PHYSICAL REVIEW A

VOLUME 51, NUMBER 3

MARCH 1995

Sampling entropies and operational phase-space measurement. II.
Detection of quantum coherences

V. Buzek
Institute of Physics, Slovak Academy of Sciences, Dibravskd cesta 9, 842 28 Bratislava, Slovakia
and Department of Optics, Comenius University, Miynskd dolina, 842 15 Bratislava, Slovakia

C.H. Keitel and P.L. Knight
Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, England
(Received 16 August 1994)

We use the operational phase-space distributions and sampling entropies developed in the pre-
ceding paper [V. Buzek, C.H. Keitel, and P.L. Knight, Phys. Rev. A 51, 2575 (1995)] to discuss the
nature of quantum interference between components of superpositions of states. We show how the
Wehrl entropy, a special case of the sampling entropy, is a useful discriminator between different
kinds of superpositions and of statistical mixtures, and is determined essentially by the coherent-
state content. Apart from interference terms, this content is given by the quantum uncertainty of
a single coherent state and the classical contribution of the number of coherent states necessary
to tile the dominant phase-space “patch” representing the quantum state of interest. We illus-
trate these ideas using nonclassical superpositions of coherent states, where interference modifies
the phase-space distributions, and show how these features are sensitive to dissipation.

PACS number(s): 42.50.Dv, 03.65.Bz, 05.30.Ch

I. INTRODUCTION

The phase-space description of a state of a classical
system is based on the definition of a probability (or a
classical probability density) that a classical system is
found at a point (g, p) in phase space. In classical physics
it is considered that a point in phase space can be located
with arbitrary accuracy and that two distinct points in
phase space are “independent” (see below). In quantum
mechanics the situation is radically different. First of all,
a “point” in the quantum-mechanical phase space can-
not be localized precisely. There is always a fundamental
limit with which the point of the quantum-mechanical
phase space can be determined (see [1] to which we will
refer as to paper I). It was shown by Schrédinger [2]
that coherent states (see also [3]) represent the best ap-
proximation to points in the quantum-mechanical phase
space. In other words, coherent states form a position-
momentum phase-space patch of minimum uncertainty
area and may be regarded as the quantum analog of the
classical point in phase space. The second fundamen-
tal difference between the classical and quantum phase
space is that points of the quantum-mechanical phase
space can interfere whereas this is impossible classically.
This quantum-mechanical interference among coherent
states gives rise to all nonclassical properties of quantum
systems (in particular light fields modeled as harmonic
oscillators) [4].

In paper I, we employed the idea of an operational
measurement, introduced by Wédkiewicz [5] (see also a
review article by Stenholm [6] on phase-space measure-
ments and references therein), to construct sampling en-
tropies that are determined in part by the quantum state
of interest, and in part by the “quantum ruler” used to
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make the measurement. When the ruler states are co-
herent states, the relevant sampling entropy is the Wehrl
entropy [7].

The main purpose of this paper is to analyze whether
an operational phase-space measurement as described in
paper I reveals the character of quantum interference
between coherent states, i.e., between the points of the
quantum-mechanical phase space. In particular, we will
discuss in detail whether the Wehrl entropy can convey
useful information about the quantum interference be-
tween coherent states.

II. WEHRL ENTROPY OF SUPERPOSITIONS
OF A FINITE NUMBER OF COHERENT STATES

Recently, many authors have studied various nonlin-
ear processes in which optical superpositions of coher-
ent states can be produced in principle (for a detailed
discussion see [4] and references therein). In particular,
it has been shown by Yurke and Stoler [8] that, in the
presence of low dissipation, a nonlinear Kerr-like medium
may convert an initial coherent state |c) into a quantum-
mechanical superposition of two coherent states that are
180° out of phase with respect to each other. This su-
perposition state is described by the state vector

_ 1 in/2] _ )
|advs 7 (Ia) +e™ —-a)). (2.1a)
Another scheme for production of pure superpositions of
coherent states has been proposed by Brune et al. [9].
These authors have shown that an atomic-phase detec-
tion quantum nondemolition scheme can serve to produce
superposition states of a single-mode cavity field. These
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superposition states are described by the following state
vectors:

1
la)even = \/2[1 T exp(—2|a|2)] (Ia> + | - a)) . (Z.Ib)
and
|0oda = . (o) = —a)). (21¢)

V2[1 — exp(—2[a[?)]

