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We present a method for a reconstruction of Wigner functions of quantum mechanical
states of light on different observation levels. Using the Jaynes principle of Maximum Entropy
we show how to reconstruct the Wigner function on the given observation level which is
characterized by mean values of a set of observables. We present examples illustrating the
power of the proposed method. In particular, we analyze the reconstruction of Wigner func-
tions of coherent states, squeezed states, Fock states, and superpositions of coherent states on
various observation levels of physical relevance. � 1996 Academic Press, Inc.

1. Introduction

The concept of a state of a physical system constitutes one of the most important
building stones of any physical theory. In classical physics the state of a system can
be associated with a ``point'' in a corresponding phase space. Dynamical evolution
of a classical system is then described as a trajectory in this phase space. In classical
physics a point in the phase space can be ``located'' with arbitrary accuracy, and,
in principle, the state of an individual system can be directly measured [1]. Alter-
natively, in the classical statistical mechanics the state of a system can be described
in terms of a probability density distribution in the phase space in which case only
a probability that the system is in a particular region of the phase space can be
determined. Nevertheless, there are no physical reasons in classical physics, why the
state cannot be identified with a point in the phase space.
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Definition of a state in quantum physics is more abstract and complex [2].
Operationally, a state of a quantum-mechanical system is associated with particular
probability distributions of measured physical observables. These distributions are
obtained via measurements over an ensemble of quantum-mechanical systems
which are prepared in the same way (i.e., they are in the same state). Formally, the
state of the quantum-mechanical system is described either as a vector in a Hilbert
space (in the case of pure states) or by a density operator. Equivalently, the state
of a quantum-mechanical system can be described by a wave-function or, in the
framework of the phase-space formalism [3], the state under consideration can be
described with the help of phase-space quasiprobability density distributions.

As we have said earlier, classical dynamical variables can be measured to
arbitrary accuracy in principle. This permits precise measurement of conjugated
variables such as position and momentum, and allows joint probability density dis-
tribution to be constructed for a phase-space description of dynamics. The lack of
commutability of conjugated observables in quantum mechanics leads to the fact
that the ``point'' in the quantum-mechanical phase space cannot be localized
precisely, i.e., there is always a fundamental limit with which this ``point'' can be
determined. Another consequence of non-commutability of conjugated observables
is the lack of a unique rule by which quantum and classical variables are associated.
This results into a number of (quasi)probability density distributions associated
with a phase-space description of a quantum-mechanical state. Depending on the
operator ordering a number of different (quasi)probability density distributions can
be defined of which the best known are the Wigner function [4], the Husimi (Q)
function [5], and the Glauber-Sudarshan (P) function [6], reflecting the sym-
metric (Weyl), antinormal and normal ordering of operators in the corresponding
characteristic function [7]. The P function can be singular or negative, the Wigner
function can be negative but is regular, whereas the Q function is always non-
negative and regular [5, 8, 9]. We note that all (quasi)probability density distribu-
tions under consideration contain complete information about the state of the
system. Cahil and Glauber [7] have shown that all these can be contained in an
s-parameterized quasiprobability density distribution where the choice of the
parameter s determines the degree of ``smoothing'' from the P function (in this case
s=1) to the Q function (s=&1), while for the Wigner function s=0.

The Wigner function plays an exceptional role among all quasiprobability density
distributions. Firstly, it generates proper marginal distributions for individual
phase-space variables. Secondly, under the action of linear canonical transforma-
tions the Wigner function behaves exactly in the same way as the classical probabil-
ity density distributions [10]. The Wigner function contains complete information
about the state of the system, i.e., it carries the same information as the density
operator or the corresponding wave function. From the Wigner function one can
evaluate all (symmetrically-ordered) moments of the system operators. On the
other hand, the inverse is also valid. It means that from the knowledge of the com-
plete set of moments of system operators the Wigner function (as well as the density
operator) can be determined uniquely [11]. Because of these properties (see also

38 buz� ek, adam, and drobny�
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[4]) we will concentrate our attention on the problem of a reconstruction of the
Wigner function of a quantum-mechanical state. In particular, we will consider the
Wigner function of a single-mode quantum electromagnetic field described as a har-
monic oscillator.

It is well known that the wave-function of a quantum-mechanical system cannot
be measured directly [12]. A single measurement does not yield enough infor-
mation which allows us to determine the state of the system uniquely [12]. In addi-
tion, due to the fact that conjugated observables do not commute, the quantum-
mechanical measurement inevitably disturbs the state, so the information about
the conjugated observable cannot be obtained from subsequent measurements.
Analogously, one cannot measure directly the Wigner function of the quantum-
mechanical system. On the other hand, the complete information about the state
can be obtained if one performs a sufficient number of measurements on different
members of an ensemble of identically prepared states of the quantum system under
consideration [12]. From here it follows that the Wigner function of a quantum-
mechanical state can, in principle, be reconstructed.

We can consider two different schemes for reconstruction of the Wigner function
of the quantum-mechanical state |9) . The difference between these two schemes is
based on the way in which the information about the quantum-mechanical system
is obtained. One can either perform a measurement of each observable independ-
ently or one can consider a simultaneous measurement of conjugated observables (in
both cases we assume an ideal, i.e., the unit-efficiency, measurement).

In the first kind of the measurement a distribution W |9)(A) for a particular
observable A� in the state |9) is measured in an unbiased way [13], i.e.,
W |9)(A)=|(8A | 9) | 2, where |8A) are eigenstates of the observable A� such that
�A |8A)(8A |=1� . Here a question arises: What is the smallest number of distribu-
tions W |9)(A) required to determine the state uniquely? This question is directly
related to the so-called Pauli problem [14] of the reconstruction of the wave-func-
tion from distributions W |9)(q) and W |9)( p) for the position and momentum of
the state |9). As shown by Gale, Guth and Trammel [15], in general, the
knowledge of W |9)(q) and W |9)( p) is not sufficient for a complete reconstruc-
tion of the wave (Wigner) function. In contrast, one can consider an infinite set
of distributions W |9)(x%) of the rotated quadratures x̂%=q̂ cos %+p̂ sin %. Each
distribution W |9)(x%) can be obtained in a measurement of a single observable
x̂% in which case a detector (filter) is prepared in an eigenstate |x%) of this
observable. It has been shown by Vogel and Risken [16] that from an infinite
set of the measured distributions W |9)(x%) for all values of % such that
[0<%�?] the Wigner function can be reconstructed uniquely via the inverse
Radon transformation. In other words the knowledge of the set of distributions
W |9)(x%) is equivalent to the knowledge of the Wigner function. This scheme of
reconstruction of the Wigner function (the so called optical homodyne
tomography) has recently been experimentally realized by Raymer and his
coworkers [17] and the Wigner function of a coherent state and a squeezed
vacuum state have been experimentally reconstructed.

39reconstruction of wigner functions



F
ile

:5
95

J
54

78
04

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

12
:5

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

39
92

Si
gn

s:
34

85
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

In the case of the simultaneous measurement of two non-commuting observables
(let say q̂ and p̂) it is not possible to construct an eigenstate of these two operators,
and therefore it is inevitable that the simultaneous measurement of two non-com-
muting observables introduces additional noise (of quantum origin) into measured
data [5, 8, 9, 18, 19]. To describe a process of a simultaneous measurement of two
non-commuting observables Wo� dkiewicz [18] has proposed a formalism based on
an operational probability density distribution which explicitly takes into account
the action of the measurement device modelled a ``filter'' (quantum ruler). A par-
ticular choice of the state of the ruler samples a specific type of accessible infor-
mation concerning the system, i.e., information about the system is biased by the
filtering process. The quantum-mechanical noise induced by filtering formally
results into smoothing of the original Wigner function of the measured state [5, 8],
so that the operational probability density distribution can be expressed as a con-
volution of the original Wigner function and the Wigner function of the filter state
[18]. In particular, if the filter is considered to be in a vacuum state then the
corresponding operational probability density distributions is equal to the Husimi
(Q) function [5]. The Q function of optical fields has been experimentally
measured by Walker and Carroll [20]. The direct experimental measurement of the
operational probability density distribution with the filter in an arbitrary state is
feasible in an 8-port experimental setup used by Noh, Fouge� res and Mandel [21].
The price to pay for the simultaneous measurement of non-commuting observables
is that the measured distributions are fuzzy (i.e., they are equal to smoothed Wigner
functions). Nevertheless, if detectors used in the experiment have a unit efficiency
(in the case of an ideal measurement) the noise induced by quantum filtering can
be ``separated'' from the measured data and the Wigner function can be recon-
structed from the operational probability density distribution. In particular, the
Wigner function can be uniquely reconstructed from the Q function.1

As we have already indicated it is well understood now that the Wigner function
can, in principle, be reconstructed using either the single observable measurements
(the optical homodyne tomography) or the simultaneous measurement of two non-
commuting observables. The completely reconstructed Wigner function contains
information about all independent moments of the system operators, i.e., in the case
of the quantum harmonic oscillator the knowledge of the Wigner function is
equivalent to the knowledge of all moments ( (â-)m ân) of the creation (â-) and
annihilation (â) operators.

In many cases it turns out that the state under consideration is characterized by
an infinite number of independent moments ( (â-)m ân) (for all m and n). To per-
form a complete measurement of these moments can take an infinite time. This
means that even though the Wigner function can in principle be reconstructed the
collection of experimental data take an infinite time. In addition the data processing

40 buz� ek, adam, and drobny�

1 We note that the ``deconvolution'' of the vacuum from the Q function can suffer greatly from noise
in the data. Raymer et al. (see Ref. [17]) have proposed another more effective way to reconstruct
Wigner functions from ``noisy'' data associated with Q functions.
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and numerical reconstruction of the Wigner function are time consuming as well.
Therefore experimental realization of the reconstruction of the Wigner function can
be questionable.

In practice, it is possible to perform a measurement of just a finite number of
independent moments of the system operators. The aim of this paper is to analyze
how the Wigner function can be (partially) reconstructed from an incomplete
knowledge about the system (i.e., from a finite number of moments of system
operators) and how to quantify the precision with which the Wigner function is
reconstructed. To accomplish this task we utilize the concept of observation levels
[22] (see also [23]) where each observation level is specified by a set of linearly
independent operators G� & (&=1, 2, ..., n) for which expectation values G& are given
(measured). With the help of the Jaynes principle of the maximum entropy (the so
called MaxEnt principle) [24] (see also [22, 25]) we will show how to reconstruct
in the most reliable way the Wigner function of the measured state within a given
observation level. The paper is organized as follows: in Section 2 we briefly review
basic elements of the phase-space formalism used in quantum optics. We also
specify those nonclassical states which are studied later in the paper. In Section 3
we introduce concept of observation levels applied to quantum optics. In Section 4
we show how with the help of the MaxEnt principle Wigner functions on given
observation levels can be reconstructed. In Section 5 we analyze Wigner functions
of various nonclassical states of light on different observation levels. Section 6 is
devoted to a discussion of a relation between the standard von Neumann measure-
ment theory and the concept of observation levels. We also discuss the relation
between optical homodyne tomography and measurements on various observation
levels. We finish our paper with conclusions.

2. Phase-Space Description of States of Single-Mode Field

Utilizing a close analogy between the operator for the electric component E� (r, t)
of a monochromatic light field and the quantum-mechanical harmonic oscillator we
will consider a dynamical system which is described by a pair of canonically con-
jugated Hermitean observables q̂ and p̂,

[q̂, p̂]=i�. (2.1)

Eigenvalues of these operators range continuously from &� to +�. The annihila-
tion and creation operators â and â- can be expressed as a complex linear combina-
tion of q̂ and p̂

â=
1

- 2�
(*q̂+i*&1p̂); â-=

1

- 2�
(*q̂&i*&1p̂), (2.2)

41reconstruction of wigner functions
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where * is an arbitrary real parameter. The operators â and â- obey the Weyl-
Heisenberg commutation relation

[â, â-]=1, (2.3)

and therefore possess the same algebraic properties as the operator associated with
the complex amplitude of a harmonic oscillator (in this case *=- m|, where m
and | are the mass and the frequency of the quantum-mechanical oscillator, respec-
tively) or the photon annihilation and creation operators of a single mode of the
quantum electromagnetic field. In this case *=- =0| (=0 is the dielectric constant
and | is the frequency of the field mode) and the operator for the electric field
reads (we do not take into account polarization of the field)

E� (r, t)=- 2 E0(âe&i|t+â-ei|t) u(r), (2.4)

where u(r) describes the spatial field distribution and is same in both classical and
quantum theories. The constant E0=(�|�2=0 V)1�2 is equal to the ``electric field per
photon'' in the cavity of volume V.

A particularly useful set of states is the overcomplete set of coherent states |:)
which are the eigenstates of the annihilation operator â

â |:) =: |:) . (2.5)

These coherent states can be generated from the vacuum state |0) [defined as
â |0) =0] by the action of the unitary displacement operator D� (:) [6]

D� (:)#exp[:â-&:*â]; |:) =D� (:) |0) . (2.6)

The parametric space of eigenvalues, i.e., the phase space for our dynamical system,
is the infinite plane of eigenvalues (q, p) of the Hermitean operators q̂ and p̂. An
equivalent phase space is the complex plane of eigenvalues

:=
1

- 2�
(*q+i*&1p); (2.7)

of the annihilation operator â. We should note here that the coherent state |:) is
not an eigenstate of either q̂ or p̂. The quantities q and p in Eq. (2.7) can be inter-
preted as the expectation values of the operators q̂ and p̂ in the state |:). Two
invariant differential elements of the two phase-spaces are related as:

1
?

d 2:=
1
?

d[Re(:)] d[Im(:)]=
1

2?�
dq dp. (2.8)

The phase-space description of the quantum-mechanical oscillator which is in the
state described by the density operator \̂ = |9)(9| (in what follows we will
consider mainly pure states but the formalism presented here can be applied for
statistical mixtures as well) is based on the definition of the Wigner function [4]

42 buz� ek, adam, and drobny�
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W |9)(!). The Wigner function is related to the characteristic function C (W)
|9)(') of

the Weyl-ordered moments of the annihilation and creation operators of the
harmonic oscillator as follows [7]

W |9)(!)=
1
? | C (W)

|9)(') exp (!'*&!*') d 2'. (2.9)

The characteristic function C (W)
|9)(') of the system described by the density operator

\̂ is defined as

C (W)
|9)(')#Tr[ \̂D� (')], (2.10)

where D� (') is the displacement operator given by Eq. (2.6). The characteristic func-
tion C (W)

|9)(') can be used for the evaluation of the Weyl-ordered products of the
annihilation and creation operators:

([(â-)m ân]) =
�(m+n)

�'m�(&'*)n C (W)
|9)(') } '=0

. (2.11)

On the other hand the mean value of the Weyl-ordered product ([(â-)m ân]) can
be obtained by using the Wigner function directly:

(9| [(â-)m ân] |9) =
1
? | d 2!(!*)m !nW |9)(!). (2.12)

For instance, the Weyl-ordered product ([â-â2]) can be evaluated as

([â-â2]) =
1
3

(â-â2+ââ-â+â2â-)=
1
? | d 2! |!| 2 !W |9)(!). (2.13)

In this paper we will several times refer to mean values of central moments and
cumulants of the system operators â and â-. We will denote central moments as
( } } } ) (c) and in what follows we will consider the Weyl-ordered central moments
which are defined as

([(â-)m ân]) (c)#([(â-&(â-) )m (â&(â) )n]) . (2.14)

From this definition it follows that the central moments of the order k (k=m+n)
can be expressed by moments of the order less or equal to k. On the other hand
we denote cumulants as (( } } } )) . The cumulants are usually defined via charac-
teristic functions. In particular, the Weyl-ordered cumulants are defined as

(([(â-)m ân])) =
�(m+n)

�'m�(&'*)n ln C (W)
|9)(') } '=0

, (2.15)

43reconstruction of wigner functions
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where C (W)
|9)(') is the characteristic function of the Weyl-ordered moments given by

Eq. (2.10). The cumulants of the order k (k=m+n) can be expressed in terms of
moments of the order less or equal to k.

