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‘We present an entropic description of duantum—mechanical states based on an operational ap-
proach to a phase-space measurement. We give a simple phase-space interpretation of sampling
entropies in terms of which we derive very general entropic uncertainty relations reflecting the de-
gree of the phase-space uncertainty of the quantum-mechanical state in the given measurement (i.e.,
for a given “quantum-ruler” state). We relate the sampling entropy to the von Neumann and Shan-
non entropy and show that the Wehrl entropy represents a particular example of a sampling entropy
when the quantum ruler is represented by coherent states.
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I. INTRODUCTION

Classical dynamical variables can be measured to ar-
bitrary accuracy in principle. This permits precise mea-
surements of conjugate variables such as position and mo-
mentum, and allows joint probability distributions to be
constructed for a phase-space description of dynamics.
This situation is much more complicated in quantum me-
chanics, for a lack of commutability of conjugate variables
prevents us from constructing joint probability distribu-
tions, and the lack of a unique rule by which quantum
and classical variables are associated leads to a variety of
ordering schemes for operators representing observables
[1,2].

Nevertheless, phase-space methods can be constructed
within quantum mechanics and have been widely used
to describe quantum mechanics (see for instance [3,4]).
Depending on operator ordering, a number of different
quasiprobabilities can be defined of which the best known
are the Wigner function [3], the Husimi (Q) function,
and the Glauber-Sudarshan P function [4,5], reflecting
symmetric, antinormal, and normal ordering of operators
in the characteristic function that determines the appro-
priate quasiprobability. The P function can be singular
or negative, the Wigner function can be negative but is
regular, whereas the Q function is always non-negative.
Cahill and Glauber [2] showed that all these can be con-
tained in an s-ordered quasiprobability density distribu-
tion where the choice of the value of the parameter s de-
termines the degree of “smoothing,” from the P function
to the Q function. The connection between quasiproba-
bilities and measurement schemes is delicate (Leonhardt
and Paul [6]). The Wigner function, in particular, gen-
erates the proper marginal distributions for individual
phase-space variables (position or momentum), and at-
tention has recently focused on its measurability (this
is closely related to the so-called Pauli problem of re-
constructing the wave function [7]) by the introduction
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of the so-called “optical homodyne tomography” method
for reconstructing quantum states (Vogel and Risken [8],
Smithey et al. [9]). The tomographic scheme has re-
opened questions concerning the physical significance of
the Wigner function given that it may not be positive ev-
erywhere [10]. The tomographic scheme is based on the
measurement of a single observable, the rotated quadra-
ture £¢ in which case a detector may be prepared in an
eigenstate of this observable so the measured probability
distribution P(xs) of & is unbiased by the measurement
process. From a set of the measured data for P(zg) for
all values of 8 [—7 < § < 7] the Wigner function can be
in principle reconstructed [8]. On the other hand, one
can consider a simultaneous measurement of two non-
commuting conjugate observables § (where § = £¢=p) and
P (where p = Zg_y/2). It is not possible to construct an
eigenstate of these two noncommuting observables, and,
therefore, it is inevitable that the simultaneous measure-
ment process introduces additional noise.

To describe the process of the simultaneous measure-
ment of two noncommuting observables Wédkiewicz [11]
has proposed a formalism based on an operational prob-
ability density distribution that explicitly takes into ac-
count the action of the measurement device, modeled
as a “filter.” A particular choice of the state basis for
the quantum ruler samples a specific type of accessible
information concerning the system. To be more spe-
cific, operational probability density distributions have
been introduced in various forms by several authors. In
particular, in a review article by Stenholm [12] the re-
lation between the operational probability distributions
and smoothed density distributions introduced by Husimi
[13] and Arthurs and Kelly [14] has been analyzed (see
also [15-18]).

In this paper, we employ Wédkiewicz’s operational
probability densities to characterize quantum states of
the field in terms of sampling entropies, which we relate
to the von Neumann, Shannon, and Wehrl entropies. In
Sec. II we summarize the basic properties of Wigner func-
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tions, paying particular attention to their positivity (or
lack of it). In Sec. III we define the relevant operational
phase-space density distributions in terms of the states of
the quantum ruler characterizing the measurement, and
use them to derive “operational” uncertainty relations.
In Sec. IV, we use these operational phase-space distri-
butions to generate the sampling entropy that we relate
to the von Neumann and Shannon entropy. In Sec. V we
derive the appropriate entropic uncertainty relations, re-
late these to the mutual information and illustrate them
with nonclassical states drawn from quantum optics. Fi-
nally in Sec. VI we relate the sampling entropies to the
Wehrl entropy and address the question of the recon-
struction of the quantum state of the measured system.
Appendices contain relegated mathematical details. In
the second paper [19] (in what follows we will refer to
this paper as Ref. II) we use the ideas developed in this
paper to investigate the nature of quantum interference
in phase space in generating nonclassical states.

I1. WIGNER FUNCTIONS AND QUANTUM
OPTICS IN PHASE SPACE

Wigner [3] was the first to show that expectation values
(M Y of certain physically important classes of operators
M can be expressed as integrals similar to the phase-
space integrals of classical probability theory [4]. This
approach is based on the idea of the transfer of quantum-
mechanical statistical information from the density oper-
ator p describing the quantum-mechanical state to the
Wigner function W{£) and a function M (£) which refers
to the operator M,

. . 1
on = forr) = - [Eeweme. e
The integral in Eq. (2.1) is carried out over all possi-
ble states of the system, i.e., in the case of a harmonic
oscillator over the entire complex £ plane. The differen-
tial element d2{/m (the measure of the integration) is a
real element of an area proportional to the phase-space
element dqdp in classical mechanics.

Let us consider a dynamical system that is described by
a pair of canonically conjugated Hermitian observables §
and P, o

[¢,5] = iR, (2.2)

and have eigenvalues that range continuously from —oco
to +oo. The annihilation and creation operators @ and
4% can be expressed as a complex linear combination of
¢ and p,
(MG + i/\_lﬁ) ;

a=

L (2.32)
V2h '
at =L (\g—ixp),

V2R

-4
Pt

(2.3b)

where A is an arbitrary real parameter. The operators &
and at obey the Weyl-Heisenberg commutation relation
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3,81 =1, (2.4)
and, therefore, possess the same algebraic properties as
the operator associated with the complex amplitude of
a harmonic oscillator (in this case A = /mw, where m
and w are the mass and the frequency of the quantum-
mechanical oscillator) or the photon annihilation and cre-
ation operators of a single mode of the quantum electro-
magnetic field (in this case A = /ew, where € is the
dielectric constant and w is the frequency of the field
mode).