The state |a)even is usually called the even coherent state,
while the state |@}oaq is called the odd coherent state.
The even (odd) coherent state in the Fock basis is repre-
sented only by even (odd) Fock states. In other words the
photon number distribution corresponding to the even
(odd) coherent state exhibits significant oscillations that
have their origin in quantum interference among the com-
ponents of the pure superposition state (2.1). Another
consequence of this quantum interference is the reduction
of quadrature fluctuations in the even coherent state and
in the Yurke-Stoler coherent state (these states exhibit
second-order squeezing as well as fourth-order squeezing
[4]). On the other hand, the odd coherent state exhibits
reduced fluctuations in the photon number, i.e., the odd
coherent state is a sub-Poissonian state. Nonclassical ef-
fects that emerge as a direct consequence of quantum
interference in phase space have been discussed in detail
previously (see [4] and references therein). The charac-
ter of these nonclassical effects is intrinsically related to
the character of quantum interference between coherent
components of pure superposition states and depends on
the relative phase ¢ defined as

- 1 —
[} = V2[1 ¥ cos p exp(—2]a[?)]

(le) + €| — o)) .

2.2)
We see that for ¢ = 0,7/2, and ¢ = 7 we obtain i(i'om
Eq. (2.2) expressions for the even, the Yurke-Stoler, and
the odd coherent states, respectively. Before discussing
in detail whether the character of quantum interference
between two coherent components of the superposition
state can be reflected by the Wehrl entropy [i.e., whether
the Wehrl entropy of the superposition state (2.2) de-
pends on the relative phase ¢] we present a general for-
malism for the phase-space description of a pure super-
position of a finite number of coherent states.

A. Q function of superpositions of coherent states

Let us consider the superposition |¥) of coherent states
|aj) given by the relation

N
) = A2 | Y " eilaj) |,

=1

a; = aj + 'ia_';-, (2.3a)

where A/2 is the normalization constant. The phases
p; are arbitrary and their values determine whether the
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quantum interference among the coherent states |o;) is
constructive or destructive [4]. We note this determines
observable effects such as squeezing or sub-Poissonian
photon statistics.

The normalization constant A'/2 can be written as

A= {N + 2j§1 exp [—%[aj — ak|2] cos [((pk —®;)

k>j
-1
+o; ® ak] } ’

where we have used the notation ® for the antisymmet-
ric product of two two-dimensional vectors (af, ) and

(aivai),

(2.3b)

— Tl i.r
a; ® o = ooy, — ooy, (2.3c)

Using the standard procedures discussed in paper I we
find the Wigner function W(8; a,...,an) of the super-
position state (2.3a) in the form

N
W(&an,..,an) = A{Z W;(&; o)

N
23 WalGapanl, (24
e

where W;(£; ) is the Wigner function corresponding to
the coherent state |a;),

W;(&; oj) = 2 exp(—2J¢ — o5|?),

and Wj(&; o, ax) is the quasiprobability density distri-
bution emerging from the quantum interference between
the coherent states exp(iy;)la;) and exp(ipk)|or),

2]
X cos[pr — p; + 26 ® o
=2 ® o + ax ® o4

(2.5)

aj + o
2

Wi (§; a5, ap) = 2exp [_2 ’g —

(2.6)

The oscillatory behavior of the interference part given
by Eq. (2.6) of the Wigner function plays a crucial role
in the appearance of nonclassical effects. For compari-
son purposes we determine the Wigner function of the
statistical mixture described by the density operator

N N
p=2 miles)egl, Y .pi=1
i=1 . j=1

This Wigner function can be written as

(2.7)

N
W(f, al,...,aN) = ijW,-(E,aj), (2.8)
j=1

where functions W(§; a;) are given by Eq. (2.5). The
Wigner function (2.8) does not contain a quantum-
interference term and does not describe nonclassical ef-
fects.
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Performing a convolution of the Wigner function (2.6)
of the superposition state |1) with the Wigner function
of the quantum ruler which is in a coherent state (i.e.,
|@) = |B)) with the complex amplitude 8 = B; + i3;
we find the Q function of the superposntlon state under
consideration,

N
Q(ﬂ? 24 PRI CHV) bt A{Z Qj(ﬁ; a.‘i)

i=1

N
+2S (B ag-,ak)},
1:7,1¢>=k1

(2.9)

where Q;(3; @) is the Glauber Q function corresponding
to the coherent state |a;),

