vacuum state and ﬁlénctlpng. .
Using the general expressi¢A.21) we can evaluate the

corresponding statistical mixtufsee the discussion follow- 2 e _ _ _
ing Eq. (6.22 and Fig. 4. entropiesS, ' (t) and S;™(t) associated with the even co-
From the above we can conclude that quantum coherencdwrent state and the corresponding statistical mixture on the
which are established due to quantum interference betweesbservation levelO,, where the parameterg, (t) and
two coherent components) and|— a)of the superposition X, (t) are given by the relations
state (6.23 deteriorate very rapidly under the influence of =™
the zero-temperature heat bath. To be more specific, quan-
tum coherences deteriorate with a rate proportionaj g
(for more details see the review article by ®kzand Knight
[19] and references therginThis deterioration is clearly
seen already on the observation le@®. One of the conse- gpq
guences of this fact is that it is almost impossible to recon-
struct a Wigner function of the even coherent state on the
observation levelD,, providing a nonunit efficiency mea-
surement is considere@bviously, in the case of reduced
observation levels the situation is even worsks we said, respectively. From Eqg4.21) and(6.29 it follows that the
this is in a sharp contrast with the case when the squeezgghiropyS™ () of the even coherent state on the observation
vacuum state of the same intensity is considered. On thg, ., O, is nonzero even dt=0, which simply reflects the
other hand, we have to underline that the squeezed vacuuf.; at this is a non-Gaussian state. Moreover, in the limit

state can be expressed asiafinite sum of “interfering” N oy
pairs of coherent states of the fof123. We have seen that of large @ when tank’—1, the entropiess,®(t) and

quantum coherences established between two coherent staf$§™(t) are equal for any time. This means that for inten-
deteriorate very rapidly under the influence of the zero-sities large enough we are not able on the observation level
temperature heat bath. Nevertheless, tittal quantum co- O, to distinguish between the even coherent state and the
herence of the squeezed vacuum stat®lmistwith respect  corresponding statistical mixtufeven in the case of an ideal
to the decay. This robustness is in a sense a *“collective’measurement, which in our model corresponds+00).
effect of an infinite number of mutually interfering coherent
components of the squeezed vacuum state.

We note that a very similar effect can be observed in the VIl. CONCLUSIONS

case of a Fock state), which can be expressed as a one-  we have presented a universal method for reconstruction
dimensional superposition of coherent states on a circle. Ongr wigner functions of quantum-mechanical states of light.
can find that the Shannon entrofwhich in this case is equal Thjs method allows us to reconstruct Wigner functions with
to the von Neumann entropy, i.e., for Fock states the obsely certain degree of credibilitiguantified with the help of the
vation levelO, is identical to the complete observation level entropie$ from a set of measured values of system observ-
Op) of the decaying Fock state reaches its maximum aples. This set of observables defines a given observation
yt=In2, and its value is significantly different from the en- |evel. We have to stress that the concept of observation lev-
tropy of the corresponding statistical mixture. In this caseg|s plays a very important role in our attempt to measure and
again a collective interference between an infinite number ofinderstand nonclassical effects associated with quantum
coherent components preserves the global quantum cohejtates of light. In particular, a measurement of the second
ence associated with the Fock stg2d]. order quadrature squeezing is implicitly associated with the
To complete our discussion, we briefly note that on thegpservation levelD,. We know that reduction of quantum
observation levelD, the reconstructed Wigner function of flyctuations (i.e., quadrature squeezindias its origin in
the even coherent stat€.23 has a Gaussian forr6.30  quantum interference between coherent components of su-
with the parameters; and 0% given by the relations perposition states of light. We have shown in our paper that
, — , — the entropiesS, associated with quantum-mechanical states
ocqg=(N+12+a? op=(n+1/2—a® (6.288  reconstructed on the observation lev® can be used for
quantification of the degree of quantum coherence, which
(here we recall that the mean photon number in the evehas its origin in the phase-space interference between coher-
coherent state is= a’’tanhw?). The Wigner function of the ent components of superposition states. We have discussed
corresponding statistical mixture reconstructed on the obsein detail the role of nonunit measurement efficiency modeled
vation level O, also has a Gaussian shgsee Eq.(5.3b] as the decay of a quantum-mechanical state into a zero-

with the varianceé}g andEf,, which read temperature heat bath. We have shown that, in spite of the

. a4 1/2
Xlag(t)= ,un—,uszrlM —1/2 (6.293

Xp (D=L pun+14"7=1/2, (6.29b
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