A particularly useful set of states is the overcomplete
set of coherent states |a) which are the eigenstates of the
annihilation operator a:

ila) = a|a). (2.5)
These coherent states can be generated from the vacuum
state |0) (which is defined through &|0) = 0) by the uni-
tary displacement operator D(c) [5]

D(a) = exp [edf —o*a],  |a) =D(a)0). (2.6)
The space of eigenvalues, i.e., the phase space for our
dynamical system is the infinite plane of eigenvalues (g, p)
of the Hermitian operators § and . An equivalent phase
space is the complex plane of eigenvalues

1
V2h

of the annihilation operator é. We should note here that
the coherent state |a) is not an eigenstate of either § or
p. The quantities ¢ and p in Eq. (2.7) can be interpreted
as the expectation values of the operators § and $ in the
state ja). Two invariant differential elements of the two
phase spaces are related as

o= (Ag+ix"'p), (2.7)

g =1 -
7,-d a= ﬂ_d[Re(a)]d[Im(a)] = 27rhdq dp. (2.8)
The phase-space description of the quantum-
mechanical oscillator which is in the state described by
the density operator g, is based on the definition of the
Wigner function [3] W(£). The Wigner function is re-
lated to the characteristic function C(W)(n) of the Weyl-
ordered moments of the annihilation and creation oper-
ators of the harmonic oscillator as follows [2]:

1 * *

WO =2 [ ™) expler —em dn. (@29)
The characteristic function C(W)(5) of the system de-
scribed by the density operator j is defined as

C) () = Te{pD(m)], (2.10)
where ﬁ(n) is the displacement operator given by
Eq. (2.6). The characteristic function C")(5) can be
used for the evaluation of the Weyl-ordered products of
the annihilation and creation operators as follows [2]:

(m+n)
(E5) = o O 0) (2.11)

n=0
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On the other hand, the mean value of the Weyl-ordered
product ({(@¢")™a"}) can be obtained by using the
Wigner function directly to generate moments

qahray = 2 [ ee@mewe.  (212)
For instance, the Weyl-ordered product ({afa}) can be
evaluated as
1

(atay) = j(ata+aah) = o [delePwie. @13

Originally the Wigner function was introduced in a
form different from (2.9). Namely, the Wigner function
was defined as a particular Fourier transform of the den-
sity operator expressed in the basis of the eigenvectors
|g) of the position operator ¢,

W(q,p) = f_ d¢{g — ¢/2|plg + ¢/2)e PR (2.14a)

which for a pure state described by a state vector |¥)
(ie., p = [E)(¥]) reads

Wi(q,p) = /_oo dé(g — ¢/2)0* (g + ¢/2) e P /R (2.14b)

It can be shown that both definitions (2.9) and (2.14)
of the Wigner function are identical (see Hillery et al.
[4]), providing the parameters { and &* [see Eq. (2.9)]
are related to the coordinates ¢ and p of the phase space
as

E= 715: (Mg +ix7'p),

\/_Ii

The Wigner function can be interpreted as the quasiprob-
ability (see below) density distribution through which
a probability can be expressed to find a quantum-
mechanical system (harmonic oscillator) around the
“point” (g,p) of the phase space.

As an example we evaluate the Wigner function of the
coherent state |a) given by Eq. (2.6) (with the complex
amplitude o = oy + ;)

W(¢ @) = 2exp (-2/¢ — al’)

or alternatively, in the (g,p) representation we have

(2.15a)

&= (Ag—ix71p). (2.15b)

(2.16a)

1(g-9* 1 (»-p)?
’ e ) = _— —
W(g,p; @) =, P [ T % o2 |
(2.16b)
where § = v2ka,/A; p = V2ha; A, and
1 . AZ
0'2 = '2? a.nd 0'p = ?. (2.16(})

Marginal probability density distributions obtained
from the Wigner function are related to the momentum

and position probability distributions W{g) and W (p) as
follows:

W) = ;7= [ @Wap) =

where |g) is the eigenstate of the position operator §.
The probability density distribution W(q) is normalized
to unity,

—\/—2;7—’} (qlple), (2.17a)

ﬁ/dqW(q) =1, (2.17b)

where Adg/v/2nh is a dimensionless measure of integra-
tion. Analogously, the momentum probability density
distribution W (p) is defined as

W) = 2= [ daW(a,) = AVarRGelilp), (2.153)

where [p) is the eigenstate of the momentum operator p.
The momentum probability density distribution W (p) is
normalized as

i
— [ dpW =1. 2.18b
A\/th/ P ( )

From the above definitions we can obtain expressions for
the mean values of any power of the operator § (§) as

= f dag" W (q),

AT\ 1 ‘L]
&) = 57y [ "W )

For example, using the above expressmns we can easily
find the variances ((Ag§)?) and ((Ap) ) of the operators
g and $ in the coherent state |o) given by Eq. (2.6). The
variances ((A§)?) and ((Ap)®) are defined in the usual
way,

((Ag)?) = (8% — (@)%

and we find that

(2.19)

((Ap)?) = (3% — (§)* (2.20)

(Ag)%) =ho? and  ((AP)°)=lhol.  (221)
From the definition of the parameters ¢4 and o, [see

Eq. (2.16¢)} it follows that

hz
2 L\ 2
((A9)"K(A8)") = (2.22)
which demonstrates that coherent states are minimum
uncertainty states [20].

By the definition the Wigner function W (g, p) is nor-
malized to unity in the whole phase space, i.e.,

/dzgw =1.

If Wy (g,p) and Ws (g, p) are two quasiprobability den-
sities corresponding to the states |[¥) and |®), respec-

/ dgdpW(q,p) = (2.23)



2578 V. BUZEK, C. H. KEITEL, AND P. L. KNIGHT 51

tively, then it can be shown that the transition probabil-
ity |(¥|®)|> between these two states can be expressed
as

[(z|2)*

‘ / dg ¢*(q)#(q)

1
= ﬁ/dqde\p(q,p)Wé(q,p)-

(2.24)

In particular, from Eq. (2.24) it follows that if the states
|¥) and |®) are orthogonal (i.e., (¥|®) = 0) then

1
s / dqdpWy(q,p)Ws(q,p) =0, (2.25)

which implies that the Wigner function cannot be ev-
erywhere positive and, therefore, it is not a probability
density distribution, but rather a quasiprobability den-
sity distribution. Moreover, it can be shown that the
Gaussian quasiprobability density distribution [21]

W‘I’ (q’p) =

1 i
0q,w0p,9V1 —12 { 2(1—r2)k

| =0 2-5)(g-7)
012:,\1' Op,¥0q,¥

_l_((I;(f)z] }’
0'q1‘1,

for which the parameters o4 ¢ and o, ¢ are related as

(2.26)

2 1

2 — - -
g.q,‘I'o'p,\P = m, (2.27)

is the only positive Wigner function for a pure state.
From Eqs. (2.26) and (2.27) it follows that coherent states
and squeezed states [i.e., the states described by the
Wigner function (2.26) with the parameter r equal to
zero| are the only minimum uncertainty states. Their
Wigner functions are non-negative. All other Wigner
functions that describe a pure state necessarily take neg-
ative values for some values of ¢ and p.

Finally, we turn our attention to a very impor-
tant property of Wigner functions which we will uti-
lize later in our paper. Namely, the convolution of two
Wigner functions of quantum-mechanical states is always
a non-negative density distribution. This convolution
is usually referred to as the smoothed Wigner function
{11-14,22,23] and can be expressed as

1
Py3(q,p) = o= dg'dp' We(q+ ', p + P )Wa(d', D),

2nh
(2.28)
where Wy (g,p) is the Wigner function of the state de-

scribed by the state vector |¥) and Wg(g, p) is 2 “smooth-
ing” Wigner function corresponding to the state |®).