Q;(B; o) = exp(—|8 — o;1%),

and Q,k(ﬁ, o, ar) is the probability density distribution
emerging from the quantum interference between the co-
herent states exp(i¢;)|c;) and exp(ipk)|ax),

(2.10)

— o:l2 _ 2
Qx(B; aj, ar) = exp [_ 18 2“:‘ B 2akl }
x cos[(p; — o) + B ® (o5 — aw)l-
(2.11)

It is interesting to note at this point that in the limit
|ej — ar| > 1 for any j # k (i.e., when all compo-
nent states |a;) are “far away” from each other), the Q
function (2.9) of the superposition state (2.3a) is equal
to the @ function of the mixture described by the den-
sity operator (2.7) with p; = 1/N. This means that
for large values of |a; — ax| the quantum interference
terms in the @ function are completely suppressed and
one cannot distinguish between the pure state (2.3a) and
the corresponding statistical mixture. This deterioration
of quantum interference terms is exclusively due to the
quantum measurement process (here represented via the
filtering with coherent states). If we turn our attention
back to the Wigner function we find that the interfer-
ence terms W;z(; aj, ar) are not suppressed in the limit
|aj —ax| > 1. We see that the phase-space measurement
(which explicitly includes an account of the measurement
through the “ruler states”) leads to the deterioration of
quantum interference terms and consequently suppres-
sion of nonclassical effects, and this can, in principle, be
observed.

To illustrate the difference between the ngner func-
tion and the @ function we present these two functions
for the even coherent state (2.1b) with real amplitudes
a of component states. The Wigner functlon of the even
coherent state reads

W, o,—a) = !

2[1 + exp(—2aé)] {W(E’ @)
LW, —0) + Wins (€, 2, —a)}, (2.122)

where the Wigner functions W (£, +a) of coberent states
| & «) are given by Eq. (2.5) and the interference part
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Wit (€, o, —c) of the total Wigner function reads

Wint (€, @, —) = 4 exp(—2[¢|?) cos(4&;x). (2.12b)

The peak-to-peak ratio parameteh Ry (o) defined as

“’int (67 a, _a)lpea.k )
2 [W (£, @) lpeak W (€, —0) | peaid] /2

measuring the relative heights between the interference
part and component parts of the Wigner function is for
the even coherent state equal to unity, that is Ry (a) =
1 irrespectively on the amplitude o of the component
states.

The Q function of the even coherent state under con-
sideration is given by the relation

Ry (a) = (2.13)

1
2[1 + exp(—20a?)]

Q8,0 —a) = {Q(ﬂ, o) +Q(8, —a)

+Qint (8, @, —a) }a (2.14a)
where the @ functions Q(B,%a) of coherent states

| £ @) are given by Eq. (2.10) and the interference part
Qint (B, &, —a) of the total Q function reads

Qint (B, 0, —c) = 2 exp(—-]ﬂ|2 — az) cos{20;a).

The peak-to-peak ratio parameter Rg(a) for the Q func-
tion is defined in an analogous way as for the Wigner
function, i.e.,

(2.14b)

Qint (ﬁ’ Q$ _a) ‘peak )
2[Q(B5 ) |pesk Q(Br =) |pear]

and its explicit expression for the considered even coher-
ent state reads

Ro(a) = (2.15)

Rq(e) = exp(—a?).

From the above we can conclude that with the increase
of the amplitude of the component states of the even co-
herent state, the interference part of the @ function (i.e.,
the operational probability density distribution measured
with the help of a filter in a coherent state) becomes sig-
nificantly reduced.

(2.16)

B. Wehrl entropy of mixture state

Here we turn our attention to the Wehrl entropy of a
statistical mixture of N coherent states described by the
density operator (2.7) with probabilities p; = 1/N. This
‘Wehrl entropy reads

S=kg +k31nN——Z[42g o812

N
xIn{ 1+ explB|® — |8 —aj +arl] ¢, (217)

ik
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and in the limit [o; — az| > 1 it reaches its maximum
value §™ax,

Smex — SQM + Sg, SQM =kp, and S =kglnN.
(2.18)
We have said earlier that in the limit |o; — oz > 1
the @ function (2.9) of the pure superposition state (2.3)
is equal to the Q function of the corresponding mix-
ture. Consequently, in this limit the Wehrl entropy of
the pure state is equal to the Wehrl entropy of the cor-
responding mixture and is equal to (2.18). This equa-
tion has a rather appealing physical interpretation. The
term Sqm = kp arises as a consequence of the oper-
ational phase-space measurement and reflect the over-
completeness of the coherent-state basis (for details see
paper I). The term S = kgln N is equal to the Boltz-
mann entropy and it reflects the fact that in the limit
la; — az] 3 1, the coherent states under consideration
can be considered as orthogonal and, therefore, the den-
sity operator p = N—! 2. lei){;| describes a state in
an n-dimensional state space Y, composed of these N
mutually “orthogonal” coherent states. Because each of
these states is realized with the probability 1/N, the cor-
responding Boltzmann entropy is equal to kg In V.