Originally the Wigner function was introduced in a form different from (2.9).
Namely, the Wigner function was defined as a particular Fourier transform of the
density operator expressed in the basis of the eigenvectors |q) of the position
operator q̂

W |9)(q, p)#|
�

&�
d` (q&`�2 |\̂| q+`�2) eip`��, (2.16a)

which for a pure state described by a state vector |9) (i.e., \̂=|9)(9 | ) reads

W |9)(q, p)#|
�

&�
d` �(q&`�2) �*(q+`�2) eip`��, (2.16b)

where �(q)#(q | 9). It can be shown that both definitions (2.9) and (2.16) of the
Wigner function are identical (see Hillery et al. [4]), providing the parameters !
and !* are related to the coordinates q and p of the phase space as

!=
1

- 2�
(*q+i*&1p); !*=

1

- 2�
(*q&i*&1p), (2.17)

i.e.,

W |9)(q, p)=
1

2?� | C (W)
|9)(q$, p$) exp _&

i
�

(qp$&pq$)& dq$ dp$, (2.18a)

where the characteristic function C (W)
|9)(q, p) is given by the relation

C (W)
|9)(q, p)=Tr[ \̂D� (q, p)]. (2.18b)

The displacement operator in terms of the position and the momentum operators
reads

D� (q, p)=exp _ i
�

(q̂p&p̂q)& . (2.19)

The symmetrically ordered cumulants of the operators q̂ and p̂ can be evaluated as

(([p̂mq̂n]))=�n+m �(m+n)

�(&iq)m �(ip)n ln C (W)
|9)(q, p) }q, p=0

. (2.20)

The Wigner function can be interpreted as the quasiprobability (see below) density
distribution through which a probability can be expressed to find a quantum-
mechanical system (harmonic oscillator) around the ``point'' (q, p) of the phase
space.

44 buz� ek, adam, and drobny�
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With the help of the Wigner function W |9)(q, p) the position and momentum
probability distributions W |9)(q) and W |9)( p) can be expressed from W |9)(q, p)
via marginal integration over the conjugated variable (in what follows we assume
*=1)

W |9)(q)#
1

- 2?�
| dp W |9)(q, p)=- 2?� (q| \̂ |q) , (2.21a)

where |q) is the eigenstate of the position operator q̂. The marginal probability dis-
tribution W |9)(q) is normalized to unity, i.e.,

1

- 2?�
| dq W |9)(q)=1. (2.21b)

The relation (2.21a) for the probability distribution W |9)(q) of the position
operator q̂ can be generalized to the case of the distribution of the rotated quad-
rature operator x̂% . This operator is defined as

x̂%=��

2
[âe&i%+â-ei%], (2.22a)

and the corresponding conjugated operator x̂%+?�2 , such that [x̂% , x̂%+?�2]=i�,
reads

x̂%+?�2=
- �

i - 2
[âe&i%&â-ei%]. (2.22b)

The position and the momentum operators are related to the operator x̂% as, q̂=x̂0

and x̂?�2=p̂. The rotation (i.e., the linear homogeneous canonical transformation)
given by Eqs. (2.22) can be performed by the unitary operator U� (%):

U� (%)=exp[&i%â-â], (2.23)

so that

x̂%=U� -(%) x̂0U� (%); x̂%+?�2=U� -(%) x̂?�2U� (%). (2.24)

Alternatively, in the vector formalism we can rewrite the transformation (2.24) as

\ x̂%

x̂%+?�2+=F \q̂
p̂+ ; F=\ cos %

&sin %
sin %
cos %+ . (2.25)

Eigenvalues x% and x%+?�2 of the operators x̂% and x̂%+?�2 can be expressed in
terms of the eigenvalues q and p of the position and momentum operators as

\ x%

x%+?�2+=F \q
p+ ; \q

p+=F&1 \ x%

x%+?�2+ ; F&1=\cos %
sin %

&sin %
cos % + , (2.26)

45reconstruction of wigner functions
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where the matrix F is given by Eq. (2.25) and F&1 is the corresponding inverse
matrix. It has been shown by Ekert and Knight [10] that Wigner functions are
transformed under the action of the linear canonical transformation (2.25) as

W |9)(q, p) � W |9)(F&1(x% , x%+?�2))

=W |9)(x% cos %&x%+?�2 sin %; x% sin %+x%+?�2 cos %), (2.27)

which means that the probability distribution W |9)(x%)=- 2?� (x% | \̂ |x%) can be
evaluated as

W |9)(x%)=
1

- 2?�
|

�

&�
dx%+?�2 W |9)(x% cos %&x%+?�2 sin %; x% sin %+x%+?�2 cos %).

(2.28)

As shown by Vogel and Risken [16] the knowledge of W |9)(x%) for all values of
% (such that [0<%�?]) is equivalent to the knowledge of the Wigner function
itself. This Wigner function can be obtained from the set of distributions W |9)(x%)
via the inverse Radon transformation

W |9)(q, p)=
1

(2?�)3�2 |
�

&�
dx% |

�

&�
d! |!| |

?

0
d% W |9)(x%)

_exp _ i
�

!(x%&q cos %&p sin %)& . (2.29)

It will be shown later in this paper that the optical homodyne tomography is
implicitly based on a measurement of all (in principle, infinite number) independent
moments (cumulants) of the system operators. Nevertheless, there are states for
which the Wigner function can be reconstructed much easier than via the homo-
dyne tomography. These are Gaussian and generalized Gaussian states which are
completely characterized by the first two cumulants of the relevant observables
while all higher-order cumulants are equal to zero. On the other hand, if the state
under consideration is characterized by an infinite number of nonzero cumulants
then the homodyne tomography can fail because it does not provide us with a
consistent truncation scheme (see below and [26]).

2.1. States of Light to Be Considered

In this paper we will consider several quantum-mechanical states of a single-
mode light field. In particular, we will analyze coherent state, Fock state, squeezed
vacuum state, and superpositions of coherent states.

A. Coherent state. The coherent state |:) [see Eqs. (2.5-6)] is an eigenstate of
the annihilation operator â, i.e., |:) is not an eigenstate of an observable. The
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Wigner function [Eq. (2.9)] of the coherent state in the complex !-phase space
reads

W |:)(!)=2 exp (&2 |!&:| 2); :=:x+i:y , (2.30a)

or alternatively, in the (q, p) phase space we have

W |:)(q, p)=
1

_q _p
exp _&

1
2�

(q&q� )2

_2
q

&
1

2�

( p&p� )2

_2
q & , (2.30b)

where q� =- 2� :x�*; p� =- 2� :y*, and

_2
q=

1
2*2 and _2

p=
*2

2
. (2.30c)

The mean photon number in the coherent state is equal to n� =|:| 2. The variances
for the position and momentum operators are

(:| (2q̂)2 |:) =�_2
q ; (:| (2p̂)2 |:) =�_2

p , (2.31)

from which it is seen that the coherent state belongs to the class of the minimum
uncertainty states for which

( (2q̂)2)( (2p̂)2) =�2_2
q_2

p=
�2

4
. (2.32)

Using the expression (2.30b) for the Wigner function in the (q, p)-phase space we
can evaluate the central moments of the Weyl-ordered moments of the operators q̂
and p̂ in the coherent state as

([q̂kp̂l]) (c)={(2n&1)!! (2m&1)!! (�_q)n (�_p)m ;
0;

for k=2n, l=2m
for k=2n+1 or l=2m+1.

(2.33)

We see that all central moments of the order higher than second can be expressed
in terms of the second-order central moments, so we can conclude that the coherent
state is completely characterized by four mean values (q̂); (p̂); (q̂2) , and (p̂2) .
With the help of the relation (2.18b) we can find the characteristic function
C (W)

|:) (q, p) of the symmetrically-ordered moments of the coherent state

C (W)
|:) (q, p)=exp _ i

�
q� p&

i
�

p� q&
_2

q

2�
p2&

_2
p

2�
q2& , (2.34)

from which the nonzero cumulants for the coherent state,

((q̂)) =q� ; (( p̂))=p� ; ((q̂2))=�_2
q ; (( p̂2))=�_2

p , (2.35)
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can be found. We stress that all other cumulants of the operators q̂ and p̂ are equal
to zero. This is due to the fact that the characteristic function of the Weyl-ordered
moments is an exponential of a polynomial of the second order in q and p (for more
discussion see Section 6).

B. Fock State. Eigenstates |n) of the photon number operator n̂,

n̂=â-â=
1

2�
(q̂2+p̂2)&

1
2

, (2.36)

are called the Fock states. The Wigner function of the Fock state |n) is the !-phase
space reads

W |n)(!)=2(&1)n exp (&2 |!| 2) Ln(4 |!| 2), (2.37a)

where Ln(x) is the Laguerre polynomial of the order n. In the (q, p) phase space
this Wigner function has the form

W |n)(q, p)=2(&1)n exp \&
q2+p2

� + Ln \2
q2+p2

� + . (2.37b)

The Wigner function (2.37b) does not have a Gaussian form. One can find from
Eq. (2.37b) the following expressions for first few moments of the position and
momentum operators

(q̂)=(p̂)=0;

(2.38)

(q̂2)=( p̂2) =
�

2
(2n+1);

(q̂4)=( p̂4) =
�2

4
(6n2+6n+3)=

3
2

(q̂2) 2+( p̂2) 2

2
+

3
8

�2;

(q̂2p̂2)=( p̂2q̂2) =
�2

4
(2n2+2n&1)=

1
2

(q̂2) 2+( p̂2) 2

2
&

3
8

�2.

In addition we find for the characteristic function C (W)
|n) (q, p) of the Weyl-ordered

moments of the operators q̂ and p̂ in the Fock state |n) the expression

C (W)
|n) (q, p)=exp _&

(q2+p2)
4� & Ln \(q2+p2)

2� + , (2.39)

from which it follows that the Fock state is characterized by an infinite number of
nonzero cumulants. On the other hand, moments of the photon number operator
n̂ in the Fock state |n) are

(n̂k)=nk, (2.40)
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from which it follows higher-order moments of the operator n̂ can be expressed in
terms of the first-order moment and that all central moments (n̂k) (c) are equal to
zero.

C. Squeezed vacuum state. The squeezed vacuum state [27] can be expressed in
the Fock basis as

|') =(1&'2)1�4 :
�

n=0

[(2n)!]1�2

2nn!
'n |2n) , (2.41a)

where the squeezing parameter ' (for simplicity we assume ' to be real) ranges
from &1 to +1. The squeezed vacuum state (2.41a) can be obtained by the action
of the squeezing operator S� (r) on the vacuum state |0)

|') =S� (r) |0); S� (r)=exp _&
ir
2�

(q̂p̂+p̂q̂)&=exp _r
2

(â -2&â2)& , (2.41b)

where the squeezing parameter r # (&�, +�) is related to the parameter ' as
follows, '=tanh r. The mean photon number in the squeezed vacuum (2.41) is
given by the relation

n� =
'2

1&'2 . (2.42)

The variances of the position and momentum operators can be expressed in a form
(2.31) with the parameters _q and _p given by the relations

_2
q=

1
2 \

1+'
1&'+ ; _2

p=
1
2 \

1&'
1+'+ . (2.43)

If we assume the squeezing parameter to be real and ' # [0, &1) then from
Eq. (2.43) it follows that fluctuations in the momentum are reduced below the
vacuum state limit ��2 at the expense of increased fluctuations in the position.
Simultaneously it is important to stress that the product of variances ( (2q̂)2) and
( (2p̂)2) is equal to �2�4, which means that the squeezed vacuum state belongs to
the class of the minimum uncertainty states.

The Wigner function of the squeezed vacuum state is of the Gaussian form

W |')(q, p)=
1

_q _p
exp _&

1
2�

q2

_2
q

&
1

2�

p2

_2
p& , (2.44)

with the parameters _2
q and _2

p given by Eq. (2.43). From Eq. (2.44) it follows that
the mean value of the position and the momentum operators in the squeezed
vacuum state are equal to zero, while the higher-order symmetrically-ordered
(central) moments are given by Eq. (2.33) with the parameters _2

q and _2
p given by

Eq. (2.43). We see that higher-order moments can be expressed in terms of the

49reconstruction of wigner functions



F
ile

:5
95

J
54

78
14

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

12
:5

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

33
25

Si
gn

s:
23

89
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

second-order moments. We can find the expression for the characteristic function
C (W)

|') (q, p) for the squeezed vacuum state which reads

C (W)
|') (q, p)=exp _&

_2
q

2�
p2&

_2
p

2�
q2& , (2.45)

from which it directly follows that the squeezed vacuum state is completely charac-
terized by two nonzero cumulants ((q̂2)) = �_2

q and ((p̂2)) = �_2
p (all other

cumulants are equal to zero).

D. Even and odd coherent states. In nonlinear optical processes superpositions
of coherent states can be produced [28]. In particular, Brune et al. [29] have
shown that an atomic-phase detection quantum non-demolition scheme can serve
for production of superpositions of two coherent states of a single-mode radiation
field. The superpositions

|:e) =N1�2
e ( |:)+|&:) ); N&1

e =2 [1+exp(&2 |:| 2)], (2.46a)

and

|:o)=N1�2
o ( |:)& |&:) ); N&1

o =2[1&exp(&2 |:| 2)], (2.46b)

which are called the even and odd coherent states, respectively, can be produced via
this scheme. These states have been introduced by Dodonov et al. [30] in a formal
group-theoretical analysis of various subsystems of coherent states. More recently,
these states have been analyzed as prototypes of superposition states of light [28]
which exhibit various nonclassical effects. In particular, quantum interference
between component states leads to oscillations in the photon number distributions.
Another consequence of this interference is a reduction (squeezing) of quadrature
fluctuations in the even coherent state. On the other hand, the odd coherent state
exhibits reduced fluctuations in the photon number distribution (sub-Poissonian
photon statistics). Nonclassical effects associated with superposition states can be
explained in terms of quantum interference between the ``points'' (coherent states)
in phase space. The character of quantum interference is very sensitive with respect
to the relative phase between coherent components of superposition states. To
illustrate this effect we write down the expressions for the Wigner functions of the
even and odd coherent states (in what follows we assume : to be real)

W |:e)(q, p)=Ne[W |:)(q, p)+W |&:)(q, p)+Wint(q, p)]; (2.47a)

W |:o)(q, p)=No[W |:)(q, p)+W |&:)(q, p)&Wint(q, p)], (2.47b)

where the Wigner functions W |\:)(q, p) of coherent states |\:) are given by
Eq. (2.30b). The interference part of the Wigner functions (2.47) is given by the
relation

Wint(q, p)=
2

_q _p
exp _&

q2

2�_2
q

&
p2

2�_2
p& cos \ q� p

�_q _p+ , (2.48)
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where q� =- 2� : (we assume real :) and the variances _2
q and _2

p are given by Eq.
(2.30c). From Eqs. (2.47) it follows that the even and odd coherent states differ by
a sign of the interference part, which results in completely different quantum-
statistical properties of these states.

With the help of the Wigner function (2.47a) we evaluate mean values of
moments of the operators q̂ and p̂. The first moments are equal to zero, i.e.,
(q̂) =( p̂) =0, while for higher-order moments we find

(q̂2)=
�

2
(1+8Ne:2);

(2.49)

( p̂2)=
�

2
(1&8Ne:2e&2: 2

);

(q̂4)=
3�2

4 _1+16Ne:2 \1+
2
3

:2+& ;

( p̂4)=
3�2

4 _1&16Ne:2e&2: 2 \1&
2
3

:2+& .

From Eqs. (2.49) it follows that the even coherent state exhibits the second and
fourth-order squeezing in the p̂-quadrature [28]. We do not present explicit expres-
sion for higher-order moments, which in general cannot be expressed in powers of
second-order moments. In terms of the cumulants it means that the even (and odd)
coherent states are characterized by an infinite number of nonzero cumulants. This
can be seen from the expression for the characteristic function of the even coherent
state which reads

C (W)
|: e)(q, p)=2Ne exp _&

_2
p

2�
q2&

_2
q

2�
p2&{cos \q� p

� ++exp \&
q� 2

2�_2
q+ cosh \ _p

�_q
q� q+= .