III. OPERATIONAL APPROACH
TO PHASE-SPACE MEASUREMENT
IN QUANTUM OPTICS

From our previous discussion it is clear that the Wigner
function cannot be straightforwardly interpreted as the
phase-space probability density distribution because it
may take negative values for some values of p and ¢. This
negativity of the Wigner function is intrinsically related
to the nonclassical nature of corresponding quantum-
mechanical states. Simultaneously, it is an indication
that the Wigner function is not a directly measurable
probability density in the phase space. Nevertheless,
it has to be stressed that the Wigner function can be
(in principle) éndirectly reconstructed from experimen-
tally measured data [8-10], although due account must
be taken of the problems noise introduces in this recon-
struction.

There have been many attempts to overcome formally
the problem connected with the fact that the Wigner
function can take negative values. In particular, Husimi

[13] defined a non-negative probability density distribu-

tion as a convolution between the smoothing Gaussian
function and the Wigner function. Recently, Lalovié,
Davidovié¢, and Bijedi¢ [23] have proposed a formalism
that allows the formulation of quantum mechanics in
terms of generalized nonpositive smoothed Wigner func-
tions in a systematic and unified way.

All these formal smoothing procedures result in def-
initions of probability density distributions which are
non-negative as demanded, but the relation between the
smoothing procedure and a realistic measurement proce-
dure remained rather unclear. A more physical approach
has been adopted by Arthurs and Kelly [14] (see also [12])
in which the smoothing procedure is explained in terms
of the noise induced by a simultaneous measurement of
two conjugated noncommuting observables. Following
Wédkiewicz [11] we may ask: “Is it possible to define a
realistic phase-space function that can be recorded in the
laboratory?” Woédkiewicz has also proposed an answer
to this question in which he derived a positive definite
quantum probability density distribution P(g,p) which
is directly connected to a realistic measurement.

The fundamental feature of the operational probabil-
ity density distribution proposed by Wédkiewicz [11] is
that, in addition to the quantum-mechanical system to
be measured and its detector, a device acting as a filter
is introduced. This filter is needed in order to resolve for
example the current position and momentum of the in-
vestigated system. Obviously, the particular realization
(choice) of the filter strongly influences the outcome of
the measurement.

If a quantum-mechanical state—of the filtering device
is described by the state vector |[®) and the system
being measured is in the state |¥), then, as shown
by Wédkiewicz [11] the operational probability density
Pg3(q,p) can be expressed as (see also [12,14])

Pys(g,p) = |/d£exp (%) T (€ +q)®(¢) 2, (3.1)




which is equivalent to the expression

1
Pys(q,p) = — | dd'dp'We(q¢+¢,p+ 0 )Was(d', D).
2nh
(3.2a)

In other words, the operational probability density dis-
tribution Pys(g,p) is equivalent to the convolution (i.e.,
“overlap”) of the detected and the displaced filtering
Wigner functions. The operational probability density
distribution (3.2a) can be also expressed as a squared
modulus of a scalar product of the state vector |¥)
of the measured system and the displaced state vector
D(q,p)|®) of the quantum ruler, i.e.,

Pya(q,p) = [(¥|D(q,p)|®)|*.

Alternatively, if the quantum system and the quantum
ruler are described by density operators pg and ps, re-
spectively, then the operational probability density dis-
tribution can be expressed as

(3.2b)

Pys(q,p) =Tr {ﬁwﬁ"l(q,p)ﬁq»ﬁ(q,p)} y o (3:2¢)

where ﬁ(q, p) = expi(p§ —gp)/ ] is the displacement op-
erator in the (g,p) phase space. Equations (3.2) answer
also the fundamental question of the proper relation be-
tween the Wigner function of the state of the measured
quantum-mechanical system and a realistic phase-space
measurement in quantum mechanics.

The operational phase-space probability density
Pygs(g,p) can be interpreted as a propensity [11,24] or
a tendency of the measured state |¥} to take up certain
states |®) prescribed by a quantum measuring device [see
Eq. (3.2b)]. The reference states |®) of the measurement
device (the filter) are often called the states of the “quan-
tum ruler.” We will demonstrate how different choices
of the ruler states (for example coherent states) affect
the measured information (data) about the nature of the
quantum state.

A. Operational uncertainty relations
for variances

Following Wédkiewicz [11] and Raymer [25] we derive
an operational uncertainty relation for the variances of
the position and momentum operators from which the
role of quantum noise induced by the measurement pro-
cess (filtering) will be transparent. Using the Wigner
function of the quantum-mechanical state |¥) we can de-
rive probability density distributions Wy (g) and Wy(p)
of the position and momentum [see Egs. (2.17-18)]. With
the help of these probability distributions and Eq. (2.20)
we can evaluate the variances of the position and mo-
mentum operators in the state |¥),

((A9)%e = (e = (@% (2D = ")e — B)F,
(3.3)
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where (¢")g and (p™)y are given by Egs. (2.19). Us-
ing very general properties of the distributions Wy (p)
and Wy (q) and the Schwartz inequality, it can be shown
that for any quantum-mechanical system described by
the density operator p = |¥)(¥|, the uncertainty relation

2

(A2a (B2 > o (3.)
is valid. This uncertainty relation depends only on the
state of the quantum-mechanical system and does not
carry any information about the phase-space measure-
ment of the position and momentum, i.e., the uncertainty
relation (3.4) does not contain any information about the
measuring device.

We briefly note here that there is a class of the
quantum-mechanical states |¥), the minimum uncer-
tainty states (MUS) for which the product of the vari-
ances ((A§)%)g{((AP)?)y take the minimum value which
is equal to A?/4. The MUS are described by the Gaus-
sian Wigner function given by Eq. (2.27) with » = 0.
Particular examples of the MUS are coherent states [see
Eq. (2.6)] and squeezed states (for more details see Sec. V
and Ref. IT).

To take into account the intrinsic uncertainty of the
quantum-mechanical system [i.e., the relation (3.4)] as
well as the uncertainty related to the quantum measuring
device we utilize the operational phase-space probability
density Pys(g,p) given by Eq. (3.2). The correspond-
ing marginal probability densities Pyg(g) and Pya(p)
defined as

1 o0
P = — dp P. ,P)y 3.5a
vl == [ Puslar) G5

A o o]
P, = dq P. , 3.5b
v (P) \/m/_m q Py2(q,p) (3.5b)
are related to the probabilities

A Pyo(g)dg and ———Pys(p)dp (3.5)

that the value g of the position and the value p of the
momenta of the quantum-mechanical system which is in
the state |¥) are measured. The probability densities
Pygs(p) and Pys(q) carry information about the system
to be measured (which is in the state |¥)) and about the
measuring apparatus which is in the state |®).

From the probability densities Pgs(q) and Pys(p) we
can evaluate the mean values of the position § and mo-
mentum operators p using the standard relations

(™) ys = J—2_/:r=h/dq q" Pys(q)

and

(") we = ,\\/1275 /dp " Pys(p). (3-6)

Here we stress once more that these operational
quantum-mechanical averages involve both the state |{¥)
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of the system to be measured and the state |®) of the fil-
tering (reference) device. From (3.6) we can in particular
find that .

(@ws = (T]4]T) — (2]4]®),
(Bles = (Y[P]¥) — (2[5]D),

which reflects the fact that (§)gs can be interpreted as a
relative position (distance) of the detected state |¥) with
respect to a reference fixed by the filter (quantum-ruler)
state |®).