C. Wehrl entropy and character
of quantum interference

Now we turn our attention back to superpositions of
just two coherent states given by the state vector (2.2).
We will assume the amplitude o of component states to
be real and small enough so that quantum-interference ef-
fects play a significant role. We will study the dependence
of the Wehrl entropy on the relative phase y, i.e., we will
analyze the relation between the character of quantum
interference and the value of the Wehrl entropy.

The @ function of the superposition state (2.2) is given
by the relation

1
[1 4 cospexp(—20a2

Q(,B,a, _a) = 2 )] {Q(ﬁ’a)

*QWW®+QM@%—®} (2.192)

where the @Q functions Q(B,ta) of coherent states
| & ) are given by Eq. (2.10) and the interference part
Qint (8, a, —a) of the total Q function reads

Qint (B, &, —c) = 2exp(—|B]* — &®) cos(p + 26;0).
(2.19b)

In Fig. 1 we plot the Wehrl entropy evaluated from the
Q function (2.19) as a function of the relative phase ¢
between the component state |a) and | — o). For com-
parison purposes we also present the value (the dashed
line in Fig. 1) of the Wehrl entropy of the correspond-
ing mixture state. From Fig. 1 it is clearly seen that the
Wehrl entropy is sensitive to the character of the quan-
tum interference between coherent states. Depending on
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FIG. 1. The Wehrl entropy of the superposition state (2.2)
as a function of the relative phase . The real amplitude o
of the coherent component states |o) and | — o) is equal to
0.8. The dashed line corresponds to the value of the Wehrl
entropy of the mixture state with the same amplitude o (we
use units such that kg = 1).

the character of the qunantum interference the value of the
Wehrl entropy can be either higher or lower than its value
for the corresponding mixture state. If the relative phase
 is equal to zero then the Wehrl entropy takes its mini-
mum value (for a given a), while for ¢ = n the entropy
takes its maximum value. It is interesting to notice that
the Wehrl entropy of a pure state can be larger than the
entropy of a corresponding mixture state. In other words
quantum interference can act in a “destructive” way and
to increase the Wehrl entropy of a pure state over the
entropy value of the corresponding mixture state. The
mean photon number of the superposition state (2.2) is
also sensitive with respect to the character of quantum
interference and it depends on the relative phase ¢ as

21 — cos p exp(—2a?)
1 + cos p exp(—2a2)’

n(9) =, (alpla), = o (2.20)

From Eq. (2.20) it follows that when the Wehrl entropy
increases due to the quantum interference, so does the
mean photon number of a corresponding superposition
state. In particular, the mean photon number of the odd
coherent state (¢ = ) is larger than the mean photon
number of the mixture state equal to a2.

We have to stress that the sensitivity of the Wehrl en-
tropy with respect to the character of the quantum inter-
ference can only be seen for small amplitudes of coherent
components of superposition states. In Fig. 2 we plot
the Wehrl entropy as a function of the parameter o? for
the even coherent state (short-dashed line); for the odd
coherent state (long-dashed line) and the corresponding
mixture (solid line). We note that for 0 < a? ~ 3 the
Wehrl entropy of the odd (even) coherent state has val-
ues larger (smaller) than the value of the Wehrl entropy
of the corresponding statistical mixture. On the other
hand, for the values of the parameter a such that o? > 4
all three lines basically coincide. From Fig. 2 we can con-
clude that quantum effects that emerge as a consequence

of quantum interference in phase space can be detected
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FIG. 2. The Wehrl entropy as a function of the parameter
|| for the even coherent state (short-dashed line); for the
odd coherent state (long-dashed line) and the corresponding
mixture (solid line); we use units such that kg = 1.

via the operational phase-space measurement only pro-
viding the amplitudes of coherent components are rela-
tively small. In the limit & — 0 the Wehrl entropy of
the even coherent state is equal to unity (i.e., the value of
the Wehrl entropy of the vacuum state). Simultaneously,
in the same limit o — 0, we note of course that the
Wehrl entropy of the odd coherent state is greater than
that of the mixture and approaches 1+ C' (here C is the
Euler constant) which is the value of the Wehrl entropy
of the Fock state |1) [10].