(2.50)

3. MaxEnt Principle and Observation Levels

The state of a quantum system can always be described by a statistical density
operator \̂. Depending on the system preparation, the density operator represents
either a pure quantum state (complete system preparation) or a statistical mixture
of pure states (incomplete preparation). The degree of deviation of a statistical
mixture from the pure state can be best described by the uncertainty measure '[ \̂]
(see [22, 25])

'[ \̂]=&kB Tr( \̂ ln \̂), (3.1)

51reconstruction of wigner functions
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where kB is the Boltzmann constant. The uncertainty measure '[ \̂] possesses the
following properties:

1. In the eigenrepresentation of the density operator \̂

\̂ |rm) =rm |rm) , (3.2)

we can write

'[ \̂]=&kB :
m

rm ln rm�0, (3.3)

where rm are eigenvalues and |rm) the eigenstates of \̂.

2. For uncertainty measure '[ \̂] the inequality

0�'[ \̂]�kB ln N (3.4)

holds, where N denotes the dimension of the Hilbert space of the system and '[ \̂]
takes its maximum value when

\̂=
1�

Tr 1�
=

1�
N

. (3.5)

In this case all pure states in the mixture appear with the same probability equal
to 1�N. If the system is prepared in a pure state then it holds that '[ \̂]=0.

3. It can be shown with the help of the Liouville equation

�
�t

\̂(t)=&
i
�

[H� , \̂(t)], (3.6)

that in the case of an isolated system the uncertainty measure is a constant of
motion, i.e.,

d'(t)
dt

=0. (3.7)

3.1. MaxEnt Principle

When instead of the density operator \̂, expectation values G& of a set O of
operators G� & (&=1, ..., n) are given, then the uncertainty measure can be deter-
mined as well. The set of linearly independent operators is referred to as the obser-
vation level O [22]. The operators G� & which belong to a given observation level do
not commutate necessarily. A large number of density operators which fulfill the
conditions

Tr \̂[G� ]=1, (3.8a)

Tr( \̂[G� ] G� &)=G& , &=1, 2, ..., n; (3.8b)
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can be found for a given set of expectation values G&=(G� &) . Each of these density
operators \̂[G� ] can posses a different value of the uncertainty measure '[ \̂[G� ]]. If
we wish to use only the expectation values G& of the chosen observation level for
determining the density operator, we must select a particular density operator
\̂[G� ]=_̂[G� ] in an unbiased manner. According to the Jaynes principle of the
Maximum Entropy [24] this density operator _̂[G� ] must be the one which has the
largest uncertainty measure

'max#max['[\̂[G� ]]]='[_̂[G� ]] (3.9)

and simultaneously fulfills constraints (3.8). As a consequence of Eq.(3.9) the
fundamental inequality

'[_̂[G� ]]=&kB Tr(_̂[G� ] ln _̂[G� ])�'[ \̂[G� ]]=&kB Tr( \̂[G� ] ln \̂[G� ]) (3.10)

holds for all possible \̂[G� ] which fulfill Eqs. (3.8). The variation determining the
maximum of '[\̂[G� ]] under the conditions (3.8) leads to a generalized canonical
density operator [23, 24, 31]

_̂[G� ]=
1

Z[G� ]
exp \&:

&

*&G� &+ , (3.11)

Z[G� ](*1 , ..., *n)=Tr _exp \&:
&

*&G� &+& , (3.12)

where *n are the Lagrange multipliers and Z[G� ](*1 , ...*n) is the generalized partition
function. By using the derivatives of the partition function we obtain the expecta-
tion values G& as

G&=Tr(_̂[G� ] G� &)=&
�

�*&
ln Z[G� ](*1 , ..., *n), (3.13)

where in the case of noncommuting operators the following relation has to be used

�
�a

exp[&X� (a)]= &exp[&X� (a)] |
1

0
exp[+X� (a)]

�X� (a)
�a

exp[&+X� (a)] d+. (3.14)

By using Eq. (3.13) the Lagrange multipliers can, in principle, be expressed as func-
tions of the expectation values

*&=*&(G1 , ..., Gn). (3.15)

We note that Eqs. (3.13) for Langrange multipliers not always have solutions which
lead to physical results (see Section 6.2), which means that in these cases states of
quantum systems cannot be reconstructed on a given observation level.
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The maximum uncertainty measure regarding an observation level O[G� ] will be
referred to as the entropy S[G� ] :

S[G� ]#'max=&kB Tr(_̂[G� ] ln _̂[G� ]). (3.16)

This means that to different observation levels different entropies are related. By
inserting _[G� ] [cf. Eq. (3.11)] into Eq. (3.16), we obtain the expression for the
entropy

S[G� ]=kB ln Z[G� ]+kB :
&

*&G& . (3.17)

By making use of Eq. (3.15), the parameters *& in the above equation can be
expressed as functions of the expectation values G& and this leads to a new expres-
sion for the entropy

S[G� ]=S(G1 , ..., Gn). (3.18)

We note that using the expression

dS[G� ]=kB :
&

*& dG& (3.19)

which follows from Eqs. (3.13) and (3.17) the following relation can be obtained:

kB*&=
�

�G&
S(G1 , ..., Gn). (3.20)

3.2. Linear Transformations within an Observation Level

An observation level can be defined either by a set of linearly independent
operators [G� &], or by a set of independent linear combinations of the same
operators

G� $+=:
&

c+&G� & . (3.21)

Therefore, _̂ and S are invariant under a linear transformation

_̂$[G� $]=
exp(&�+ *$+G� $+)

Tr exp(&�+ *$+G� $+)
=_̂[G� ] . (3.22)

As a result, the Lagrange multipliers transform contravariantly to Eq. (3.21), i.e.,

*$+=:
&

c$+&*& , (3.23)

:
+

c$&+c+\=$&\ . (3.24)
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3.3. Extension and Reduction of the Observation Level

If an observation level O[G� ]#G� 1 , ..., G� n is extended by including further operators
M� 1 , ..., M� l , then additional expectation values M1=(M� 1), ..., Ml=(M� l) can only
increase amount of available information about the state of the system. This proce-
dure is called the extension of the observation level (from O[G� ] to O[G� , M� ]) and is
associated with a decrease of the entropy. More precisely, the entropy S[G� , M� ] of the
extended observation level O[G� , M� ] can be only smaller or equal to the entropy S[G� ]

of the original observation level O[G� ] ,

S[G� , M� ]�S[G� ] . (3.25)

The generalized canonical density operator of the observation level O[G� , M� ]

_̂[G� , M� ]=
1

Z[G� , M� ]
exp \& :

n

&=1

*&G� && :
l

+=1

}+M� ++ , (3.26a)

with

Z[G� , M� ]=Tr _exp \& :
n

&=1

*&G� && :
l

+=1

}+M� ++& , (3.26b)

belongs to the set of density operators \̂[G� ] fulfilling Eq. (3.8). Therefore, Eq. (3.25)
is a special case of Eq. (3.11). Analogously to Eqs. (3.13) and (3.15), the Lagrange
multipliers can be expressed by functions of the expectation values

*&=*&(G1 , ..., Gn , M1 , ..., Ml), (3.27a)

}+=}+(G1 , ..., Gn , M1 , ..., Ml). (3.27b)

The sign of equality in Eq. (3.25) holds only for }+=0. In this special case the
expectation values M+ are functions of the expectation values G& , and the operators
M� + can be expressed as functions of G� & . The measurement of observables M� + does
not increase information about the system. Consequently, \̂[G� , M� ]=\̂[G� ] and
S[G� , M� ]=S[G� ] .

We can also consider a reduction of the observation level if we decrease number
of independent observables which are measured, e.g., O[G� , M� ] � O[G� ] (here G� & and
M� + are independent). This reduction is accompanied with an increase of the
entropy due to the decrease of the information available about the system.

3.4. Time-Dependent Entropy of an Observation Level

If the dynamical evolution of the system is governed by the evolution super-
operator U� (t, t0), such that \̂(t)=U� (t, t0) \̂(t0), then expectation values of the
operators G� & on the given observation level at time t read

G&(t)=Tr[G� &U� (t, t0) \̂(t0)]. (3.28)

55reconstruction of wigner functions
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By using these time-dependent expectation values as constraints for maximizing the
uncertainty measure '[ \̂[G� ](t)], we get the generalized canonical density operator

_̂[G� ](t)=
exp(&�& *&(t) G� &)

Tr[exp(&�& *&(t) G� &)]
(3.29)

and the time-dependent entropy of the corresponding observation level

S[G� ](t)=&kB Tr[_̂[G� ](t) ln _̂[G� ](t)]=kB ln Z[G� ](t)+kB :
&

*&(t) G&(t). (3.30)

This generalized canonical density operator does not satisfy the von Neumann
equation but it satisfies an integro-differential equation derived by Robertson and
Seke [23, 31]. The time-dependent entropy is defined for any system being
arbitrarily far from equilibrium. In the case of an isolated system the entropy can
increase or decrease during the time evolution (see, for example Ref. [25], Sec. 5.6).

3.5. Wigner Functions on Different Observation Levels

With the help of a generalized canonical density operator _̂[G� ] we define the
Wigner function in the ! phase space at the corresponding observation level as

W[G� ](!)=
1
? | d 2' Tr[D� (') _̂[G� ]] exp (!'*&!*'). (3.31)

Analogous expression can be found for the Wigner function in the (q, p) phase
space [see Eq. (2.18)].

3.6. MaxEnt Principle and Laws of Physics

It has been pointed out by Jaynes in his Brandeis lectures [24] that there is a strong
formal resemblance between the MaxEnt formalism and the rules of calculations in
statistical mechanics and thermodynamics. Simultaneously he has emphasized that
the MaxEnt principle ``has nothing to do with the laws of physics.''2 To be more
specific it is worth to cite a paragraph from the Jaynes' Brandeis lectures (see p. 183
of these lectures [24]): ``Conventional quantum theory has provided an answer to
the problem of setting up initial state descriptions only in the limiting case where
measurements of a ``complete set of commuting observables'' have been made, the
density matrix \̂(0) then reducing to the projection operator onto a pure state �(0)
which is the appropriate simultaneous eigenstate of all measured quantities. But
there is almost no experimental situation in which we really have all this informa-
tion, and before we have a theory able to treat actual experimental situations,
existing quantum theory must be supplemented with some principle that tells us
how to translate, or encode, the results of measurements into a definite state

56 buz� ek, adam, and drobny�

2 In fact, this is the reason why the MaxEnt principle is applicable in so many fields of human
activities, for instance we can mention economy or sociology (for more details see the book by Kapur
and Kesavan [25]).
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description \̂(0). Note that the problem is not to find \̂(0) which correctly describes
``true physical situation''. That is unknown, and always remains so, because of
incomplete information. In order to have a usable theory we must ask the much
more modest question: What \̂(0) best describes our state of knowledge about the
physical situation?''.

In other words, the MaxEnt principle is the most conservative assignment in the
sense that it does not permit one to draw any conclusions not warranted by the data.
From this point of view the MaxEnt principle has a very close relation (or can be
understood as the generalization) of the Laplace's principle of indifference [32]
which states that where nothing is known one should choose a constant valued
function to reflect this ignorance. Then it is just a question how to quantify a degree
of this ignorance. If we choose an entropy to quantify the ignorance, then the
relation between the Laplace's indifference principle and the Jaynes principle of the
Maximum Entropy is transparent, i.e. for a constant-valued probability distribution
the entropy takes its maximum value.

We can conclude that a measurement itself is a physical process and is governed
by the laws of physics. On the other hand formal procedures by means of which we
reconstruct information about the system from the measured data are based on
certain principles which cannot be directly expressed in terms of the physical laws.
From this point of view the MaxEnt principle which is used in the present paper
has close relations to the reconstruction procedure proposed recently by Jones [33]
which is based on the Shannon information theory and the Bayesian theory for
inverting quantum data.

4. Observation Levels for Single-Mode Field

In our paper we will consider two different classes of observation levels. Namely, we
will consider the phase-sensitive and phase-insensitive observation levels. These two
classes do differ by the fact that phase-sensitive observation levels are related to such
operators which provide some information about off-diagonal matrix elements of the
density operator in the Fock basis (i.e., these observation levels reveal some information
about the phase of states under consideration). On the contrary, phase-insensitive obser-
vation levels are based exclusively on a measurement of diagonal matrix elements in the
Fock basis. Before we proceed to a detailed description of the phase-sensitive and phase-
insensitive observation levels we introduce two exceptional observation levels, the
complete and thermal observation levels.

Complete Observation Level O0#[(â-)k âl ; \k, l]

The set of operators |n)(m| (for all n and m) is referred to as complete observa-
tion level. Expectation values of the operators |n)(m| are the matrix elements of
the density operator in the Fock basis

(m| \̂ |n) =Tr[ \̂ |n)(m|]; \n, m, (4.1)

57reconstruction of wigner functions
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and therefore the generalized canonical density operator is identical with the
statistical density operator

_̂0=
1

Z0

exp _& :
�

m, n=0

*m, n |n)(m|&=\̂; (4.2a)

Z0=Tr {exp _& :
�

m, n=0

*m, n |n)(m|&= . (4.2b)

In this case the entropy S0 is determined by the density operator \̂ as

S0=&kB Tr[_̂0 ln _̂0]=&kB Tr[ \̂ ln \̂]. (4.3)

This entropy is usually called the von Neumann entropy [13].
As a consequence of the relation (cf. Sec. 3.3 in [34])

|n)(m|=lim
= � 1

:
�

k=0

(&=)k

k! - n! m!
(â-)k+n âk+m, (4.4)

the complete observation level O0 can also be given by a set of operators [(â-)k âl ;
\k, l] or [q̂kp̂l; \k, l]. The Wigner function on the complete information level is
equal to the Wigner function of the state itself, i.e., W (0)

|9)(!)=W |9)(!).

Thermal Observation Level Oth#[â-â].

The total reduction of the complete observation level O0 results in a thermal
observation level Oth characterized just by one observable, the photon number
operator n̂, i.e., quantum-mechanical states of light on this observation level are
characterized only by their mean photon number n� #(n̂). The generalized canoni-
cal density operator of this observation level is the well-known density operator of
the harmonic oscillator in the thermal equilibrium

_̂th=
1

Zth

exp [&*th n̂]. (4.5)

To find an explicit expression for the Lagrange multiplier *th we have to solve the
equation

Tr[_th n̂]=n� , (4.6a)

from which we find that

*th=ln \n� +1
n� + , (4.6b)
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so that the partition function corresponding to the operator _̂th reads

Zth=[1&exp[&*th]]&1=n� +1. (4.7)

Now we can rewrite the generalized canonical density operator _̂th in the Fock
basis in a form

_̂th= :
�

n=0

n� n

(n� +1)n+1 |n)(n|. (4.8)

For the entropy of the thermal observation level we find a familiar expression

Sth=kB(n� +1) ln (n� +1)&kBn� ln n� . (4.9)

The fact that the entropy Sth is larger than zero for any n� >0 reflects the fact that
on the thermal observation level all states with the same mean photon number are
indistinguishable. This is the reason why Wigner function of different states on the
thermal information level are identical. The Wigner function of the state |9) on the
thermal observation level is given by the relation

W (th)
|9)(!)=

2
1+2n�

exp _&
2 |!| 2

1+2n� & . (4.10)

Extending the thermal observation level we can obtain more ``realistic'' Wigner
functions which in the limit of the complete observation level are equal to the
Wigner function of the measured state itself, i.e., they are not biased by the lack of
information (measured data) about the state.