Analogously we can evaluate operational variances
Y¢s(p) and Tye(q) defined as

(3.7a)
(3.7b)

Lia(0) = (@)ve — (D)es
and

Tva(p) = (#")vs — (P)ie (3.8)

$2.5(9)5%2(p) = (AD* e ((29)%)w + (A2 ((AD)*) s + ((Ad)*) ¢ ((A8)*)s + (Ad)He((AP)*)e > A2

This uncertainty relation depends on the quantum-
mechanical properties of the detecting device as well as
the measured system. It differs from the intrinsic un-
certainty relation (3.4) by a factor of 2 in the quantum
noise, or a factor of 4 for the product of variances.

B. Example A

In what follows we will consider a harmonic oscillator
with a unit mass and a unit frequency, i.e., the param-
eter A in Eq. {2.15) is equal to unity. If this harmonic
oscillator is prepared in a coherent state |¥) = |a) [see
Eq. (2.6)] with the corresponding Wigner function given
by Eq. (2.16) then the variances in § and p read

(88w = (A5))a = 2.
From Eq. (3.11) we see that the coherent state is a MUS.
The squeezed vacuum state (for more details see Sec. V)
is also a MUS but its variances are not equal. For a
particular phase of squeezing these variances can take
the following values:

- (3.11)

N Rl41n k
2 = fig2 a
((AQ) )‘I’_zl_n—ha'q,‘ll>2’
and
. hl—nq h
(AD)?)g = T = kol g < 2 - (3.12)

where the squeezing parameter n takes the values from
the interval (—1,1). From Eq. (3.12) it follows that for
7> 0 (7 < 0) the variance in the momentum (position) is
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for which we find
T3:(0) = (A% + ((Ad) %, (3.92)

nd

[

.5(p) = (A5))w + (A5,

which means that there are two sources of measured
quantum-mechanical fluctuations. The first part of the
quantum-mechanical noise has its origin in the detected
state |¥) itself and the second source of noise is from
the measuring device (i.e., the state |®)). Both of these
sources have a quantum-mechanical origin. Later in this
paper we will discuss how to describe other sources of
noise that can appear during the operational phase-space
measurement.

Following Wédkiewicz we can derive for the opera-
tional variances Xys(g) and Xgs(p) the uncertainty re-
lation which reads

(3.9b)

(3.10)

squeezed below the coherent-state (vacuum) level at the
expense of the increase of the variance in the momentum.
Nevertheless, the product of these variances is still equal
to A%/4, i.e., the squeezed vacuum is the MUS.

Now we can assume that the quantum filter (the quan-
tum ruler) is in the coherent state |8) = |®) (for more
discussion on this choice of the state of the quantum filter
see Sec. VI). The variances of the position and momen-
tum operators in this filter state are

(8d)D)e = (Ap))e = 2

> (3.13)

and, therefore, we obtain for operational variances of the
coherent state the following expressions:

Tie(e) = A=335(p),

while for the operational variances of the squeezed vac-
uum state we find

(3.14)

h
Dye(a) = Pp—— RZ} ve

and

Tie(p) = = A%2 g (3.15)

R
1479
From the above, it follows that coherent states are the
minimum uncertainty states with respect to the opera-
tional uncertainty relations providing the filter state (i.e.,
the quantum ruler) is taken to be in a coherent state.
On the other hand, the squeezed vacuum state, which is
intrinsically a minimum uncertainty state, is not a min-
imum uncertainty state with respect to the operational
uncertainty relation, i.e.,



51 SAMPLING ENTROPIES AND OPERATIONAL... . L ...

ﬁz
D22 ()The(p) = ;5 >

= (3.16)
We can say that a phase-space measurement with the
quantum detection apparatus modeled as a filtering de-
vice which is prepared in a coherent state is an optimized
quantum measurement for coherent states in a sense that
the product of the corresponding operational variances
minimizes the operational uncertainty relation.

Here we note that if the measured state |¥) is a
squeezed vacuum state and if we choose the filter (the
quantum ruler) to be in a squeezed state characterized
by the variances (3.12) such that the condition

(B (AP = (ADHa((A5)e = 2, (317)

is fulfilled, then we find for the operational variances of
the squeezed vacuum in this particular kind of measure-
ment the expression

E?I@(Q) =h= E?M»(P)-

This equation reflects the fact that squeezed states can
be minimum uncertainty states with respect to a particu-
lar phase-space measurement with properly chosen filter
states. From here it follows that we can optimize the
measurement in such a way that the operational uncer-
tainty relation can be minimized [26].

(3.18)

IV. ENTROPIC UNCERTAINTY MEASURES

Gaussian quantum-mechanical states |¥) of the har-
monic oscillator are fully characterized by the mean
amplitude [i.e., the mean value of the annihilation op-
erator, (&), and the second-order variances {(A§)*)g
and ((Ap)®)y]. Therefore, the uncertainty relation
((Aq)2>\p((Aﬁ)2)\p > k2% /4 completely reflects the intrin-
sic uncertainty of the quantum-mechanical state.

For non-Gaussian pure states of the harmonic oscillator
the second-order variances ((A§)*)y and {(Ap)*}¢ do not
contain enough information to characterize completely
the intrinsic uncertainty of the state. In particular, let
us consider a pure quantum-mechanical superposition of
two coherent states [27]

1)

_ 1
" {2[1 + exp(—2a2)]}/?

(le) + | = )]

(a is real), (4.1)

which is described by a non-Gaussian Wigner function.
The variances {(A§)?) and ((Ap)?) of the operators § and
P in the superposition state (4.1) read

aZ
(@Y =5 [+ Ty | (429
(@p)he =3 1-TreEe)] o

from which it directly follows that the state under con-
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sideration is not a MUS. Moreover, in the limit of a large
amplitude « the product of two variances ((A§)?) and

((AP)?) goes to infinity as o?

2
lim ((AG)*e{(AD)*)e — P o . (4.3)
a?—4o00 2

If we consider the filter (the quantum ruler) to be in a
coherent state then the product of two operational vari-
ances L} 4(g) and T3 4(p) also goes to infinity for large
values of a. On the other hand, we understand that the
superposition of two coherent states can be “classically”
interpreted as a superposition of two points in the phase
space. Therefore, if we perform a phase-space measure-
ment (with the coherent-state quantum ruler) the uncer-
tainty corresponding to a superposition of two coherent
states has to be finite (i.e., we should expect some uncer-
tainty related to a two-state system [for more details see
Ref. 1I]). This discrepancy between the uncertainty mea-
sures based on the second-order variances and the intu-
itive picture corresponding to the phase-space measure-
ment has its origin in the fact that using ((Ag)?)¢ and
{(AP)*)¢ as the uncertainty measures for non-Gaussian
states we deliberately neglect higher-order variances that
carry essential information about non-Gaussian states.
Therefore, in order to quantify more carefully the intrin-
sic uncertainty of non-Gaussian states we have to con-
sider a global (complete) information about the state.
One possibility is to take into account higher-order vari-
ances of the operators ¢ and § and to use them to quan-
tify the degree of uncertainty of the state. Nevertheless,
a more consistent approach would be to utilize the to-
tal information available about the quantum-mechanical
system and define an uncertainty measure based on this
information.