D. Wehrl entropy and phase-space uncertainty

The @ function of pure coherent states is given by the
relation : -

_ 1 1 (g—-9?
Q(q’p) - Epzq €xp l: 2h 23

1 (p-p)?
2% =2 |’

(2.21a)

where 2 = 1/2 + 62 and %2 = 1/2 + 0. The corre-

q9
sponding Wehrl entropy reads

SED = kp + kpln (5,5,) - (2.21b)
The parameter A = %,%, can be interpreted as an area
(in units of 27k) of the phase space “covered” by the
Q function at 1/e of its maximum value. From this
point of view we can relate the Wehrl entropy of Gaus-
sian states to the specifically defined phase-space uncer-
tainty area A of the phase space. Because the area A
in units of 2xA for the @ function of a coherent state
is equal to unity, therefore, In A = 0 and so the corre-
sponding Wehrl entropy takes the minimum value equal
to kp. For a superposition (or a mixture) of N coher-
ent states “well-separated” in the phase space, the total
uncertainty area A in units of 27/ is equal to N, so the
Wehrl entropy is equal to kg - kgln N. This relation
between the uncertainty area and the Wehrl entropy is
not exact for non-Gaussian states. Nevertheless qualita-
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tively this relation holds. That is, the larger the phase-
space uncertainty area the larger the value of the Wehrl
entropy (and vice versa). To illustrate this relation we
plot in Fig. 3 the @ function of the even coherent state,
the odd coherent state, and the corresponding statistical

(&) SYMMETRICAL SUPERPOSITION

“'Q function®-2

4 -4

(b} ANTISYMMETRICAL SUPERPOSITION

Q function0.l

0.

{c} MIXED STATE

0.2
0.15
Q Eunctiono

0.

FIG. 3. The Q-function quasiprobabilities in phase space
for the cases considered in Fig. 2 where the real amplitude
a of the coherent component states ja) and | — a) is equal
to 0.8:_ (a) symmetrical superposition, (b) anti-symmetrical
superposition, and (c) mixed coherent state. The tops of the
Q functions are removed at heights 1/e of the maximal values
to show the corresponding uncertainties in phase space. The
absolute value squared of the coherent state parameter « is
assumed to be unity.
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mixture. These three Q functions are sliced at 1/e of
their maximal height. From these figures it is easy to es-
timate the area A. To do so, we note that with the grid
used in the figures the unit area 2w/ is represented by
approximately 57 phase-space “cells”, so the parameters
A related to the even coherent state, the odd coherent
state, and the statistical mixture read 1.32, 2.84, and
2.09, respectively. Using these values one can evaluate
the parameter kg + kg In A for these three different cases
and find reasonably good agreement with corresponding
values of the Wehrl entropy.

E. Wehrl entropy of decaying superpositions

All quantum systems interact in some way with an
environment. The environment can act either as an at-
tenuator or an amplifier. In what follows we will discuss
how the Wehrl entropy of the superposition state (2.2)
changes when the quantum system under consideration
is decaying into a zero-temperature heat bath. The dy-
namics of this simplest version of the system-environment
interaction is governed by the Fokker-Planck equation for
the @ function [11]

9Q(B,t) o?
T FTTr-T I

*

5 (755 +035)| @00,

. (2.22)
where 1y is the decay rate. If the initial Q function is given
by Eq. (2.19) then using the coarse-graining procedure
as described in paper I, we find an explicit expression for
the @ function at time £ in the form

1
2[1 + cos p exp(—2a2)]

x{Q(ﬂ, o5 8) + Q(B, a5 1)

Q(B,t) =

+Qint (ﬂa o, — t) } H (2’233')

where the Q functions Q{83, £a) of the decaying coherent
states | & o) are given by expression

Q(B, £a) = exp [—m ¥ ,u1/2a|2:| . (2.23b)
The parameter p is defined as usual, i.e., p = exp(—vt).
Equation (2.23b) reflects the fact that a coherent state
decaying into the zero-temperature heat bath preserves
its quantum-statistical properties except its amplitude
which decays exponentially. = The interference part
Qint (B, @, —a;t) of the total Q function reads