4.1. Phase-Sensitive Observation Levels

4.1.1. Observation level O1#[â-â, â-, â]. We can extent the thermal observation
level if in addition to the observable n̂ we consider also the measurement of mean
values of the operators â and â- (that is, we consider a measurement of the observ-
ables q̂ and p̂). If we denote the (measured) mean values of this operators as
(â) =# and (â-)=#*, then the generalized canonical density operator _̂1 can be
written as

_̂1=
1

Z1

exp[&*1(â-&#*)(â&#)], (4.11a)

with the partition function Z1 given by the relation

Z1=(1&e&* 1)&1. (4.11b)

We have chosen the density operator _̂1 in such form that the conditions

(â) =Tr[â_̂1]=#; (â-)=Tr[â-_̂1]=#*, (4.12)

59reconstruction of wigner functions
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are automatically fulfilled. To see this we rewrite the density operator _̂1 in the form

_̂1=
1

Z1

D� (#) exp[&*1 â-â] D� -(#), (4.13a)

where we have used the transformation property D� (#) âD� -(#)=â&#, and therefore

Tr[â_̂1]=
1

Z1

Tr[D� -(#) âD� (#) exp (&*1 â-â)]

=#+
1

Z1

Tr[â exp(&*1 â-â)]=#. (4.13b)

To find the Lagrange multiplier *1 we have to solve the equation Tr[â-â_̂1]=n�
from which we find

e&*1=
n� &|#| 2

1+n� &|#| 2 . (4.14)

The entropy S1 on the observation level O1 can be expressed in a form very similar
to Sth [see Eq. (4.9)]

S1=kB[n� &|#| 2+1] ln [n� &|#| 2+1]&kB[n� &|#| 2] ln [n� &|#| 2]. (4.15)

The Wigner function W (1)
|9)(!) corresponding to the generalized canonical density

operator _̂1 reads

W (1)
|9)(!)=

2
1+2(n� &|#| 2)

exp _&
2 |!&#| 2

1+2(n� &|#| 2)& . (4.16)

From the expression (4.15) for the entropy S1 it follows that S1=0 for those states
for which n� =|#| 2. In fact, there is only one state with this property. It is a coherent
state |:) (2.6). In other words, because of the fact that S1=0, the coherent state
can be completely reconstructed on the observation level O1 . In this case

W (1)
|:)(!)=W (0)

|:)(!)=2 exp [&2 |!&:| 2], (4.17)

[see Eq. (2.30)]. For other states S1>0 and therefore to improve our information
about the state we have to perform further measurements, i.e., we have to extent the
observation level O1 .

4.1.2. Observation level O2#[â-â, (â-)2, â2, â-, â]. One of possible extensions of
the observation level O1 can be performed with a help of observables q̂2 and p̂2, i.e.,
when not only the mean photon number n� and mean values of q̂ and p̂ are known,

60 buz� ek, adam, and drobny�



F
ile

:5
95

J
54

78
25

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

12
:5

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

29
13

Si
gn

s:
16

10
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

but also the variances ( (2q̂)2) , ( (2p̂)2) , and ([2q̂ 2p̂]) are measured. On the
observation level O2 we can express the generalized canonical operator _̂2 as

_̂2=
1

Z2

exp _&
*2

2
(â-&#*)2&

*2*
2

(â&#)2&*1(â-&#*)(â&#)& , (4.18)

where the Lagrange multiplier *1 is real while *2 can be complex: *2=|*2 | e&i%. We
can rewrite _̂2 in a form similar to the thermal density operator

_̂2=
1

Z� 2

D� (#) U� (%�2) S� (r) exp[&(*2
1&|*2 | 2)1�2 â-â] S� -(r) U� -(%�2) D� -(#), (4.19a)

where the operators D� (#), U� (%�2), and S� (r) are given by Eqs. (2.6), (2.23), and
(2.41b), respectively. These operators transform the annihilation operator â as

D� -(#) âD� (#)=â+#;

U� -(%�2) âU� (%�2)=âe&i%�2 ; (4.19b)

S� -(r) âS� (r)=â cosh r+â- sinh r.

The partition function Z� 2 in Eq. (4.19a) can be evaluated in an explicit form

Z� &1
2 =1&exp[&(*2

1&|*2 | 2)1�2]. (4.19c)

In Eq. (4.19a) we have chosen the parameter r to be given by the relation
tanh 2r=&|*2 |�*1 . The density operator (4.19a) is defined in such way that it
automatically fulfills the condition Tr[â_̂2]=#, while the Lagrange multipliers *1

and *2 have to be found from the relations Tr[â-â_̂2]=n� and Tr[â2_̂2]=+:

Tr[â-â_̂2]=n� =|#| 2&1�2+(/+1�2) cosh 2r;
(4.20a)

Tr[â2_̂2]=+=#2+e&i% (/+1�2) sinh 2r,

where we have used the notation

/=[exp [(*2
1&|*2 | 2)1�2]&1]&1. (4.20b)

Instead of finding explicit expressions for the Lagrange multipliers *1 and *2 we can
find solutions for the parameters tanh 2r and /. We express these parameters in
terms of the measured central moments (â-â) (c)#N=n� &|#| 2>0 and (â2) (c)#

M=|M| e&i%=+&#2 :

tanh 2r=
|M|

N+1�2
, (4.21a)

/=[(N+1�2)2&|M| 2]1�2&1�2. (4.21b)
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We remind us that physical requirements [35] lead to the following restrictions on
the parameters N and M:

N�0; N(N+1)�|M| 2. (4.22)

Once the tanh 2r and / are found we can reconstruct the Wigner function
W (2)

|9)(!) on the observation level O2 . This Wigner function reads

W (2)
|9)(!)=

1
[(N+1�2)2&|M| 2]1�2

_exp _&
(N+1�2) |!&#| 2&(M*�2)(!&#)2&(M�2)(!*&#*)2

[(N+1�2)2&|M| 2] & . (4.23)

Analogously we can find an expression for the entropy S2:

S2=kB(/+1) ln (/+1)&kB/ ln /. (4.24)

It has a form of the thermal entropy (4.9) with a mean thermal-photon number
equal to / [see Eq. (4.21b)].

Using the expression for the Wigner function (4.23) we can rewrite the variances
of the position and momentum operators in terms of the parameters N and M as

( (2q̂)2)=
�

2
[1+2N+2Re M]; ( (2p̂)2) =

�

2
[1+2N&2 Re M]. (4.25)

The product of these variances reads

( (2q̂)2)( (2p̂)2)=
�2

4
[(1+2N)2&4(Re M)2]. (4.26a)

From the expression (4.24) for the entropy S2 it is seen that those states for
which N(N+1)=|M| 2 can be completely reconstructed of the observation level O2 ,
because for these states S2=0. In fact, it has been shown by Dodonov et al. [36]
that the states for which N(N+1)=|M| 2 are the only pure states which have
non-negative Wigner functions [see Eq. (4.21)]. For these states the product of
variances (4.26a) reads

( (2q̂)2)( (2p̂)2) =
�2

4
[1+4(Im M)2], (4.26b)

which means that if in addition Im M=0 (see for instance squeezed vacuum state
with real parameter of squeezing) then these states also belong to the class of the
minimum uncertainty states. From our previous discussion it follows that the
squeezed vacuum as well as squeezed coherent states can be completely reconstruc-
ted on the observation level O2 . More generally, we can say that all pure Gaussian
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states for which N(N+1)=|M| 2 can be completely reconstructed on this observa-
tion level.

4.1.3. Higher-order phase-sensitive observation levels. There are pure non-
Gaussian states (such as the even coherent state) for which the entropy S2 is larger
than zero and therefore in order to reconstruct Wigner functions of such states
more precisely, we have to extent the observation level O2 . Straightforward exten-
sion of O2 is the observation level Ok#[(â-)m ân; \m, n; m+n�k], which in the
limit k � � is extended to the complete observation level.

To perform a reconstruction of the Wigner function on the observation level Ok

with k>2 an attention has to be paid to the fact that for a certain choice of
possible observables the vacuum-to-vacuum matrix elements of the generalized
canonical density operator (0| _̂k |0) can have divergent Taylor-series expansion.
To be more specific, if we consider an observation level such that Ok#[(â-)k, âk]
then for the generalized canonical density operator

_̂k=
1

Zk
exp[&*k(â-)k&*k*âk], (4.27)

the corresponding partition function Zk=Tr exp[&*k(â-)k&*k*âk] is divergent
[37]. This means that one cannot consistently define an observation level based
exclusively on the measurement of the operators (â-)k and âk. In general, to
``regularize'' the problem one has to include the photon number operator n̂ into the
observation level. Then the generalized density operator _̂k ,

_̂k=
1

Zk
exp[&*0 â-â&*k(â-)k&*k*âk], (4.28)

can be properly defined and one may reconstruct the corresponding Wigner function
Wk(!). We note that any observation has to be chosen in such a way that informa-
tion about the mean photon number is available, i.e., knowledge of the mean photon
number (the mean energy) of the system under consideration represents a necessary
condition for a reconstruction of the Wigner function (see also Appendix A).

4.2. Phase-Insensitive Observation Levels

The choice of the observation level is very important in order to optimize the
strategy for the measurement and the reconstruction of the Wigner function of a
given quantum-mechanical state of light. For instance, if we would like to
reconstruct the Wigner function of the Fock state |n) at the observation level
Ok#[â-â, (â-)m ân; m+n�k and m{n] we find that irrespectively on the number
(k) of ``measured'' moments ( (â-)m ân) (for m{n) the reconstructed Wigner func-
tion is always equal to the thermal Wigner function (4.10). So it can happen that
in a very tedious experiment negligible information is obtained. On the other hand,
if a measurement of diagonal elements of the density operator in the Fock basis is
performed relevant information can be obtained much easier.
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4.2.1. Observation level OA#[P� n=|n)(n|; \n]. The most general phase-insen-
sitive observation level corresponds to the case when all diagonal elements
Pn=(n| \̂ |n) of the density operator \̂ describing the state under consideration
are measured. The observation level OA can be obtained via a reduction of the com-
plete observation level O0 and it corresponds to the measurement of the photon
number distribution Pn such that �n Pn=1. Because of the relation [see Eq. (4.4)]

|n)(n|= lim
= � 1

:
�

k=0

(&=)k

k!n!
(â-)k+n âk+n= lim

= � 1
:
�

k=0

(&=)k

k!n!
n̂!

(n̂&k&n)!
, (4.29)

we can conclude that the observation level OA corresponds to the measurement of
all moments of the creation and annihilation operators of the form (â-)k âk or, what
is the same, it corresponds to a measurement of all moments of the photon number
operator, i.e.,

OA#[P� n=|n)(n|; \n]=[(â-)k âk ; \k]=[n̂k ; \k]. (4.30)

The generalized canonical operator _̂A at the observation level OA reads

_̂A=
1

ZA

exp_& :
�

n=0

*n |n)(n|& ; (4.31a)

with the partition function given by the relation

ZA=Tr {exp _& :
�

n=0

*n |n)(n|&== :
�

n=0

exp[&*n]. (4.31b)

The entropy SA at the observation level OA can be expressed in the form

SA=kB ln ZA+kB :
�

n=0

*nPn . (4.32)

The Lagrange multipliers *n have to be evaluated from an infinite set of equations:

Pn=Tr[_̂AP� n]=
e&*n

ZA

; \n, (4.33)

from which we find *n=&ln [ZAPn]. If we insert *n into expression (4.32) we
obtain for the entropy SA the familiar expression

SA=&kB :
�

n=0

Pn ln Pn , (4.34)
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derived by Shannon [38]. Here it should be briefly noted that as a consequence of
the relation

:
�

n=0

P� n=1� , (4.35)

the operators P� n are not linearly independent, which means that the Lagrange
multipliers *n and the partition function ZA are not uniquely defined. Nevertheless,
if ZA is chosen to be equal to unity, then the Lagrange multipliers can be expressed
as

*n=&ln Pn ; (4.36a)

and the generalized canonical density operator reads

_̂A= :
�

n=0

Pn |n)(n|; :
�

n=0

Pn=1. (4.36b)

From here it follows that the Wigner function W (A)
|9)(!) of the state |9) at the

observation level OA can be reconstructed in the form

W (A)
|9)(!)= :

�

n=0

PnW |n)(!), (4.37)

where W |n)(!) is the Wigner function of the Fock state |n) given by Eq. (2.37).
The phase-insensitive observation level OA can be further reduced if only a finite

number of operators P� n [where n # M] is considered. In this case, in general, we
have �n # M Pn<1 and therefore it is essential that apart of mean values Pn also the
mean photon number n� is known from the measurement. In Appendix A we analyze
the situation when the operator n̂ is not included into the observation level. We
show that in this case no reliable information about the system is obtained even
though many Pn 's are known (but �n # M Pn<1).

4.2.2. Observation level OB#[n̂, P� 2n=|2n)(2n|; \n]. As an example of the
observation level which is reduced with respect to OA we can consider the observa-
tion level OB which is based on a measurement of the average photon number n� and
on the photon statistics on the subspace of the Fock space composed of the even
Fock states |2n) . In this case the generalized canonical density operator _̂B can be
written as

_̂B=
1

ZB

exp _&*n̂& :
�

n=0

*nP� 2n&=
e&*n̂

ZB _\1& :
�

n=0

P� 2n++ :
�

n=0

e&* n P� 2n& , (4.38a)

where the partition function is given by the relation

ZB=Tr {exp _&*n̂& :
�

n=0

*nP� 2n&= . (4.38b)
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This partition function can be explicitly evaluated with the help of solutions for the
Lagrange multipliers from equations Tr[P� 2n _̂B]=P2n . If we introduce the notation

Podd#1& :
�

n=0

P2n ; (4.39a)

n� odd#n� & :
�

n=0

2nP2n , (4.39b)

then the partition function ZB can be expressed as

ZB=
[n� 2

odd&P2
odd]1�2

2P2
odd

. (4.40)

Analogously we find for the generalized canonical density operator the expression

_̂B= :
�

n=0

P2n |2n)(2n|+ :
�

n=0

P2n+1 |2n+1)(2n+1|, (4.41)

where P2n are measured values of P� 2n and P2n+1 are evaluated from the MaxEnt
principle:

P2n+1=
2P2

odd

n� odd+Podd \
n� odd&Podd

n� odd+Podd+
n

. (4.42)

From Eq. (4.42) we see that on the subspace of odd Fock states we have obtained
from the MaxEnt principle a ``thermal-like'' photon number distribution. Now, we
know all values of P2n and P2n+1 and using Eq. (4.34) we can easily evaluate the
entropy SB and the Wigner function W (B)

|9)(!) on the observation level OB [see
Eq. (4.37)].

4.2.3. Observation level OC#[n̂, P� 2n+1=|2n+1)(2n+1|; \n]. If the mean
photon number and the probabilities P2n+1=(2n+1| \̂ |2n+1) are known, then
we can define an observation level OC which in a sense is a complementary observa-
tion level to OB . After some algebra one can find for the generalized canonical
density operator _̂C the expression equivalent to Eq. (4.41), i.e.,

_̂C= :
�

n=0

P2n |2n)(2n|+ :
�

n=0

P2n+1 |2n+1)(2n+1|, (4.43)

where the parameters P2n+1 are known from measurement and P2n are evaluated
as

P2n=
2P2

even

n� even+2Peven \
n� even

n� even+2Peven+
n

. (4.44)
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In Eq. (4.44) we have introduced notations

Peven#1& :
�

n=0

P2n+1; (4.45a)

n� even#n� & :
�

n=0

(2n+1) P2n+1. (4.45b)

The explicit expression for the partition function ZC is

ZC=
n� even+2Peven

2P2
even

. (4.46)

The reconstruction of the Wigner function W (C)
|9)(!) is now straightforward [see

Eq. (4.37)].

4.2.4. Observation level OD#[n̂, P� N=|N)(N|]. We can reduce observation
levels OA, B, C even further and we can consider only a measurement of the mean
photon number n� and a probability PN to find the system under consideration in
the Fock state |N). The generalized density operator _̂D in this case reads

_̂D=
1

ZD

exp[&*n̂&*N P� N]. (4.47)

Taking into account the fact that the observables under consideration do commute,
i.e., [n̂, P� N]=0, and that the operator P� N is a projector (i.e., P� 2

N=P� N) we can
rewrite Eq. (4.47) as

_̂D=
e&*n̂

ZD

[(1&P� N)+e&*N P� N]=PN |N)(N|+ :
�

n{N

Pn |n)(n|, (4.48)

where * and *N are Lagrange multipliers associated with operators n̂ and P� N ,
respectively, and Pn=exp(&*n)�ZD gives the photon number distribution on the
subspace of the Fock space without the vector |N). The generalized partition func-
tion can be expressed as

ZD=
1

1&x
+xN( y&1), (4.49a)

where we have introduced notation

x=exp(&*); y=exp(&*N). (4.49b).
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The Lagrange multipliers can be found from equations

PN=
1

ZD

xNy=
(1&x) xNy

1+xN( y&1)(1&x)
; (4.50a)

n� =
1

ZD _
x

(1&x)2+NxN( y&1)&=
x+NxN(1&x)2 ( y&1)

(1&x)[1+xN( y&1)(1&x)]
. (4.50b)

Generally, we cannot express the Lagrange multipliers * and *N as functions of n�
and PN in an analytical way for arbitrary N and Eqs. (4.50) have to be solved
numerically. Nevertheless, there are two cases when these equations can be solved
in a closed analytical form.