The most natural measure of the uncertainty of the
quantum-mechanical state is the entropy [28-36]. If we
are talking about the quantum-mechanical state per se,
i.e., without any reference to a measurement process,
then the corresponding quantum-mechanical entropy due
to von Neumann [35] reads

Sﬁ = -—kBTI’ (ﬁq, In ﬁq;), (4.4)

where pg is the density operator of the quantum-
mechanical system under consideration and kp is Boltz-
mann’s constant. This definition of the quantum-
mechanical entropy generalizes the classical expression
of the entropy due to Boltzmann and Gibbs.

If we relate the von Neumann entropy to the number of
pure states |¥) that contribute to the mixture described
by the density operator pg then the von Neumann en-
tropy of a pure state (i.e., the state that is microscopi-
cally uniquely prescribed) is equal to zero. For quantum-
mechanical mixtures the von Neumann entropy is larger
than zero, because there exist several pure states that
realize the same quantum-mechanical mixture described
by the density operator gg.

Formally we can express the von Neumann entropy in
the framework of the phase-space formalism, i.e., in terms
of the Wigner function Wj;(g,p),
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kp
Sp= 32 [ daWaa.DWins(@p)  (459)

where Win 5(g,p) is the Wigner function of the operator
lnp which can be defined as the Fourier transform of
the Weyl-ordered characteristic function C(") () of the
operator In g, i.e.,

1 b
Wias(€) = — f d®n Tr [In pexp(nat — n*a)]

x exp(én* — €*n). (4.5b)

We have to stress that this “Wigner logarithm function”
is not equal to the logarithm of the Wigner function
W;(q,p) [ie., Wi 5(g,p) # In Wy(q, p)], which means we
cannot express the von Neumann entropy as

k
Sy = —%’/dp dg W\y(q,p) in W‘I’(‘I?F)? (4'6)

because the function S¢ has no physical meaning for neg-
ative values of Wy (g, p). Besides this purely formal rea-
son there exists a conceptual problem with the entropy
defined only via the Wigner function of the quantum-
mechanical state. The point is that in the definition of
the Wigner function there is no reference to a measure-
ment process by means of which the information about
the quantum-mechanical state |¥) is obtained. We can
think about the quantum-mechanical entropy in terms of
a “number of possible realizations” of the state of the
measured system by quantum-filter states. To this end
we can adopt a schematic phase-space picture describing
overlaps of the error contour corresponding to the mea-
sured state |¥) and the filter states |®) (see Fig. 1). If
this overlap is unique, then the corresponding entropy
has to take its minimal value. If it is not unique, we have
to expect that this entropy is larger than zero.

To formalize the above idea we utilize the operational
probability density distribution Pgs(p,g) which can be
interpreted as the overlap of the measured state |¥) and

D>
¥>

N
7

q

FIG. 1. Phase-space portrait of a quantum state and its as-
sociated quantum ruler: what is shown is the “error” contour
of the quasiprobability density distribution of the system in
the state |¥) and the quantum ruler in the state |®) (imagined
here to be in a coherent state).
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the quantum-ruler state |®).
entropy can be defined as [26]

Then the corresponding

k
sip) — —ﬁ /dp dq Pya(p,q)I1n Pya(p,q). (4.7)

This entropy has a very attractive and simple interpreta-
tion analogous to that which is contained in Boltzmann’s
definition of entropy (S = kplnW, where W is the
number of microstates that realize a given macrostate).
Namely we can interpret the entropy Sy as a function of
the number of quantum-ruler states |®) that sample the
quantum-mechanical state |¥). This interpretation moti-
vates us to call the entropy Sys the phase-space sampling
entropy.

It is worth to note here that Eq. (4.7) for the entropy
S\(;&,p ) can be formally reduced to the expression (4.6)
describing an entropy in terms of only the Wigner func-
tion Wg(q,p). This reduction is possible providing the
Wigner function Wg of the quantum filter is defined as

Ws(q,p) ~6(p—p')o(¢ — ¢'),

which means that nonphysical states of the quantum fil-
ter are used to perform a quantum-mechanical measure-
ment of the state |¥). The states of the quantum filter

(4.8)

“described” by the probability density distribution (4.8)

are classical states because they allow simultaneous de-
termination of § and § with an infinite accuracy, which vi-
olates the physical laws of the quantum mechanics. This
is the physical reason why the expression (4.6) has no
physical meaning.

A. Sampling entropy and Shannon entropy

In addition to the entropy S\(I?&,p ) that measures the un-
certainty related to a simultaneous measurement of two

canonically conjugated operators § and $, we can intro-
duce two other entropies S‘(f% and S‘(Iﬁ%,. These two en-
tropies are defined through the marginal probability den-
sity distributions P(q)g¢ and P(p)gs of the position and

momentum, respectively,

Ak et
B dq Pya(g) In Pys(g),

S§h = -T2 4.9
e or =l (4.92)
and
k oo
SE = — 2 dpPys(p)In Pya(p).  (4.9b)

AM27h J oo

The entropies S'\(f,;, and S‘(;:% describe the uncertainty in
the measured values of the position or momentum provid-
ing the quantum ruler is in the state |®). If the quantum
ruler is supposed to be in the eigenstate of the measured
observable (let us say §), i.e., |®) = |g), so that

P(q)we = |(q| T},

then the entropy S‘(Ig is equal to the Shannon entropy
[31] corresponding to the measurement of the single ob-
servable §.

(4.10)



If we assume that the filter states are equal to eigen-
states (here it is implicitly assumed that these eigenstates
form a complete orthonormal basis) of one of the two
noncommuting observables (we consider the position op-
erator §} then the fluctuations associated with the quan-
tum ruler are equal to zero, i.e., ((A§)2)<1>=q = 0, so that
Tu,8=¢(q) = ((A§)*)¢ [see Eq. (3.92)], which means that
fuctuations in the distribution P(g)g,$=, are related to
the intrinsic uncertainty of the operator § in the state
|¥). This reduction of operational fluctuations in the §
observable is done at the expense of infinite filter fluctua-
tions in the conjugated p observable. To be more specific,
adjusting the filter state to the eigenstate of the position
operator we cannot obtain any information about the
distribution in the momentum of the state under consid-
eration and consequently we are not able to perform an
operational phase-space measurement.

The Shannon entropy is a very useful measure of the
uncertainty related to a measurement of a single observ-
able. In this case the filter state can be taken as the
eigenstate of this observable and filter fuctuations are
consequently reduced to zero. On the other hand, in
this kind of measurement the information about the con-
jugated variable is completely lost. In the case when
a stmultaneous measurement of two noncommuting ob-
servables is performed one cannot introduce straightfor-
wardly the concept of the Shannon entropy because two
noncommuting observables do not share the same eigen-
states. Therefore, the filter has to be prepared in a state
that is not an eigenstate of the two observables under
consideration and thus the filtering process inevitably
introduces fluctuations into measured data. From this
point of view the sampling entropy Sg’&,p) as introduced
by Eq. (4.7) can be interpreted as the Shannon entropy
for a simultaneous measurement of two noncommuting
observables.