Qint (B, &, —05;) = 2exp[—|B[* - (2 ~ p)o?]

x cos(p + 2B;u 2a). (2.23c¢)
Recently many authors have analyzed the influence of
dissipative reservoirs on quantum-mechanical superposi-
tion states of light. In particular, the influence of damp-
ing at zero temperature on quantum coherences has been
discussed in detail (see [4,12] and references therein). It
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has been shown that the decay rate of quantum coher-
ences is proportional to the “distance” in phase space
between coherent components of a superposition state.
To see this we evaluate the peak-to-peak ratio Rg(c;t)
given by Eq. (2.15) for the Q function of the decaying
even coherent state [see Eq. (2.23) with ¢ = 0],

Rq(a;t) = Rg(o;t = 0)exp[— (1 — p)a?].  (2.24a)

For times such that vt <« 1 we can approximate Ro(ayt)
as follows:

Rq(ast) >~ Rg(ay t = 0) exp[—ya?t],

from which we directly see that the quantum interfer-
ence term in the @ function is suppressed at the rate
proportional to yo?. Because of this rapid suppression
of quantum coherences in the decay process, the Wehrl
entropy of the initial superposition state (2.2) approaches
rapidly the expression for the Wehrl entropy of the de-
caying statistical mixture. Moreover, the larger the am-
plitudes of component states, the faster the initial pure
superposition state is transformed into the correspond-
ing statistical mixture. In Fig. 4 we plot the time evo-
lution of the Wehrl entropy of the even coherent state
(short-dashed line), the odd coherent state (long-dashed
line), and the corresponding statistical mixture (solid
line) decaying into the zero-temperature heat bath. We
choose the amplitude o = 0.8 (because for this value of
a the even coherent state exhibits the largest value of
the quadrature squeezing). For this value of o the dif-
ference between the values of the Wehrl entropy of the
three states under consideration is still “visible” even for
relatively long times such as 4t = 1 when a substantial
portion of the initial energy of the light mode has been
dissipated. From here it follows that for very small ini-
tial amplitudes of superposition states ;-onclassical effects
can be observed when the operational phase-space mea-
surement process is used. On the other hand, as soon as
the amplitudes become large enough quantum coherences
are suppressed almost instantly.

(2.24b)

1.59
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—
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-

SCALED TIME

FIG. 4. The time evolution of the Wehrl entropy for the
even coherent state (short-dashed line), for the odd coherent
state (long-dashed line), and the corresponding mixture (solid
line) which decay into the zero-temperature heat bath. The
scaled time is measured in units of the decay constant vy (we
use units such that kg = 1).
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III. WEHRL ENTROPY OF CONTINUOUS
SUPERPOSITIONS OF COHERENT STATES

In the previous section we have studied in detail how
the Wehrl entropy is sensitive to the character of quan-
tum interference established between a finite number of
coherent states |a;). We have shown that as soon as the
“distance” between coherent components is large enough
(i.e., if |0z — 05| > 1) then the interference terms can-
not be “detected” by the operational phase-space mea-
surement with the filter being in a coherent state. In
other words, the value of the Wehrl entropy of a pure
state is equal to the Wehrl entropy of a corresponding
mixture. On the other hand, if the coherent states are
“close” enough then the Wehrl entropy reflects the char-
acter of quantum interference between coherent compo-
nents. Therefore, we should expect that for continu-
ous superpositions of coherent states nonclassical effects
that have their origin in quantum interference can be ob-
served. Consequently, we should expect that the Wehrl
entropy for a continuous superposition of coherent states
is different from the Wehrl entropy of the corresponding
statistical mixture.

To be specific we will consider a squeezed vacuum state
|n) which in the Fock basis is represented as

o0 ) /
my = (1 2y 3 L2 o,

onpl (3.1)

n=0
where the squeezing parameter n is assumed to be real
and 0 < 7 < 1. The mean photon number of the squeezed
vacuum state (3.1) is given by the relation

(nlft]n) = (3.2)

1— 172’

and the variances of the position (§) and the momentum
(p) operators are

) hl4n _h Ry _ A
2y ltn =, (33
mlddln =5 1= =5+ >z 32
. EFl—-n h_ Hhy h
Ay = 2 = b O 3.3b
ml@p’in =5 T =5 ey <z &P