1. If N=0 (we will denote this observation level as OD1), then we can find for
Lagrange multipliers * and *0 the expressions

e&*=1&
1&P0

n�
; e&*0=

P0

(1&P0)2 [n� &(1&P0)]; (4.51a)

and for the partition function we find

ZD1=
n� &(1&P0)

(1&P0)2 . (4.51b)

Then after some straightforward algebra we can evaluate the parameters Pn as

Pn={
P0 for n=0;

(4.52)(1&P0)2

n� &(1&P0) _
n� &(1&P0)

n� &
n

for n>0.

From Eq. (4.52) which describes the photon number distribution obtained from the
generalized density operator _̂D1 it follows that the reconstructed state on the
observation level OD1 has on the subspace form of Fock states except the vacuum
a thermal-like character. Nevertheless, in this case the reconstructed Wigner func-
tion can be negative (unlike in the case of the thermal observation level). This can
happen if P0 is close to zero and n� is small (see Section 5.1). Using explicit expres-
sions for the parameters Pn given by Eq.(4.52) we can evaluate the entropy SD1

corresponding to the present observation level

SD1=&kBP0 ln P0&kB(n� &P) ln (n� &P)&2kBP ln P+kBn� ln n� , (4.53)

where we have used notation P=1&P0 . In the limit P0 � (1+n� )&1 expression
(4.53) reads

lim
P0 � (1+n� ) &1

SD1=kB(n� +1) ln (n� +1)&kBn� ln n� , (4.54)
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which is the entropy on the thermal observation level Eq. (4.9). In this limit the OD1

reduces to the thermal observation level Oth . On the other hand, in the limit P0 � 0
we obtain from Eq. (4.53)

lim
P0 � 0

SD1=kBn� ln n� &kB(n� &1) ln (n� &1), (4.55)

from which it directly follows that in this case the mean photon number has
necessary to be larger or equal than unity. Moreover, from Eq. (4.55) we see that
in the limit n� � 1 the entropy SD1=0 which means that the Fock state |1) can be
completely reconstructed on the observation level OD1 . This fact can also be seen
from an explicit expression for the photon number distribution (4.52) from which
it follows that

lim
n� � 1

lim
P 0 � 0

Pn=$n, 1 . (4.56)

2. If the mean photon number is an integer, then in the case N=n� (we will
denote this observation level as OD2) we find for the Lagrange multipliers * and
*N=n� #*n� the expressions

e&*=
n�

1+n�
; e&*n� =

(1+n� )1+n� &n� n�

(1&Pn� ) n� n� Pn� , (4.57a)

and for the partition function we find

ZD2=
(1+n� )1+n� &n� n�

(1&Pn� )(1+n� )n� . (4.57b)

Taking into account the expression for the reconstructed photon number distribu-
tion

Pn=(n| _̂D2 |n)=
e&n*

ZD2

[1+$n, n� (e&* n� &1)], (4.58a)

then with the help of relations (4.57) we find

Pn={
Pn� ; n=n�

(4.58b)(1&Pn� )(1+n� )n�

(1+n� )1+n� &n� n� \ n�
1+n� +

n

; n{n� .

We see that the reconstructed photon-number distribution has a thermal-like
character. The corresponding entropy can be evaluated in a closed analytical form

SD2=&kBPn� ln Pn� &kB(1&Pn� ) ln (1&Pn� )+kB(1&Pn� ) ln _(1+n� )1+n�

n� n� &1& . (4.59)
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It is interesting to note that if Pn� is given by its value in the thermal photon number
distribution, i.e.,

Pn� =
n� n�

(1+n� )1+n� , (4.60a)

then the entropy (4.59) reduces to

SD2=kB(n� +1) ln (n� +1)&kBn� ln n� =&kB ln Pn� , (4.60b)

which means that the reconstructed density operator _̂D2 on the observation level
OD2 with Pn� given by Eq. (4.60a) is equal to the density operator of the thermal field
[see Eq. (4.8)] and so, in this case the reduction OD2 � Oth takes place. On the
other hand, if Pn� =1 then SD2=0 and the Fock state |n� ) can be completely
reconstructed on the observation level OD2 .

4.3. Relations between Observation Levels

Various observation levels considered in this section can be obtained as a result
of a sequence of mutual reductions. Therefore we can order observation levels
under consideration. This ordering can be done separately for phase-sensitive and
phase-insensitive observation levels. In particular, phase-sensitive observation levels
are ordered:

O0#O2#O1#Oth . (4.61)

The corresponding entropies are related as

S0�S2�S1�Sth . (4.62)

The ordering of phase-insensitive observation levels OA , OB , OC , OD1 and OD2 is
more complex. In particular, we find

O0#OA#{OB

OC=#Oth ; (4.63a)

O0#OA#{OD1

OD2=#Oth , (4.63b)

and

O0#OA#OB#OD1#Oth (4.63c),

which reflects the fact that observation levels OB and OC (as well as OD1 and OD2)
cannot be obtained as a result of mutual reduction or extension. The corresponding
entropies are related as
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S0�SA�{SB

SC=�Sth , (4.64a)

S0�SA�{SD1

SD2=�Sth , (4.64b)

and

S0�SA�SB�SD1�Sth . (4.64c)

For a particular quantum-mechanical state of light observation levels OX can be
ordered with respect to increasing values of entropies SX. From the above it also
follows that if the entropy SX on the observation level OX is equal to zero, then
the entropies on the extended observation levels are equal to zero as well. It means
that the complete reconstruction of the Wigner function of a pure state can be
performed on the observation level which is based on a measurement of a finite
number of observables.

We also stress that the choice of a given observation level OX can be understood
as an application of a particular truncation scheme [26] and the difference between
the entropy SX and the von Neumann entropy S0 can be accepted as a measure of
the ``quality'' of the adopted truncation scheme. The smaller this difference more
precise the truncation scheme is.

5. Reconstruction of Wigner Functions

5.1. Coherent States

The Wigner function W |:)(!) of a coherent state |:) on the complete observation
level is given by Eq. (2.30) [see Fig. 1a]. Coherent states are uniquely characterized
by their amplitude and phase and therefore phase-sensitive observation levels
have to be considered for a proper reconstruction of their Wigner functions. In
Section 4.1 we have shown that the Wigner function of coherent states can be
completely reconstructed on the observation level O1 (see Fig. 1a). Nevertheless it is
interesting to understand how Wigner functions of coherent states can be
reconstructed on phase-insensitive observation levels.

Observation level OA . The coherent state |:) has a Poissonian photon number
distribution and therefore we obtain for the generalized density operator of the
coherent state on OA the expression

_̂A= :
�

n=0

Pn |n)(n|; Pn=e&|:| 2 |:| 2n

n!
. (5.1a)
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Fig. 1. The reconstructed Wigner functions of the coherent state |:) with n� =2. We consider the
observation levels as indicated in the figure.

This density operator describes a phase-diffused coherent state. Eq. (5.1a) can be
rewritten in the coherent-state basis

_̂A=
1

2? |
?

&?
d, |:)(:|; :=|:| ei,. (5.1b)

From Eqs. (5.1) it follows that on the observation level OA phase information is
completely lost and the corresponding Wigner function can be written as

W (A)
|:)(!)=2 exp(&2 |!| 2&|:| 2) :

�

n=0

(&|:| 2)n

n!
Ln(4 |!| 2), (5.2a)
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or after some algebra we can find

W (A)
|:)(!)=2 exp(&2 |!| 2&2 |:| 2) J0(4i |:| |!| ), (5.2b)

where J0(4i |:| |!| ) is the Bessel function

J0(4i |:| |!| )= :
�

n=0

(4 |:| 2 |!| 2)n

(n!)2 , (5.3)

from which we see that the Wigner function (5.2) is positive. We plot W (A)
|:)(!) in

Fig. 1b. We can understand the shape of W (A)
|:)(!) if we imagine phase-averaging of

the Wigner function W |:)(!) [see Fig. 1a]. On the other hand we can represent
W (A)

|:)(!) as a sum of weighted Wigner functions of Fock states [see Eq. (5.2a)]. For
the considered coherent state |:) with the mean photon number n� =2 we have
P1=P2=2P0=2 exp(&2), so the Wigner functions of Fock states |1) and |2)
dominantly contribute to W (A)

|:)(!). On the other hand contribution of the Wigner
function of the vacuum state is suppressed and therefore W (A)

|:)(!) has a local mini-
mum around the origin of the phase space while its maximum is at the same dis-
tance from the origin of the phase space as for the Wigner function on the complete
observation level [see Fig. 1a]. We note that the Wigner function W (A)

|:)(!) desrib-
ing the phase-difused coherent state has been experimentally reconstructed recently
by Raymer et al. [17].

Observation level OB . Let us assume that from a measurement the mean photon
number n� and probabilities P2n are know (see Section 4.2). If the values of P2n are
given by Poissonian distribution (5.1), i.e., P2n=exp(&n� ) n� 2n�(2n)!, then using
definitions (4.39) we can find the parameters Podd and n� odd to be

Podd=e&n� sinh n� ; n� odd=n� (1&Podd), (5.4)

The reconstructed probabilities P2n+1 are given by Eq. (4.42) and in the limit of
large n� (when Podd � 1�2 and n� odd � n� �2) they read

P2n+1 �
(n� &1)n

(n� +1)n+1. (5.5)

With the help of the relation (4.37) and explicit expressions for P2n and P2n+1 we
can evaluate expression for the Wigner function of the coherent state on the
observation level OB . We plot W (B)

|:)(!) of the coherent state with the mean photon
number equal to two (n� =2) in Fig. 1c. In this case P2 is dominant from which
it follows that the Fock state |2) gives a significant contribution into W (B)

|:)(!)
[compare with Fig. 1b].

Observation level OC. The Wigner function W (C )
|:)(!) of the coherent state on the

observation level OC can be reconstructed in exactly same way as on the level OB .
In Fig. 1d we present a result of this reconstruction. On the observation level OC
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the contribution of the vacuum state is more significant than in the case OB which
is due to the thermal-like photon number distribution P2n on the even-number sub-
space of the Fock space [see Eq. (4.44)].

Observation level OD1. We can easily reconstruct the Wigner function of the
coherent state at the observation level OD1. Using general expressions from Section
4.2 we find the expression

W (D1)
|:) (!)=\P0&

1&P0

n~ + W |0)(!)+(1&P0)
n~ +1

n~
Wth(!), (5.6)

for the Wigner function W (D1)
|:) (!) [we remind ourselves that for coherent state the

parameter P0 is given by the relation P0=exp(&n� )]; where W |0)(!) is the Wigner
function of the vacuum state given by Eq. (2.30) and Wth(!) is the Wigner function
of a thermal state (4.10) with an effective number of photons equal to n~ , where

n~ =
n�

1&P0

&1. (5.7)

In particular, from Eqs. (5.6) and (5.7) it follows that

lim
n� � 0

W (D1)
|:) (!)=W |0)(!) (5.8)

and simultaneously SD1=0, which means that the vacuum state can be completely
reconstructed on the present observation level. Another result which can be derived
from Eq. (5.6) is that if P0(2n� +1)<1, then the reconstructed Wigner function
W (D1)

|:) (!) of the coherent state |:) can be negative due to the fact that the contribu-
tion of the Fock state |1) is more dominant than the contribution of the vacuum
state and then the negativity of the Wigner function W |1)(!) results into negative
values of W (D1)

|:) (!). This means that even though the Wigner function of the state
itself (i.e., the Wigner function at the complete observation level) is positive, the
reconstructed Wigner function can be negative. This is a clear indication that the
observation level has to be chosen very carefully and that reconstructed Wigner
functions can indicate nonclassical behaviour even in those cases when the
measured state itself does not exhibit nonclassical effects. In Fig.1e we plot the
Wigner function W (D1)

|:) (!) of the coherent state which illustrates this effect.

Observation level OD2. If the mean photon number n� is an integer, then one may
consider the observation level OD2 . The Wigner function of the coherent state at this
observation level for which Pn� =exp(&n� ) n� n� �(n� !) reads

W (D2)
|:) (!)=\1&

1+n�
ZD2 + W |n� )(!)+

n� +1
ZD2

Wth(!), (5.9)

where W |n� )(!) is the Wigner function of the Fock state |n� ) and Wth(!) is the
Wigner function of the thermal state with the mean photon number equal to n� . The
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partition function ZD2 is given by the relation (4.57b). The Wigner function (5.9)
is plotted in Fig. 1f. From this figure we see that the vacuum state |0) (due to the
thermal-like character of the reconstructed photon number distribution) and the
Fock state |2) (as a consequence of the measurement) dominantly contribute to
W (D2)

|:) (!).

5.2. Squeezed Vacuum

The Wigner function of the squeezed vacuum state (2.41) on the complete obser-
vation level O0 is given by Eq. (2.44) and is plotted (in the complex ! phase space)
in Fig. 2a. This is a Gaussian function, which carries phase information associated
with the phase of squeezing. On the thermal observation level Oth which is charac-
terized only by the mean photon number n� the reconstructed Wigner function of
the squeezed vacuum state is a rotationally symmetrical Gaussian function centered
at the origin of the phase space [see Eq. (4.10) and Fig. 1g]. On the observation
level O1 the reconstructed Wigner function is the same as on the thermal observation

Fig. 2. The reconstructed Wigner functions of the squeezed vacuum state |') with n� =2. We con-
sider the observation levels as indicated in the figure.
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level because the mean amplitudes (â) and (â-) are equal to zero. On the other
hand, the Wigner function of the squeezed vacuum can be completely reconstructed
on the observation level O2 . To see this we evaluate the entropy S2 for the squeezed
vacuum state [see Eq. (4.24)]. The parameters M and N can be expressed in terms
of the squeezing parameter ' (we assume ' to be real) as

N=
'2

1&'2 ; M=
'

1&'2 , (5.10)

so that N(N+1)=M 2. Consequently the parameter / given by Eq. (4.21b) is equal
to zero from which it follows that S2 for the squeezed vacuum is equal to zero.

Observation level OA. The squeezed vacuum state (2.41a) is characterized by the
oscillatory photon number distribution Pn :

P2n=(1&'2)1�2 (2n)!
[2nn!]2 '2n ; P2n+1=0. (5.11)

Using Eq. (4.37) we can express the Wigner function W (A)
|')(!) of the squeezed

vacuum on the observation level OA as

W (A)
|')(!)=2(1&'2)1�2 e&2 |!| 2

:
�

n=0

(2n)! '2n

22n(n!)2 L2n(4 |!| 2). (5.12)

Taking into account that the Wigner function on the observation level OA can be
obtained as the phase-averaged Wigner function on the complete observation level,
we can rewrite (5.12) as

W (A)
|')(!)=

1
2? |

?

&?
W |')(!) d,; !=|!| ei,. (5.13)

If we insert the explicit expression for W |')(!) [see Eq. (2.44)] into Eq. (5.13) we
obtain

W (A)
|')(!)=2 exp _&\ |!| 2

2_2
q

+
|!| 2

2_2
p+& I0 \ |!| 2

2_2
q

&
|!| 2

2_2
p+ , (5.14)

where I0(x) is the modified Bessel function. We plot this Wigner function in Fig. 2b.
We see that W (A)

|')(!) is not negative and that it is much narrower in the vicinity
of the origin of the phase space than the Wigner function of the vacuum state
(compare with Fig. 1a). Nevertheless the total width of Wigner function W (A)

|')(!) is
much larger than the width of the Wigner function of the vacuum state.