B. Sampling entropy for # and <$

In gquantum optics the Shannon entropy is usually
associated with the photon number distribution P, =
[{n|®)|? of a given state of a single-mode light field. The
Shannon entropy in this case reads

SV =—kp> PuInP,. (4.11)

We will briefly describe this entropy in the framework of
the sampling-entropies formalism. To do so, we firstly in-
troduce two conjugated observables 7 and (Z), that is the
number operator and the conjugated Hermitian phase
operator. Following Pegg and Barnett [37] we consider a
finite-dimensional Hilbert space of the dimension (s + 1)
in which these two operators do act. The correspond-
ing phase space [38,39] is represented by (s +1)* discrete
“points” associated with states of the harmonic oscilla-
tor in the finite-dimensional Hilbert space. We can in-
troduce Wigner-function-like probabilities Wy (n, d)j)(’)
(here the index s indicates the dimension of the Hilbert
space under consideration) that the harmonic oscillator
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which is in the state |¥) will be found in a particular
point (n;, ¢;) of the phase space. Following Wootters
[39] and Vaccaro and Pegg [38] we can express the Wigner
function W (n;,¢;)(*) as the mean value
1 A s
Wy (ni, ¢;)) = m(‘mx‘l(ni,%)( ) (4.12)

of the Hermitian operator A(n,-,qﬁj)(’) which is defined
as

A(ni, ¢5)*) = exp(—2ikn;A)|¢jk) (b-rl-  (4.13)
k=0

In our notation n; = ¢ (¢ = 0,1,...,8); A = 2n/(s + 1),
and the phase states |¢;) in the finite-dimensional Fock
space read [37]

8

_JT1—4_——3 Z exp(ik¢;)|k),
k=0

where ¢; = ¢o + jA with j = 0,1,...,s and |k) is the
Fock state. The Hermitian phase operator is defined as
the projector ® = 377_; ¢;|4;)(#;| and has eigenvalues
within the interval [¢o, o + 27].

In an analogy with a case of the (g,p) phase space

we can introduce operational probability distributions
Py (n;, ¢;)(® [see Appendix A]

|65) = (4.14)

Pya(ni, 6;)® = > Wy(nirr, ¢41)
k,l=0

X W (nk, 1)), (4.15)
[here the periodic properties of the operator fi(n,', ¢;)®
have to be taken into account when the summation over k
and [ is performed]. The corresponding sampling entropy
is given by the expression

5549 (s) = —kp > Pya(ni, ¢5)®)
i,7=0
x In Pﬂ,’mp (n,-, qu)(’). (4.16)
Using the distribution Pggs (ni,qu)(') we can also intro-
duce probability distributions in the measured values of
n and ¢, respectively,

Pyg(n:)' = Pya(ni, 6;), (4.17a)
j=0
and ’
Pyg(4;)) = ZP\IH}(T";', b)), (4.17b)

i=0

Entropies measuring uncertainties in the distributions
Pq,@(n.-)(‘) and Pq;@(¢j)(’) read

S‘(IZIZ(S) = "‘kB ZP\I,Q(H,')(’) In P\Iu}(n{)(‘) (4.188.)

=0
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and

SEMs) = —kn' S Pus(4;)? In Pes(s;)®.  (4.18b)

j=0

If the filter state [®) is assumed to be equal to the Fock
state |n) (0 £ n < 3), then Pg¢=n(n;)(‘) represents a
“photon” number distribution in the finite-dimensional
Hilbert space and the corresponding entropy S\(I:21>=n(3)

in the limit s — oo is equal to the Shannon entropy
(4.11).

V. ENTROPIC UNCERTAINTY RELATIONS

Using the definition of the phase-space sampling en-
tropy we can define in a very natural way the entropic
uncertainty relations (EUR) which are based on the total
information about the measured system |¥) rather than
just on second-order variances of the operators ¢ and p
(the so-called Heisenberg uncertainty relations). Obvi-
ously, we should expect that for Gaussian states, the fluc-
tuations of which are characterized by the second-order
variances, the entropic and the Heisenberg uncertainty
relations yield the same results.

A. Mutual information and EUR

To introduce entropic uncertainty relations we uti-
lize the concept of a mutual information between two
random variables as defined by Kolmogoroff [40] and
Shannon [31]: Let A (B) be a random variable de-
fined on a stochastic object that takes different values
z; (y;)  =1,.,n {j = 1,..,m)] with probabilities
P (z;) [P®)(y;)]. The joint probability distribution of
the random variables A and B is defined as P(4:5) (z;, y;)
and the marginal probabilities P(4)(z;) and P(®) (y;) are
defined in the usual way,

PW(z) = 3 PUB)(a,, ),
J

and

P(B)(yj) = Z P(A’B)(.’E,',yj). (51)

The mutual information I(4B) between the random vari-
ables A and B is defined as (see for instance [31,40]):

P(AvB)(a:y)
A,B) _ AB) (24,95 E
I4B) = kg~ PUAB) (z;,9;) In [P(A)(m.-)P(B)Zyj)]'

(5.2)

The parameter I{(4B) represents a measure of infor-
mation contained in the random variable A about the
random variable B (and vice versa). For statisti-
cally independent random wvariables A and B, i.e., if
PA:B) (g, y;) = P (z;) P'B)(y;), the parameter I(4:5)
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" is equal to zero. Otherwise it is a positive number [40],

I4B) > g (5.3)
~ With the use of the probability density Py (p,q) and
the corresponding marginal probability densities Pys(q)

and Pgsz(p) we can define the mutual information I‘(;&,p )
as

kp

1P — 5B / dgdp Pys(q,p)1n [

Py3(q,p)
2nk )

Py2(q)Pya(p)
(5.4)

The parameter I, é,qép ) can be interpreted as the amount of
information contained in the measured value of the posi-
tion (momentum) of the quantum-mechanical state |¥)
about the momentum (position) of this state, providing
the quantum-mechanical measurement with the quantum
ruler in the state |®) is performed.

Using the definitions of the entropies S‘(I:I&,p ). .S"(If%, and

S\(Ifg [see Eqgs. (4.7) and (4.9), respectively] we can rewrite

the mutual information I‘(I,qé,p )

as

in terms of these entropies

I = 5@ + 58} - 5GP, (5.5)

Taking into account non-negativity of the mutual infor-
mation [i.e., I\(;‘,’é,p) > 0, see Eq. (5.3)] then from Eq. (5.5)
we directly obtain the entropic uncertainty relation which
reads

S{a+ S8 = SEP. (56)
We have to stress here that these entropic uncertainty re-
lations do depend not only on the quantum-mechanical
state |¥) but also on the quantum filter state |®). If we
fix some quantum filter state |®), i.e., we choose a partic-
ular quantum-mechanical measurement procedure, then
we call the quantum-mechanical state |U), an intelligent
state [41] with respect to the given measurement, pro-
viding the left and right side of the uncertainty relation
(5.6) become equal, i.e.,

Sa + 533 =GP, (5.7)
If in addition both the left and right side of the relation
(5.7) reach their minimum values then we can call the
state |¥) the minimum uncertainty state with respect to
the given measurement.

From the above definitions it follows that the mutual
information between the momentum and position vari-
ables of intelligent states is equal to zero. These states
are described by Gaussian probability density distribu-
tions Pys (g, p) for which p and ¢ variables are completely
independent.