From Eq. (3.3) we see that for the particular choice of
the phase of the squeezing parameter 7 fluctuations in
the momentum operator p are reduced below the vacuum

limit A/2 at the expense of increased fluctuations in the_

position operator.
The squeezed vacuum state (3.1) can be represented

as a pure one-dimensional continuous superposition of

coherent states on a ¢ axis [13], that is

7)1/ /oo da
—C

xexp |25 007) o)

Im) = (2m)~*/2(1 —
(3.4a)

The density operator of the squeezed vacuum state (3.4)
can be expressed as
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X 2)1/2 p p
Pea = 2m7 ./ a/ P

xewp [-1 002+ 00| lod(el. (s0b)
The off-diagonal terms |a){8| (o # B) in the coherent-
state basis correspond to quantum interferences between
coherent states in the phase space. The density operator
of a statistical mixture corresponding to the squeezed
vacuum state (3.4) can be written in the form of the
following one-dimensional integral

e = (1;7”)1/2 [ da o[22 el
(3.5)

The variances of the operators § and 5 in the statistical
mixture (3.5) are

TY[ﬁmi;;(Ach)zl = g+ (lh_"n) , (3.6a)
Tlpmix(B81)] = 5 (3.6b)

i.e., the fluctuations in the § quadrature are equal to
those for the squeezed vacuum state [compare with Eq.
(3.3a)], but because there is no interference between co-
herent-components the fluctuations in the § quadrature
are not squeezed and they are equal to the vacuum-level
fluctuations.

The Q function corresponding to the squeezed vacuum
state reads

_ 1 g _ B
R -t~ L
where
T2 =1—9, L2=1419 (3.8)

The Q function of the mixture state (3.5) has the same
form as for the squeezed vacuum state, except the pa-
rameters 3, and ¥; are given by the relations

E2=1-9, 2= (3.9)

The Wehrl entropy of the squeezed vacuum state (3.4)
and the corresponding statistical mixture (3.5) can be
found in the form (see paper I)

Seq = kp+kphn¥, +kpln; (3.103.)

and

Smix =k + kplnl,, (3.10b)
respectively. Comparing the last two expressions we con-
clude that the Wehrl entropy of the squeezed vacuum
state is always (i.e., for any n > 0) smaller than the en-
tropy of the corresponding statistical mixture,
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Saq— Smix = kpInT; = —%ilnu +9) <0. (3.11)

In the limit of infinite squeezing (when 7 — 1) the differ-
ence between the two entropies takes its maximum value
which is equal to (—kpIn \/f)

IV. CONCLUSIONS

We can conclude that by performing an operational
phase-space measurement over a nonclassical state that
can be represented as a pure continuous superposition of
coherent states, we always can distinguish between this
superposition state and the corresponding mixture state.
This property of continuous superpositions of coherent
states is a direct consequence of quantum interference be-
tween an infinite (continuous) number of coherent com-
ponents. These component states mutually interfere in
such a way that the total quantum interference is “ro-
bust” with respect to the operational phase-space mea-
surement and can be detected.

The difference between the pure continuous superposi-
tions of coherent states and the corresponding statistical
mixtures is preserved also in the case when the environ-
mental influence on the quantum-mechanical system un-
der consideration is taken into account. Let us consider
for instance that an initial squeezed vacuum state decays
into a zero-temperature heat bath. The Q function of the
decaying squeezing vacuum can be evaluated as shown in
paper I and has the Gaussian form given by Eq. (3.7)
with the time-dependent parameters %, ;(t) given by the
following expressions:

1- 1
2:2_ 7 -2 __ +7

“Ta-w % S Teaa-w Y

where p = exp(—~t). The @ function of the statistical
mixture decaying into the zero-temperature heat bath is
also described by the Gaussian function (3.7) but the
time-dependent parameters ¥, ;(t) in this case are

-2 1—7 -2 __
O e sy R
The Wehrl entropy of the decaying squeezed vacuum
state is given by Eq. (3.10a) with the parameters %, ;
given by Eq. (4.1) (see also [14]). Analogously, the Wehrl
entropy of the decaying statistical mixture is given by
Eq. (3.10b) with the parameters X, ; given by Eq. (4.2).
Comparing these entropies we can conclude that the total
quantum coherence present in pure continuous superpo-
sitions of coherent states is “robust” not only with re-
spect to the operational phase-space measurement but
also with respect to the decay into a zero-temperature
heat bath.

(4.2)
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