Observation level OB. Due to the fact that for the squeezed vacuum state we
have �n P2n=1, the Wigner function of the squeezed vacuum state on the observa-
tion level OB is equal to the Wigner function on the observation level OA , i.e.,
W (B)

|')(!)=W (A)
|')(!).
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Observation level OC . For the squeezed vacuum state all meanvalues P2n+1 are
equal to zero and therefore �n P2n+1=0. From this fact and from the knowledge
of the mean photon number n� we can reconstruct the Wigner function W (C )

|')(!) in
the form [see Section 4.2.3]

W (C )
|')(!)=

4e&2 |!| 2

n� +2
:
�

k=0
\ n�

n� +2+
k

L2k(4 |!| 2), (5.15)

where n� is the mean photon number in the squeezed vacuum state. We plot the
Wigner function W (C )

|')(!) in Fig. 2c. This Wigner function is very similar to the
Wigner function on the observation level OA [see Fig. 2b] which reflects the fact
that the photon number distribution of the squeezed vacuum state has a thermal-
like character on the even-number subspace of the Fock space.

Observation level OD1. With the help of the general formalism presented in Sec-
tion 4.2.4 we can express the Wigner function W (D1)

|') (!) of the squeezed vacuum
state on the observation level OD1 in the form given by Eq. (5.6) with

P0=(1&'2)1�2=(n� +1)&1�2 and n~ =
n�

1&(1+n� )&1�2&1. (5.16)

We plot the Wigner function W (D1)
|') (!) in Fig. 2d from which the dominant con-

tribution of the vacuum state is transparent which is due to the fact that the
squeezed vacuum state has a thermal-like photon number distribution (for more
details see Sec. 6).

Observation level OD2. If we consider n� to be an even integer, then the Wigner
function W (D2)

|') (!) of the squeezed vacuum state on OD2 is given by Eq. (5.9). The
partition function ZD2 is given by Eq. (4.57b) where

Pn� =
n� !

2n� [(n� �2)!]2

n� n� �2

(1+n� )(1+n� )�2 . (5.17)

We plot this Wigner function in Fig. 2e. It has a thermal-like character [compare
with Fig. 1g] but contribution of the Fock state |n� =2) is more dominant com-
pared with the proper thermal distribution. If n� is an odd integer, then Pn� =0 and
the corresponding Wigner function can be again reconstructed with the help of
Eqs. (5.9) and (4.57b).

5.3. Even Coherent State

We plot the Wigner function of the even coherent state on the complete observa-
tion level in Fig. 3a. Two contributions of coherent component state |:) and |&:)
as well as the interference peak around the origin of the phase space are transparent
in this figure. As in the case of the squeezed vacuum state, the mean amplitude (â)

77reconstruction of wigner functions
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Fig. 3. The reconstruced Wigner functions of the even coherent state |:e) with n� =2. We consider
the observation levels as indicated in the figure.

of the even coherent state is equal to zero and therefore the Wigner function
W (1)

|: e)(!) of the even coherent state on the observation level O1 is equal to the
thermal Wigner function given by Eq. (4.10).

Observation level O2 . Using general expressions from Section 4.1.2 we can express
the Wigner function W (2)

|:e)(!) of the even coherent state on the observation level O2 as

78 buz� ek, adam, and drobny�
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W (2)
|:e)(!)=

1
[(N+1�2)2&M2]1�2 exp _&

!2
x

[(N+1�2)+M]
&

!2
y

[(N+1�2)&M]& ,

(5.18a)

where !=!x+i!y , and the parameters N and M read

N=:2 tanh :2 ; M=:2. (5.18b)

We plot the Wigner function W (2)
|:e) in Fig. 3b. This Wigner function is slightly

``squeezed'' in the !y-direction and stretched in the !x-direction. Nevertheless, the
reconstructed Wigner function is different from the Wigner function of the squeezed
vacuum state [compare with Fig. 2a].

Observation level OA . The photon number distribution of the even coherent state
is given by the relation (we assume : to be real)

P2n=
1

cosh :2

:4n

(2n)!
; P2n+1=0, (5.19)

so the corresponding Wigner function can be expressed as Eq. (4.37). We can also
express W (A)

|:e)(!) as the phase averaged Wigner function of the even coherent state
W |:e)(!) given by Eq. (2.47a). After some algebra we find that W (A)

|: e)(!) can be
written in a closed form

W (A)
|: e)(!)=

e&2 |!| 2

cosh :2 [e&: 2J0(4i: |!| )+e: 2J0(4: |!| )]. (5.20)

We plot the Wigner function W (A)
|:e)(!) in Fig. 3c. From this figure the dominant

contribution of the Fock state |2) is transparent (in the present case we have
P0&2 exp(&2), P2=2P0 , and P4=2P0 �3, while all other probabilities Pn are
much smaller) which results in negative Wigner function.

Observation level OB . Due to the fact that the even coherent state is expressed
as a superposition of only even Fock states, i.e., �n P2n=1, the Wigner functions
on the observation levels OA and OB are equal, i.e., W (B)

|:e)(!)=W (A)
|:e)(!).

Observation level OC. As a consequence of the fact that for the even coherent
state all meanvalues P2n+1 are equal to zero the information available for the
reconstruction of the Wigner function W (C )

|:e)(!) is the same as in the case of the
reconstruction of the Wigner function of the squeezed vacuum state on the observa-
tion level OC . Therefore, the Wigner function W (C )

|:e)(!) has exactly the same form
as for the squeezed vacuum state with the same mean photon number n� [see
Fig. 3d and Fig. 2c].
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Observation level OD1. The Wigner function W (D1)
|:e) (!) of the even coherent state

on the observation level OD1 is given by Eq. (5.6) with

P0=
1

cosh :2 ; n~ =
:2 sinh :2

cosh :2&1
&1. (5.21)

We plot the Wigner function W (D1)
|:e) (!) in Fig. 3e. This Wigner function has a thermal-

like character except the fact that the contribution of the vacuum state is slightly
suppressed.

Observation level OD2. Analogously we can find the Wigner function W (D2)
|: e) (!).

If we consider n� to be an even integer, then the Wigner function W (D2)
|') (!) of the

even coherent state on OD2 is given by Eq. (5.9) and Eq. (4.57b) where

Pn� =
1

cosh :2

:2n�

n� !
, (5.22)

and if n� is an odd integer then Pn� =0. We plot W (D2)
|:e) (!) in Fig. 3f. From our

previous discussion it is clear that in the present case the vacuum state and the
Fock state |2) dominantly contribute to W (D2)

|:e) (!) (similarly as on the observation
level OA - see Fig. 3c).

5.4. Odd Coherent State

We present the Wigner function of the odd coherent state with the mean photon
number equal to two in Fig. 4a. The mean amplitude (â) of the odd coherent state
is equal to zero and therefore the Wigner function W (1)

|: o)(!) of this state on the
observation level O1 is equal to the thermal Wigner function given by Eq. (4.10)
[see Fig. 1g].

Observation level O2 . Using general expressions from Section 4.1.2 we find that
the Wigner function W (2)

|:o)(!) of the odd coherent state on the observation level O2

is the same as for the even coherent state [see Eq. (5.18a)] but the parameters N
and M in the present case read

N=:2 coth :2 ; M=:2. (5.23)

We plot the Wigner function W (2)
|:o)(!) in Fig. 4b. This is a ``squeezed''-Gaussian

function similar to the Wigner function of the even coherent state on the same
observation level [see Fig. 3b and discussion in the previous section].

Observation level OA . The photon number distribution of the odd coherent state
is given by the relation (we assume : to be real)

P2n=0; P2n+1=
1

sinh :2

(:2)2n+1

(2n+1)!
. (5.24)
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Fig. 4. The reconstructed Wigner functions of the odd coherent state |:o) with n� =2. We consider
the observation levels as indicated in the figure.

Consequently, the Wigner function W (A)
|:o)(!) can be expressed as (4.37). Alter-

natively, if we use the fact that W (A)
|: o)(!) is equal to the phase averaged Wigner

function of the odd coherent state W |:o)(!) given by Eq. (2.47b), then we can write

W (A)
|: o)(!)=

e&2 |!| 2

sinh :2 [e&: 2J0(4i: |!| )&e: 2J0(4: |!| )]. (5.25)
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This function is always negative in the origin of the phase space. We plot the
Wigner function W (A)

|: o)(!) in Fig. 4c. In the present case P0=P2=0 and the P1 is
the largest probability therefore the contribution of the Fock state |1) in W (A)

|: o)(!)
is the most dominant which is clearly seen from Fig. 4c. We also note that, in
general, any superposition of odd Fock states has a negative Wigner function on
the observation level OA.

Observation level OB . For the odd coherent state all meanvalues P2n are equal
to zero. Taking into account this information and the information about the mean
photon number we reconstruct the Wigner function W (B)

|: o)(!) in the form (for
details see Section 4.4.2)

W (B)
|: o)(!)=&

4e&2 |!| 2

n� +1
:
�

k=0
\n� &1

n� +1+
k

L2k+1(4 |!| 2), (5.26)

where n� =:2 coth :2. We plot this Wigner function in Fig. 4d. In the present case
the dominant contribution of the Fock state |1) is seen (P0=P2=0 and due to the
thermal-like photon number distribution on the odd-number subspace of the Fock
space P3 is much smaller than P1). We can conclude, that any superposition of odd
Fock states on the observation level OB has the Wigner function given by Eq. (5.26),
i.e., superpositions of odd Fock states are indistinguishable on OB .

Observation level OC . Due to the fact that the odd coherent state is expressed as
a superposition of only odd Fock states, i.e., �n P2n+1=1, the Wigner functions on
the observation levels OC and OA are equal, i.e., W (C )

|:o)(!)=W (A)
|:o)(!).

Observation level OD1. The Wigner function W (D1)
|:o) (!) of the odd coherent state

on the observation level OD1 is given by the following relation [we remind us that
for the odd coherent state we have P0=0]

W (D1)
|: o)(!)=&

1
n� &1

W |0)(!)+
n�

n� &1
Wth(!), (5.27)

where n� is the mean photon number in the odd coherent state; W |0)(!) is the
Wigner function of the vacuum state and Wth(!) is the thermal Wigner function for
the state with n� &1 photons. We note that from Eq. (5.27) it follows that

lim
n� � 1

W (D1)
|:o)(!)=W |1)(!), (5.28)

We plot the Wigner function W (D1)
|:o)(!) in Fig. 4e. Compared with Fig. 4d we see

that the contribution of the Fock state |1) on the observation level OD1 is smaller
than on OB . This is due to the fact that on the present observation level P2 is not
equal to zero.
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Observation level OD2. Reconstruction of the Wigner function W (D2)
|:o) (!) is

straightforward. For the odd coherent state it is valid that if n� is an odd integer,
then

Pn� =
1

sinh :2

:2n�

n� !
, (5.29)

and the Wigner function is given by Eq. (5.9). On the other hand if n� is an even
integer, then Pn� =0 and we again use Eq. (5.9) for the reconstruction of the Wigner
function W (D2)

|') (!). We plot this Wigner function in Fig. 4f. Even though on this
observation level P2=0 the contribution from the vacuum state is significant and
therefore W (D1)

|: o)(!) is not negative in the present case.

5.5. Fock State
Mean values of the operators âk in the Fock state are equal to zero, therefore the

Wigner functions W (1)
|n)(!) and W (2)

|n)(!) of the Fock state |n) on the observation
levels O1 and O2 , respectively, are equal to the thermal Wigner function given by
Eq. (4.10) [see Fig. 5b]. On the other hand the Shannon entropy of the Fock state
is equal to zero, therefore this state can be completely reconstructed on the observa-
tion level OA [see Fig. 5a for the Wigner function of the Fock state |2)].

Observation level OB . If the Fock state has an even number of photons then it
can also be completely reconstructed on the observation level OB. But if the number

Fig. 5. The reconstructed Wigner functions of the Fock state |n=2). We consider the observation
levels as indicated in the figure.
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of photons of the Fock state is odd then the Wigner function of this Fock state on
OB is given by the relation (5.26) with n� =n.

Observation level OC . If the number of photons of the Fock state is odd then the
corresponding Wigner function can be completely reconstructed on the observation
level OC . If the number of photons is even, then the Wigner function W (C )

|n)(!) is
given by Eq. (5.15) with n� =n. We plot W (C )

|n)(!) in Fig. 5c. This Wigner function
is the same as for the squeezed vacuum state W (C )

|')(!) and the even coherent state
W (C )

|: e)(!) with the same mean photon number [see Figs. 2c and 3c]. More
generally, all superpositions of even Fock states with the same mean photon
number are indistinguishable on OC.

Observation level OD1. If the Fock state under consideration is the vacuum state
then it can be completely reconstructed on the observation level OD1 . If the number
of photons is larger than zero, then P0=0 and the corresponding Wigner function
is given by Eq. (5.27) with n� =n. We plot W (D1)

|n=2)(!) in Fig. 5d.

Observation level OD2. On this observation level the Wigner function of the
Fock state |n) can be always completely reconstructed, because this observation
level is defined in such way that Pn=1.

6. Reconstruction of Eigenstates of Observables

From the von Neumann theory of measurement [13] it follows that the
necessary and sufficient condition that |A) is an eigenstate of the observable A� is

(A| (A� &(A� ) )2 |A) =0. (6.1)

From this condition it follows that there has to exist an observation level on which
we can reconstruct the Wigner function of the state |A) via the measurement of the
observables A� and A� 2.

6.1. Observation level Oq#[q̂, q̂2].

To be more specific, let us consider a reconstruction of the eigenstate |q� ) [see
Appendix B] of the position operator q̂. To do so, we will utilize the observation
level Oq#[q̂, q̂2]. The generalized canonical density operator in this case reads

_̂q=
1

Zq

exp[&*1 q̂&*2 q̂2]. (6.2)

We note that due to the fact that the position operator q̂ can be expressed in terms
of the photon creation and annihilation operators [i.e., q̂=(â-+â) - ��2] the
observation level Oq is closely related to the observation level O2 . More precisely, Oq

represents a reduction of O2 .

84 buz� ek, adam, and drobny�



F
ile

:5
95

J
54

78
49

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

12
:5

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

22
27

Si
gn

s:
88

6
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

We can rewrite the density operator _̂q given by Eq. (6.2) as

_̂q=
1

- 2?�
|

�

&�
dq P(q) |q)(q|, (6.3)

where a distribution P(q)=- 2?� (q| _̂q |q) [see Eq. (2.21a)] has a Gaussian
form

P(q)=
1

Zq

exp[&*1q&*2q2], (6.4a)

and is normalized to unity

1

- 2?�
|

�

&�
dq P(q)=1. (6.4b)

The corresponding partition function Zq can be evaluated explicitly in a form

Zq=
1

- 2?�
|

�

&�
dq exp[&*1q&*2q2]=

1

- 2�*2

exp \ *2
1

4*2+ . (6.5)

Lagrange multipliers *1 and *2 are defined by the relations (see Section 2)

(q̂) =&
� ln Zq

�*1

=&
*1

2*2

; (6.6a)

(q̂2)=&
� ln Zq

�*2

=
1

2*2

+
*2

1

4*2
2

, (6.6b)

from which we find

*1=&
q�

�_2
q

; *2=
1

2�_2
q

, (6.7)

where we have used the notation

q� #(q̂); (q̂2) &(q̂) 2=�_2
q . (6.8)

Consequently we can write an explicit expression for the partition function (6.5)

Zq=_q exp _ (q� )2

2�_2
q& , (6.9)

and then the probability distribution P(q) given by Eq. (6.4) reads [see also
Appendix B]

P(q)=
1
_q

exp _&
(q&q� )2

2�_2
q & . (6.10)
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The generalized density operator _̂q [see Eq. (6.2)] now takes the form

_̂q=
1
_q

exp _&
(q̂&q� )2

2�_2
q & , (6.11)

and the corresponding entropy reads

Sq=&kB Tr[_̂q ln _̂q]=&
kB

- 2?�
|

�

&�
dq P(q) ln P(q)=

kB

2
+kB ln _q . (6.12)

The generalized canonical density operator _̂q given by Eq. (6.11) does not provide
us with a sufficient information to reconstruct the Wigner function W(q, p) in the
(q, p)-phase space. Actually, this is not surprising, because the observation level Oq

is defined in such way that information just about one canonical observable (i.e., q̂)
is available while no information about the conjugated observable p̂ is at disposal.
Nevertheless, in the limit _q � 0, i.e., when (q̂2)&(q̂) 2 � 0 and P(q) �
- 2?� $(q&q� ) [see Eq. (6.10)] we find from Eq. (6.11) that

lim
_q � 0

_̂q=|q� )(q� |, (6.13)

which means that on the observation level Oq we can completely reconstruct the
position state |q� ). In this case the Wigner function is given by Eq. (B.3) in the limit
of infinite squeezing. We should also point out that in the limit _q � 0 the entropy
Sq is equal to &�. This is related to the fact that in the limit _q � 0 the distribu-
tion P(q) given by Eq. (6.10) has a form of the $-function analogous to a proba-
bility density distribution of a classical continuous variable for which entropy can
really take a value equal to &� [39].