We note that the uncertainty relation (5.6) has a
counter part for von Neumann entropies which is one of
the two well-known Araki-Lieb inequalities [28]. Here the
total system was separated into two subsystems where
the corresponding density matrix is evaluated by tracing
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over the variables of the other subsystem. Both sub-
systems then on their own include less information to-
gether than the whole system due to the neglect of the
influence of any of both systems on the other. In our
case the total “system” is described by the quasiprob-
ability function Pgg(p,q) rather than the density ma-
trix and one “subsystem” describes the spatial compo-
nent Pys(g) only whereas the other describes the mo-
mentum component Pygg(p). Again we expect the posi-
tion of a system to have influence on its own dynamics
and vice versa and thus information is lost due to the
restriction on the marginal entropies in analogy to the
well-known Araki-Lieb inequality for the von Neumann
entropy. Thus we anticipate some connection between
both uncertainty relations for these principally different
entropies for quantum-mechanical states. The entropies
in relation (5.6) are also defined for classical distributions
with narrow probability distributions where one Araki-
Lieb inequality was shown to be violated [28].

B. Example B

To illustrate the above definitions let us consider that
the quantum-ruler (i.e., the filter) states are the coher-
ent states with the Wigner functions given by Eq. (2.16)
which means that az,q, = 0'12,,{, = 1/2. In this case the
corresponding sampling entropy is equal to the Wehrl en-
tropy [28] (for more details see Ref. II). Furthermore, let
us assume that the state that is going to be measured is
the pure Gaussian state described by the Wigner func-
tion (2.27) with r = 0, i.e., the parameters o4,y and o2

are related as 072 307 & —1/4 ie.,

r‘I’(Ps q) =

Op,¥0q,%
(5.8)

The state described by the Wigner function (5.8) can be
obtained by the action of the squeezing operator S(£) and
the displacement operator ﬁ(tj, P) on the vacuum state

|0),

%) = D(g, )5(¢)l0), (5.9)
where the squeezing operator 5(£) is defined as [42]
5(6) = exp | (a0 + 50)|. (5.10)

The corresponding parameters Ui,@ can be expressed as
2 _ 1,-2¢ 2 _ 1,2
Oow=3€ Opy = 3€°, (5.11)

which represents another parametrization of squeezing
parameters given by Eq. (3.12). From Eq. (5.11) it is
seen that if £ > 0 then the fluctuations in the posi-
tion operator are reduced below the vacuum level [i.e.,
((Ag))e = ho]

2. < h/2] at the expense of the increase of
fluctuations in the conjugated momentum operator.

After some algebra we can find the operational phase-
space probability distribution Pys(p,¢) related to this
particular phase-space measurement of the state |¥) in
the form

1 1 (g—¢)?
P, -+ _ 1
¥ (p’ q) EP"I’QE‘L‘I‘{, exp [ 2h 23,‘1’4’
1 (p—p)? p)""
(5.12)
T2h 2 g.

where 2 e = q‘I’ +aqq, =1/2+ o2 ¢ and 2?,,‘1,@ =

pw+‘7<1>—1/2+ q,and O'q\I,O'\I,=1/4. The
marginal probability dlstnbutwns Pygs(q) and Pgs(p) in
this case read

1 1 (¢—9)?]
P B ~ .
ws(9) DIFR 2 R T Tive ] , (5132)
and
1 | 1 (p p)
P, = .13b
ve(p) Ypve P i 2k Ep e (813 )

Now we can easily derive the corresponding entropies for
which we find

S\(I?ép) =kp+kpln¥, 9s¥q vs = ka[l + In(cosh§)),
(5.14)

and

k k 1+e %
S‘(I?%=§-+k31n2q,\pq>=?3|i ( te ]

>( 15a)
l

k k 1+e2
sg’;=?3+k31nzp,w—~2ﬁ[ ( )

5.15b)

From Egs. (5.14-15) we learn the following:

(1) The Wehrl entropy (5.14) of Gaussian states is pro-
portional to the uncertainty area in units 27#, i.e., the
area this quasiprobability distribution covers in phase
space at height 1/e from its maximum value. This is-
sue will be addressed in more detail in Ref. II.

(2) The squeezed state (5.9) is an intelligent state with
respect to the given operational phase-space measure-

ment but the lower bound on the EUR, i.e., the Wehrl

entropy S&?f ) given by Eq. (5.14), depends on the degree

of squeezing. Namely, the larger the degree of squeezing
the larger is the samphng entropy. In the limit & — oco the
sampling entropy Sy (:P) is diverging but simultaneously

S\(;;, reaches its minimum value equal to kg (1 —In2)/2.
This value is smaller than kp/2 which reflects a reduction
of quantum fluctuations in the position of the harmonic
oscillator. Nevertheless, because the filter is in a coherent
state characterized by finite fluctuations in the position,
the outcome of the measurement of § cannot be infinitely
precise even in the limit of infinite squeezing of the mea-
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sured state (for further discussion see Example C).
(8) Solving the simple variational problem we find that

Sl(l,qli,p ) given by Eq. (5.14) reaches its minimum value
when 02y = 024 = 1/2, i.e., when the state |¥) is a
coherent state (E =0). In thJs case ¥, gg = Eq’q«} =1
and T

S8&P) = kp. (5.16)

We can conclude that coherent states are the minimum
uncertainty states with respect to the chosen phase-space
measurement (filter is in a coherent state). Squeezed
states are only intelligent states with respect to this
phase-space measurement.

C. Minimum value of the sampling entropy

It has been conjectured by Wehrl, and subsequently
proven by Lieb [28], that the absolute minimum value of
the Wehrl entropy (i.e., the sampling entropy with a co-
herent filter) is equal to k5. As we have seen earlier this
minimum is obtained when a pure coherent state |¥) is
filtered by a coherent quantum ruler [see Eq. (5.16)]. It
may seem strange that when the coherent state |a) is “fil-
tered” by a coherent-state quantum ruler then the sam-
pling entropy (even though it takes its minimum value)
is not equal to zero. The reason is that the coherent-
state basis is overcomplete, i.e., coherent states are not
mutually orthogonal and, therefore, the corresponding
sampling entropy cannot be equal to zero. The physical
meaning of this statement is simply that a point of the
quantum-mechanical phase space cannot be in principle
located (measured) with an infinite accuracy (a “point”
in quantum-mechanical phase space is always associated
with an area 2m%4). The accuracy expressed by the rela-
tion (5.16) is the best one can achieve when performing
a simultaneous (phase-space) measurement of two non-
commuting observables.

Using the same arguments as Lieb [28] it can be shown
[26] that for any choice of the filter state the mini-

mum value of the sampling entropy Sy (q'p ) is equal to kp.