6.2. Observation Level On#[n̂, n̂2]

From our previous discussion it follows that one cannot reconstruct the Wigner
function W(q, p) in the (q, p)-phase space providing information just about one of
the two observable q̂ and p̂ is available. On the other hand, the observation level Oq

is suitable for a complete reconstruction of the eigenstate of the position operator.
Now we will assume the phase-insensitive observation level On which is related to

a measurement of the observables n̂ and n̂2. Due to the fact that the operators n̂ and
n̂2 can be expressed in terms of powers of the position and momentum operators
we expect that the Wigner function W (n)(q, p) in the (q, p)-phase space on observa-
tion level On can be reconstructed.

The generalized canonical density operator _̂ on the observation level On reads

_̂n=
1

Zn

exp[&*1 n̂&*2 n̂2]=
1

Zn

:
�

n=0

exp[&*1n&*2 n2] |n)(n|. (6.14)
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The Lagrange multipliers are determined by the relations

(n̂)=&
� ln Zn

�*1

= :
�

m=0

mPm ; (6.15a)

(n̂2)=&
� ln Zn

�*2

= :
�

m=0

m2Pm , (6.15b)

where

Pm=
1

Zn

exp[&*1 m&*2m2]; (6.16a)

and

Zn= :
�

m=0

exp[&*1m&*2m2]. (6.16b)

From Eqs. (6.15) it follows that if (n̂) =N is an integer, then in the limit _n � 0+

(where _2
n#(n̂2)&(n̂) 2) *1=&2N*2 and *2 tends to infinity. Simultaneously

Pm � $m, N , (6.17)

which means that in this case _̂n � |N)(N|. In other words, on the observation
level On the Fock state |N) can be completely reconstructed [in this case the
corresponding entropy Sn=&kB �m Pm ln Pm is equal to zero]. In Fig. 6a we pre-
sent a result of the numerical reconstruction of the Wigner function W (n)

|n)(q, p) of
the Fock state |2) for which (n̂)=2 and (n̂2) =4. Comparing Figures 5a and 6a
we see that on the observation level On the complete reconstruction of the Wigner
function of the Fock state can be performed. On Fig. 6b we present a result of the
numerical reconstruction on the observation level On of the state for which (n̂)=2
and (n̂2) =4.2. This state on the observation level On is described by the density
operator (6.14) and the corresponding photon number distribution Pm is a discrete
Gaussian-like function (m�0). The Wigner function of this state is negative, which
in particular reflects the fact that the reconstructed distribution is narrower than
the Poissonian (coherent-state) photon number distribution, i.e., the state under
consideration exhibits sub-Poissonian photon number distribution. To quantify the
degree of the sub-Poissonian photon statistics one can utilize the Mandel Q
parameter [40] defined as

Q=
(n̂2)&(n̂) 2&(n̂)

(n̂)
, (6.18)

which for Fock states is equal to -1 while for coherent states is equal to 0. The state
is said to have sub-Poissonian photon statistics providing Q<0. As seen from
Figs. 6 one can (partially) reconstruct sub-Poissonian state on the observation
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Fig. 6. The reconstructed Wigner functions of the generalized Gaussian states with n� =2 on the
observation level On : (a) the Wigner function of the Fock state |n=2) (in this case the Mandel Q
parameter is equal to &1 and Sn=0); (b) the Wigner function of the state with the discrete Gaussian
photon number distribution [see Eq. (6.16a)] with (n̂2) =4.2 (so that Q=&0.9).

level On . In addition states with the Poissonian photon statics Q=0 can be partially
reconstructed on this observation level as well. For instance in Fig. 1h we represent
a result of numerical reconstruction of the Wigner function W (n)

|:)(!) of the coherent
state with a Poissonian photon number distribution on the observation level On . In
this case the reconstructed photon number distribution Pn [see Eq. (6.16a)] does
not have a Poissonian character, and therefore the reconstructed Wigner functions
of the coherent state on the observation levels OA and On are different (compare
Figs. 1b and 1h, respectively) even though the reconstructed states have the
same mean photon number (n̂) and the same variance _2

n in the photon number
distribution.

On the observation level On we can reconstruct also the odd coherent state given
by Eq. (2.46b) which is a sub-Poissonian state with the Q parameter given by the
relation (we assume : to be real)

Q=&
4:2e&2:2

1&e&4:2=&
n�

(cosh :2)2<0, (6.19a)

where the mean photon number n� in the odd coherent state is given by the relation
n� =:2 coth :2. We have plotted the result of the numerical reconstruction of the
Wigner function of the odd coherent state with n� =2 on the given observation level
in Fig. 4g. Due to the fact, that for the given mean photon number the odd
coherent state does not exhibit a significant degree of sub-Poissonian photon
statistics, the corresponding Wigner function W (n)

|: o)(!) is not negative (compare
Fig. 4c).

The even coherent state (2.46a) is characterized by the super-Poissonian photon
statistics with the Mandel Q parameter given by the relation

Q=
4:2e&2:2

1&e&4:2=
n�

(sinh :2)2>0, (6.19b)
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with the mean photon number given by the relation n� =:2 tanh :2. From Eq. (6.19b)
it follows that for large enough values of : (i.e., for large enough values of n� ) the
Mandel Q parameter is smaller than n� (it tends to zero). In this case the Wigner
function of the even coherent state on the observation level On can be easily
reconstructed (see Fig. 3g). We can also reconstruct on this observation level
a thermal mixture for which the Mandel Q parameter is equal to n� (i.e.,
(n̂2) =2n� 2+n� ). In this case the Lagrange multiplier *2 in expression (6.14) is equal
to zero and consequently the results of the reconstruction on the observation levels
On and Oth (thermal observation level) are equal.

It is important to stress that all those states for which the Mandel Q parameter
is less than n� (in analogy with sub-Poissonian states we can call these states as the
sub-thermal states) can be reconstructed on On . For all these states the Lagrange
multiplier *2 is greater than zero and consequently the generalized partition func-
tion (6.16b) does exist. Nevertheless there are states for which Q>n� (we will call
these states as super-thermal states). For these state the Lagrange multiplier *2 is
smaller than zero and Zn given by Eq. (6.16b) is diverging. Consequently, these
states cannot be reconstructed on the observation level On . In particular, the
Mandel Q parameter for the squeezed vacuum state (2.41a) reads Q=2n� +1 (for
n� >0) and therefore we are not able to reconstruct the Wigner function of the
squeezed vacuum state on On . Analogously, the even coherent state for small values
of : such that sinh :2<1 has a super-thermal photon number distribution and it
cannot be reconstructed on this observation level.

The mathematical reason behind the fact that super-thermal states cannot be
reconstructed on On is closely related to the semi-infiniteness of the Fock state space
of the harmonic oscillator, i.e., the photon number distribution of these states can-
not be approximated by discrete Gaussian distributions Pm (6.16a) on the interval
m # [0, �). In principle, there exist two ways how to regularize the problem: one
can either expand the Fock space and to introduce ``negative'' Fock states, i.e.,
m # (&�, �). Alternatively, one can assume finite-dimensional Fock space such
that m # [0, s]. In both these cases Zn for super-thermal states is finite and in prin-
ciple _̂n can be reconstructed. Obviously, in this case the relevance of reconstructed
Wigner functions to a real situation is delicate and we are not going to discuss this
problem in the present paper.

6.3. Reconstruction of Wigner Functions and Marcinkiewicz Theorem

From the generalization of the Marcinkiewicz theorem [41] due to Rajagopal
and Sudarshan [42] it follows that a quasiprobability with a finite-number cumulant
expansion has to have a Gaussian characteristic function. In other words, the quan-
tum-mechanical state is either characterized by the first- and second-order
cumulants or by an infinite number of nonzero cumulants. From here it follows that
within the framework of the phase-space formalism in the (q, p)-phase space we can
divide all quantum-mechanical states into three groups:
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1. Gaussian states are the states with the Gaussian Wigner function W(q, p)
of the form (4.21). These states (such as coherent states or squeezed coherent
states) are completely characterized by mean values of the operators q̂ and p̂ and
the variances ( (2q̂)2) , ( (2p̂)2) and ([2q̂ 2p̂]). Characteristic functions of these
functions can be expressed as exponentials of polynomials of the order less or equal
to 2 [compare with Eq. (2.34)].

2. Generalized Gaussian states are the states for which Wigner functions
W(q, p) in the (q, p)-phase space are not Gaussian functions but they are described
by density operators that can be expressed as exponentials of polynomials of the
order less or equal to two in terms of any observables, i.e., these states are charac-
terized just by first two cumulants in terms of given observables (all higher-order
cumulants are equal to zero). Very good example of the generalized Gaussian states
are the Fock states. These states have non-Gaussian Wigner functions [see Eq.
(2.37b)], but they are completely described by the density operator (6.14) such that
(n̂2) =(n̂) 2. As a consequence of this relation it follows that the higher-order
moments of the operators q̂ and p̂ in the Fock state |n) can be expressed in terms
of the mean values (q̂2) and (p̂2) [see Eq. (2.38)]. As we said, generalized
Gaussian states are described in the (q, p)-phase space by non-Gaussian Wigner
function. Nevertheless, in an appropriate phase space they can be described by
Gaussian functions. To be more specific, one can consider a state described by the
density operator \̂&exp[&P2(,� , n̂)] where P2(,� , n̂) is a polynomial of the second-
order in terms of the number (n̂) and phase (,� ) operators. This state has a
Gaussian Wigner function W(n, ,) in the (n, ,)-phase space [43] (see also Ref.
[9]) but is described by non-Gaussian Wigner function in the (q, p)-phase space.
This is because there does not exist a linear transformation from one phase space
to the other (which obviously is dictated by the relations between corresponding
observables). It is clear, that there are observation levels on which generalized
Gaussian can be completely reconstructed via the measurement of just small
number of observables.

3. Non-Gaussian states are characterized by an infinite number of nonzero
cumulants of arbitrary observables. They are described by non-Gaussian Wigner
functions and to perform their complete reconstruction one has to perform a
measurement of an infinite number of independent moments. Even and odd
coherent states can serve as examples of non-Gaussian states. These states can be
completely reconstructed only on the observation level O0 when an infinite number
of independent moments of observables is measured. The partial reconstruction of
non-Gaussian states on reduced observation levels can be performed. This partial
reconstruction corresponds to a particular truncation scheme [26] and the effec-
tiveness of the truncation can be quantified with the help of the corresponding
entropy. In Fig. 7 we present numerical values (in a form of a histogram) of
entropies on the phase-insensitive (Fig. 7a) and the phase-sensitive (Fig. 7b) obser-
vation levels for various quantum-mechanical states of light (we assume that all
these states are characterized by a mean photon number n� =2). Comparing
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Fig. 7. We present numerical values of entropies on phase insensitive (a) and phase sensitive (b)
observation levels for the following quantum-mechanical states of light: the coherent state (denoted as
(c); the squeezed vacuum state (s); the even coherent state (e); the odd coherent state (o), and the Fock
state (f). The mean photon number is equal to 2. The observation levels OX are denoted as X.

entropies corresponding to different observation levels for a given state we can
determine how good or bad the reconstruction is (or, in other words, how good or
bad the applied truncation scheme is).

6.4. Optical Homodyne Tomography and MaxEnt Principle

From the point of view of the formalism presented in this paper it follows that
from the probability density distribution W |9)(x%) [see Eq. (2.21a)] which
corresponds to a measurement of all moments (x̂n

%) , the generalized canonical
density operators _̂x % [see also Eq. (6.3)]

_̂x %=
1

Zx%

exp _&|
�

&�
dx% |x%)(x% | *(x%)& (6.20)

can be constructed. The Lagrange multipliers *(x%) are given by an infinite set of
equations

W |9)(x%)=- 2?� (x% | _̂x% |x%); \x% # (&�, �). (6.21)

If probability distributions W |9)(x%) for all values of % # [0, ?] are known then the
density operator on the complete observation level can be obtained in the form

\̂0=
1

Z0

exp _&|
?

0
d% |

�

&�
dx% |x%)(x% | *(x%)& (6.22)

and the corresponding Wigner function can be reconstructed. The optical
homodyne tomography can be understood as a method how to find a relation
between measured distributions W |9)(x%) and the Lagrange multipliers *(x%) for all
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values of x% and %. As we have shown earlier in this section, the Gaussian and the
generalized Gaussian states can be completely reconstructed on reduced observa-
tion levels based on a measurement of just finite number of moments of system
observables, and therefore the optical homodyne tomography is essentially not
needed as a method for reconstruction of Wigner functions in these cases. On the
other hand, the non-Gaussian states can, in principle, be reconstructed, but in prac-
tice the reconstruction of their Wigner functions is associated with a measurement
of an infinite number of independent moments of system observables which is not
realistic. In the experiments by Raymer et al. [17] only a finite number of values
of % have been considered, i.e., these types of experiments are associated with obser-
vation level for which the corresponding generalized canonical density operator
reads

_̂=
1
Z

exp _&:
j
|

�

&�
dx%j |x%j )(x%j | *(x% j)& . (6.23)

Usually this kind of measurement results into a very good reconstruction of Wigner
functions (such that the corresponding entropy is close to zero for pure states).
Nevertheless, a certain attention has to be paid for highly squeezed states, such as
the Vogel-Schleich phase states [44], for which the measurement of distributions
W |9)(x%j ) can be problematic. Namely, W |9)(x%j ) can be very ``wide'', so that the
normalization condition is not fulfilled in a domain of physically accessible values
of x% j .

7. Conclusions

We have presented a universal method for a reconstruction of Wigner functions
of quantum-mechanical states of light. This method allows us to reconstruct Wigner
functions with a certain degree of credibility (quantified with the help of entropies)
from a set of measured values of system observables. This set of observables defines
a given observation level. We have to stress that the concept of observation levels
plays very important role in our attempt to measure and understand nonclassical
effects of quantum states of light. In fact, a measurement of second-order quad-
rature squeezing is implicitly associated with the observation level O2 . Analogously,
a measurement of the Mandel Q-parameter is associated with the observation level
On . We know that a reduction of quantum fluctuations (i.e., quadrature squeezing,
sub-Poissonian photon statistics, etc.) has its origin in quantum interference
between coherent components of superposition states of light. In the following
paper we will utilize the concept of observation levels and corresponding entropies
to study the decay of quantum coherences between coherent components of super-
position states. We will also show how to introduce entropic uncertainty relations
on a particular observation level.
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Appendix A: Does There Exist Observation Level ON#[P� N=|N)(N|]?

In this Appendix we assume that the observable G� & is chosen to be the projector
P� N=|N)(N|. We assume that the only information about a measured system,
which is prepared in a state described by the density operator \̂, is the expectation
value PN=Tr[ \̂P� N]. In this case the generalized canonical density operator _̂N

reads

_̂N=
exp[&*P� N]

Tr[exp[&*P� N]]
. (A.1)

The Lagrange multiplier * has to be evaluated from the relation Tr[_̂N P� N]=
Tr[ \̂P� N]=PN . Before we evaluate the explicit expression for * as a function of PN ,
we turn our attention to the normalization factor (generalized partition function)
ZN=Tr exp[&*P� N]. Using the relation (P� N)2=P� N we can write the partition
function as

ZN=Tr[1&P� N+e&*P� N]=e&*&1+ :
�

k=0

1, (A.2)

which means that ZN diverges. To overcome this problem we regularize the parti-
tion function for a while and instead of an infinite Hilbert space formed out of all
Fock states we assume an (s+1) dimensional Hilbert space formed out of Fock
states |0) , ..., |s) (here we assume s>>N). We can now write the required nor-
malization factor as (ZN and * depend now on the normalization procedure and
therefore we will label them with superscript s)

Z (s)
N =e&* (s)

&1+ :
s

k=0

1=e&* (s)
+s. (A.3)

In this regularized case we can find the expression for the parameter *(s) as

e&* ( s )
=

sPN

1&PN
. (A.4)

If we insert expressions (A.3) and (A.4) into a definition of the generalized canoni-
cal density operator (A.1) we find

_̂ (s)
N =PN |N)(N|+

1&PN

s
:
s

k{N

|k)(k|= :
s

m=0

P (s)
k |k)(k| , (A.5)

where P (s)
k =(1&PN)�s for k{N. This expression has an attractive interpretation.

We know that the mean value of the measured observable is PN . On the other
hand, we have no knowledge about mean values of other operators |k)(k|. There-
fore, following the MaxEnt principle we have to assume that these observables have
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the same probability, i.e., P (s)
k =(1&PN)�s where 1&PN is the total probability of

unknown mean values and s is the number of ``unmeasured'' observables |k)(k|.
Entropy corresponding to the generalized canonical density operator _̂ (s)

N reads

S (s)
N =&kB Tr[_̂ (s)

N ln _̂ (s)
N ]=&kB :

s

k=0

P (s)
k ln P (s)

k

=&kB[PN ln PN+(1&PN) ln (1&PN)]+kB(1&PN) ln s. (A.6)

From the last expression it follows that in the limit s � � we have

lim
s � �

S (s)
N ={0

�
if PN=1,
if PN<1.

(A.7)

Also the mean photon number in the state given by _̂ (s)
N diverges in the limit s � �.

Namely,

(n̂) (s)=Tr [n̂_̂ (s)
N ]=NPN&

1&PN

s
+

1&PN

2
(s+1), (A.8)

which in the limit s � � reads

lim
s � �

(n̂) (s)={N
�

if PN=1,
if PN<1.

(A.9)

We can conclude that if an incomplete measurement of the photon number dis-
tribution, such that �n Pn<1, is performed then the Wigner function cannot be
reconstructed if the mean photon is not known.

Appendix B: Phase-Space Representation of the Eigenstate

of the Position Operator

We represent the position state |q� ) (i.e., the eigenstate of the position operator
q̂) as the displaced squeezed state |q� , r)#D� (q� , 0) U� (?�2) S� (r) |0) [where the
operators D� (q� ), U� (?�2), and S� (r) are given by Eqs. (2.19), (2.23) and (2.41b),
respectively], in the limit of infinite squeezing:

|q� ) = lim
r � �

D� (q� , 0) U� (?�2) S� (r) |0). (B.1)

The action of the position operator q̂ on the state |q� , r) is

q̂ |q� , r)=q� |q� , r)+e&r ��

2
D� (q� , 0) U� (?�2) S� (r) |1) , (B.2)
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where |1) is a Fock state with one excitation quantum. In the limit r � � we
formally obtain from (B.2) the eigenvalue equation for the position operator. The
Wigner function of the state |q� , r) is given by the expression

W |q� , r)(q, p)=
1

_q_p
exp _&

1
2�

(q&q� )2

_2
q

&
1

2�

p2

_2
p& , (B.3)

where _2
q=exp(&2r)�2 and _2

p=exp(2r)�2. The Wigner function (B.3) in the limit
r � � can be understood as the Wigner function of the position state |q� ). Using
the general formalism [see Sec. 2] we can obtain from Eq. (B.3) the expression for
the marginal distribution W |q� , r)(q):

W |q� , r)(q)=
1
_q

exp _&
1

2�

(q&q� )2

_2
q & , (B.4)

with the help of which we can evaluate mean values of all powers of the position
operator in the state |q� , r)

(q̂n) =
1

- 2?�
|

�

&�
dq qnW |q� , r)(q)= :

[n�2]

m=0
\ n

2m+ (q� )n&2m (2m&1)!! (�_2
q)m, (B.5)

where [x] denotes the largest integer smaller than x. From Eq. (B.5) it is obvious
that in the limit of infinite squeezing we have (q� , r| q̂n |q� , r) � (q� )n. Taking into
account the relation (6.1) we can conclude that the state |q� , r) in the limit r � �
is equal to the eigenstate |q� ) of the position operator q̂.

Acknowledgments

We acknowledge the support by the Jubila� umsfonds der O� sterreichischen Nationalbank, Project
4814 and by the East�West Program of the Austrian Academy of Sciences under the Contract
45.367�1-IV�6a�94 of the O� sterreichisches Bundesministerium fu� r Wissenschaft und Forschung. We thank
Professor J. Seke for reading the manuscript and comments. One of us (V.B.) thanks Michael Raymer
for useful suggestions and comments.

References

1. V. I. Arnold, ``Mathematical Methods of Classical Mechanics,'' Springer Verlag, Berlin, 1978;
H. Goldstein, ``Classical Mechanics,'' 2nd ed., Addison�Wesley, Reading, MA, 1980.

2. L. E. Ballentine, ``Quantum Mechanics,'' Prentice Hall, Englewood Cliffs, NJ, 1990; Rev. Mod.
Phys 42 (1970), 358; see also C. Cohen-Tannoudji, B. Diu, and F. Laloe� , ``Quantum Mechanics,''
Vols. 1 and 2, Wiley, New York, 1977.

3. Y. S. Kim and M. E. Noz, ``Phase Space Picture of Quantum Mechanics,'' World Scientific,
Singapore, 1991.

4. E. P. Wigner, Phys. Rev. 40 (1932), 749; see also in ``Perspectives in Quantum Theory'' (W.
Yourgrau and A. van der Merwe, Eds.), p. 25, Dover, New York, 1979; H. Weyl, ``The Theory of
Groups and Quantum Mechanics,'' Dover, New York, 1950; S. Stenholm, Eur. J. Phys. 1 (1980),

95reconstruction of wigner functions



F
ile

:5
95

J
54

78
60

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

16
:3

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

48
76

Si
gn

s:
40

79
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

244; V. I. Tatarskij, Sov. Phys. Usp. 26 (1983), 311; M. Hillery, R. F. O'Connell, M. O. Scully,

and E. P. Wigner, Phys. Rep. 106 (1984), 121.
5. K. Husimi, Proc. Phys. Math. Soc. Jpn. 22 (1940) 264; Y. Kano, J. Math. Phys. 6 (1965) 1913;

S. Stenholm, Ann. Phys. NY 218 (1992), 233.
6. R. J. Glauber, Phys. Rev. Lett. 10 (1963), 84; E. C. G. Sudarshan, Phys. Rev. Lett. 10 (1963), 277.
7. K. E. Cahill and R. J. Glauber, Phys. Rev. 177 (1969), 1857; 177 (1969), 1882.
8. E. Arthurs and J. L. Kelly, Jr., Bell. Syst. Tech. J. 44 (1965), 725; Y. Lai and H. A. Haus, Quantum

Opt. 1 (1989), 99; D. Lalovic� , D. M. Davidovic� , and N. Bijedic� , Phys. Rev. A 46 (1992), 1206;
D. M. Davidovic� and D. Lalovic� , J. Phys. A 26 (1993), 5099; S. Chaturverdi, G. S. Agarwal, and

V. Srinivasan, J. Phys. A 27 (1994), L39; M. G. Raymer, Am. J. Phys. 62 (1994), 986.
9. V. Buz� ek, C. H. Keitel, and P. L. Knight, Phys. Rev. A 51 (1995), 2575.

10. A. K. Ekert and P. L. Knight, Phys. Rev. A 43 (1991), 3934.
11. A. E. Glassgold and D. Mallidey, Phys. Rev. 139 (1965), 1717 .
12. A. Royer, Found. Phys. 19 (1989), 3; Phys. Rev. Lett. 55 (1985), 2745.
13. J. von Neumann, ``Mathematical Foundations of Quantum Mechanics,'' Princeton Univ. Press,

Princeton, NJ, 1955; J. A. Wheeler and W. H. Zurek, ``Quantum Theory and Measurement,''
Princeton Univ. Press, Princeton, NJ, 1983.

14. W. Pauli, Die Allgemeinen Prinzipen der Wellenmechanik, in ``Handbuch der Physik,'' (H. Geiger
and K. Scheel, Eds.), Vol. 24, pt. 1, Springer-Verlag, Berlin, 1933; W. Pauli, ``General Principles of
Quantum Mechanics,'' Springer-Verlag, Berlin, 1980; see also B. d' Espagnat, ``Conceptual Founda-
tions of Quantum Mechanics,'' 2nd ed., Benjamin, Reading, 1976.

15. W. Gale, E. Guth, and G. T. Trammel, Phys. Rev. 165 (1968), 1434; see also A. Orlowski and

H. Paul, Phys. Rev. 50 (1994), R921.
16. K. Vogel and H. Risken, Phys. Rev. A 40 (1989), 2847; see also J. Bertrand and P. Bertrand,

Found. Phys. 17 (1987), 397; M. Freyberger, K. Vogel, and W. P. Schleich, Phys. Lett. A 176
(1993), 41; H. Ku� hn, D.-G. Welsch, and W. Vogel, J. Mod. Opt. 41 (1994), 1607; G. S. Agarwal

and S. Chaturvedi, Phys. Rev. A 49 (1994), R665; W. Vogel and D.-G. Welsch, Acta Phys. Slov.
45 (1995), 313. Very comprehensive discussion of the quantum homodyne tomography reconstruc-
tion and the role of non-unit efficiency detectors can be found in U. Leonhardt, Phys. Rev. A 48
(1993), 3265; U. Leonhardt and H. Paul, Phys. Rev. A 48 (1993), 4598; U. Leonhardt and

H. Paul, Prog. Quant. Electron. 19 (1995), 89; H. Paul, U. Leonhardt and G. M. D'Ariano, Acta
Phys. Slov. 45 (1995), 261.

17. D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Phys. Rev. Lett. 70 (1993), 1244;
D. T. Smithey, M. Beck, J. Cooper and M. G. Raymer, Phys. Scr. T 48 (1993), 35; see also
M. G. Raymer, M. Beck, and D. F. Mc Alister, Phys. Rev. Lett. 72 (1994), 1137; M. G. Raymer,

D. T. Smithey, M. Beck, M. Anderson, and D. F. Mc Alister, ``Measurement of the Wigner func-
tion in quantum optics,'' Int. J. Mod. Phys. B 9, to appear.

18. K. Wo� dkiewicz, Phys. Rev. Lett. 52 (1984), 1064; Phys. Lett. A 115 (1986), 304; Phys. Lett. A 129
(1988), 1.

19. W. K. Wootters and W. H. Zurek, Phys. Rev. D 19 (1979), 473.
20. N. G. Walker and J. E. Carroll, Opt. Quant. Electron. 18 (1986), 335; N. G. Walker, J. Mod.

Opt. 34 (1987), 15.
21. J. W. Noh, A. Fouge� res, and L. Mandel, Phys. Rev. Lett. 67 (1991), 1426; Phys. Rev. A 45 (1992),

424.
22. E. Fick and G. Sauermann, ``The Quantum Statistics of Dynamic Processes,'' Springer-Verlag,

Berlin, 1990.
23. G. Adam and J. Seke, Phys. Rev. A, 23 (1980), 3118; H. Schwegler, Z. Naturforsch. A 20 (1965),

1543; J. Seke, Phys. Rev. A 21 (1980), 2156; J. Seke, G. Adam, and O. Hittmair, Sitzungsber.
O� sterr. Akad. Wiss. Math. Naturw. Kl. Wien 194, 169 (1985); Acta Phys. Austriaca 56 (1985), 225.

24. E. T. Jaynes, Phys. Rev. 106 (1957), 620; 108 (1957), 171; Am. J. Phys. 31 (1963), 66; E. T. Jaynes,
Information theory and statistical mechanics, in ``1962 Brandeis Lectures'' (K. W. Ford, Ed.),
Vol. 3, Benjamin, Elmstord, New York, 1963.

96 buz� ek, adam, and drobny�



F
ile

:5
95

J
54

78
61

.B
y:

B
V

.D
at

e:
11

:0
1:

96
.T

im
e:

16
:3

7
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

36
40

Si
gn

s:
29

17
.L

en
gt

h:
46

pi
c

0
pt

s,
19

4
m

m

25. A. Katz, ``Principles of Statistical Mechanics,'' Freeman, San Francisco, 1967; A. Hobson,
``Concepts in Statistical Mechanics,'' Gordon 6 Breach, New York, 1971; J. N. Kapur and H. K.

Kesavan, ``Entropic Optimization Principles with Applications,'' Academic Press, New York, 1992.
26. R. Schack and A. Schenzle, Phys. Rev. A 41 (1990), 3847; J. Per� ina, J. Kr� epelka, R. Hora� k,

Z. Hradil, and J. Bajer, Czech. J. Phys. B 37 (1987), 1161.
27. P. Loudon and P. L. Knight; J. Mod. Opt. 34 (1987), 709; K. Zaheer and M. S. Zubairy, in

``Advances in Atomic, Molecular, and Optical Physics'' (D. Bates and B. Bederson, Eds.), Vol. 28,
p. 143, Academic Press, New York, 1991; A. Wu� nsche, Ann. Phys. Leipzig 1 (1992), 181.

28. W. P. Schleich, M. Pernigo, and Fam Le Kien, Phys. Rev. A 44 (1991), 2172; V. Buz� ek,

A. Vidiella-Barranco, and P. L. Knight, Phys. Rev. A 45 (1992), 6570; V. Buz� ek and P. L.

Knight, Quantum interference, superposition states of light and nonclassical effects, in ``Progress in
Optics'' (E. Wolf, Ed.), Vol. 34, p. 1, North-Holland, Amsterdam, 1995.

29. M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys. Rev. A 45 (1992),
5193.

30. V. V. Dodonov, I. A. Malkin, and V. I. Manko, Nuovo Cimento B 24 (1974), 46; Physica 72
(1974), 597; see also I. A. Malkin and V. I. Manko, ``Dynamical Symmetries and Coherent States
of Quantum Systems,'' Nauka, Moscow, 1979. [in Russian]

31. B. Robertson, Phys. Rev. 144 (1966), 151; ibid. 166 (1967), 175; 166 (1967), 206.
32. H. Jeffreys, ``Theory of Probability,'' 3rd ed., Oxford Univ. Press, Oxford, 1960; R. von Mises,

``Mathematical Theory of Probability and Statistics,'' Academic Press, New York, 1964.
33. K. R. W. Jones, Ann. Phys. (N.Y.) 207 (1991), 140; Phys. Rev. A 50 (1994), 3682.
34. W. H. Louisell, ``Quantum Statistical Properties of Radiation,'' Wiley, New York, 1973.
35. C. W. Gardiner, ``Quantum Noise,'' Springer-Verlag, Berlin, 1991; G. S. Agarwal, Phys. Rev. A

3 (1971), 828; G. Adam, Phys. Lett. A 171 (1992), 66; J. Mod. Opt. 42 (1995), 1311.
36. V. V. Dodonov, E. Kurmyshev, and V. I. Manko, Phys. Lett. A 76 (1980), 150; see also R. L.

Hudson, Rep. Math. Phys. 6 (1974), 249, and B. L. Schumaker, Phys. Rep. 135 (1986), 317.
37. R. A. Fischer, M. M. Nieto, and V. D. Sandberg, Phys. Rev. D 29 (1984), 1107; S. L. Braunstein

and R. I. Mc Lachlan, Phys. Rev. A 35 (1987), 1659; M. Hillery, Phys. Rev. A 42 (1990), 498.
38. C. E. Shannon, Bell. Sys. Techn. J. 27 (1948), 379; 27 (1948), 623.
39. A. Wehrl, Rev. Mod. Phys. 50 (1978), 221.
40. L. Mandel, Opt. Lett. 4 (1979), 205.
41. J. Marcinkiewicz, Math. Z. 44 (1939), 612.
42. A. K. Rajagopal and E. C. G. Sudarshan, Phys. Rev. A 10 (1974), 1852.
43. W. K. Wootters, Ann. Phys. (N.Y.) 175 (1987), 1; see also D. Galetti and A. F. R. De Toledo Piza,

Physica A 149 (1988), 267.
44. W. Vogel and W. P. Schleich, Phys. Rev. A 44 (1991), 7642.

� � � � � � � � � �

97reconstruction of wigner functions