Therefore, we can write the entropic uncertainty relation
for the pair of two observables § and p as

S(‘I) + S\(Ifg > S(Q»P) > kB- (5.17)

The proof of the entropic uncertainty relation (5.17) is
based on an assumption that to perform an optimal
phase-space measurement that minimizes the sampling
entropy S(q’p ) we have to use a filter that is in a state
characterlzed by the minimum intrinsic noise. In other
words, the filter state is considered to be in a pure min-
imum uncertainty state. All pure minimum uncertainty
states in the (g, p)-phase space are characterized by Gaus-
sian Wigner functions of the form (5.8). Moreover, these
states are related by simple unitary transformations (see
for instance the review article by Schumaker [21]) which
preserve the measure in (g,p)-phase space. With the
help of these transformations we can transform any pure
minimum uncertainty filter state into a coherent state
[Ws(q,p) & Weon(g,p)]- Obviously under these transfor-
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mations the Wigner function Wg(gq,p) of the measured
state is transformed as well, i.e., Wy(q,p) = Wy(q,p).
This means the propensity Pgs can be transformed into
the Q function of the state described by the Wigner func-
tion Wg(g,p) (see Appendix B). Moreover, this unitary
transformation has the property that the phase-space
“overlap” between the measured state |¥) and the flter
state |®) is invariant, from which it follows that the sam-
pling entropy is invariant under the action of the unitary
transformations under consideration, i.e., the sampling
entropy of the state |¥) which is filtered by the state |®)
is equal to the Wehrl entropy described by the Wigner
function Wg(q,p). The inverse is true as well. There-
fore, using the result by Lieb [28] we can conclude that

the entropy S.(I?&,p ) is bounded from below by the value
kg.

D. Example C

Now we evaluate the lower bound on the EUR when
the harmonic oscillator under consideration is in an eigen-
state |Q) of the position operator §. To analyze this
rather nontrivial example we first of all have to intro-
duce a phase-space description of the state vector |Q),
that is we have to find the Wigner function of the posi-
tion state. In order to find this Wigner function we rep-
resent the position state |Q) as the displaced squeezed
state |Q,£) = E(Q,O)S’(S)IO) given by Eq. (5.9) in the
limit of infinite squeezing,

Q) = lim D(Q,0)8(£)[0)- (5.18)
The action of the position operator § on the state |Q,&)
is

mqa=qm¢ww*¢%m@mm@m, (5.19)

where {1) is a Fock state with one excitation quantum.
In the limit £ — oo we formally obtain from (5.19) the
eigenvalue equation for the position operator. Alterna-
tively, we can prove Eq. (5.18) in a weak sense. To do so,
we turn our attention to the fact that the Wigner func-
tion corresponding to the state |Q, &) is given by expres-
sion (5.8), from which we find the marginal probability
density distribution. Wg(g) for the position in the form:

We(q) = \/— f dpWy(q,p
_ 1 1 (g—Q)*?
= es exp [_ﬁW} s (5.20)

where 02 o = exp(—2£)/2. With the help of the marginal
distribution Wy (g) we evaluate the mean value of all
powers of the operator §

7 For 8 7 1 [ n
(e = \/7—,{/‘19‘1 Wy(q)
»/2]

- Z( )Qn m(2m — 1)i(ko] ¢)™, (5.21)

m=0
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where [z] denotes the largest integer smaller than =z.
From Eq. (5.21) it is obvious that in the limit of infinite
squeezing we have (Q,£|§*[Q, &) — Q™, which proves in
a weak sense that |@Q,£) in the limit £ = oo is equal to
the position state |Q).

Now we assume that the state |Q,£) is filtered by the
state |®) = D(q,p)5(¢)[0), that is, the filter state is es-
sentially the same as the measured state except it is dis-
placed in the phase space (but the direction of squeezing
is the same for the measured state |T) as well as for the
filter state |®)). This means that we perform a measure-
ment of the position state with the help of the filter which
is also in the position state (in the limit £ — o0). The
operational probability density distribution Pgs(q,p) is
in this case given by Eq. (5.12) with £2 g4 = exp(—2¢)
and 212,,‘1,{, = exp(2€). The corresponding marginal dis-
tribution in the limit of infinite squeezing has the form

. 1
Pes(a—Q) = lim —— [ doPusla—Q.pi1)

= Vahi(g - Q),

which one expects, because the eigenstates of the po-
sition operator {which are characterized by continuous
eigenvalues) are mutually orthogonal. We also find ex-
plicit expressions for the sampling entropy and the cor-
responding marginal entropies of the state |Q,&) filtered
by the state |g, &) which read

- (5.22)

k k
SEP = ks, SU =2 —2knt, SE) = +2kse.

(5.23)

From Eq. (5.23) it directly follows that the position state
is an intelligent state if it is filtered by another position
state. Moreover, the lower bound on the EUR is equal
to kg, so the position state is the minimum uncertainty
state with respect to the given operational phase-space
measurement. From Eq. (5.23) we also find that in the

limit £ — oo the marginal entropy S\(If’g, is equal to +oo
which reflects a complete uncertainty in the distribution
of the momentum of the position state. On the other
hand S’g{% is equal to —oo which is related to the fact
that the marginal distribution (5.22) has the form of the §
function analogous to a density distribution of a classical
continuous variable. It is well known {28] that entropies
related to classical density distributions of the form (5.22)
can be equal to —oo.

VI. WEHRL ENTROPY
AND SAMPLING ENTROPIES

In this paper we have introduced the idea of sampling
entropies through the operational phase-space probabil-
ity density distributions Pgg(g,p). These density distri-
butions contain information not only about the measured
quantum-mechanical state [¥) but also about the state
|®) of the quantum ruler. In this paper, we have not
specified the most natural quantum-ruler (filter) states
for the quantum-mechanical phase-space measurement.
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To do so we remind ourselves that coherent states rep-
resent the best approximation to “classical” phase-space
points in the framework of quantum theory [20]. More-
over these states have very exceptional properties when
the influence of the larger external environment on an
individual quantum-mechanical system is taken into ac-
count. In particular, coherent states are the most “ro-
bust” quantum-mechanical states in a sense that they
preserve their quantum-statistical properties for times
much longer than any other quantum-mechanical states
[27,43]. Because of their exceptional properties, coher-
ent states are the best candidates for the quantum-ruler
states in the operational phase-space measurement de-
scribed in our paper. In particular, if we choose the quan-
tum ruler to be in a coherent state with a zero amplitude,
i.e., when |®) = |# = 0), then the operational probability
density distribution Pgs(g,p) given by Eq. (3.2) can be
expressed in the form

Pga(9,p) = (0|D"(g,p)eD(g,)I0) = Qu(g,p), (6.1)

which means that with this particular choice of the
ruler state the operational probability density distribu-
tion Pys(g,p) is equal to the Husimi (Q) function [13]. It
is interesting to note here that with the help of this phase-
space probability density distribution function one can
evaluate the antinormally ordered products (a"(at)™)g
of the system operators in the state |¥) via the phase-
space integration similar to Eq. (2.12),

@@ =1 [ 66 6)"QuB). (620

The Q function itself can be expressed as the Fourier

- transform of the antinormally ordered characteristic

function C(®)(n) of the density operator j = |¥)(¥|,
which is defined as

(1) = Te[p exp(—n"a) exp(nat),

so that

Qu(B) =5 [ Enc ) exp(on” - pn).  (6.20

(6.2b)

We see that the Husimi function has a twofold meaning.
First, it can be interpreted as the operational probability
density distribution of the state |¥) given that the quan-
tum ruler (filter) is in a coherent state. On the other
hand, this function can be interpreted as the Fourier
transform of the characteristic function C(®)(#) of anti-
normally ordered moments of the operators & and af.

Because of the fact that the Husimi function does not
take negative values for any 3 it has been used by Wehrl
[28] for a definition of what he has called the “classical
entropy”:

kg 2
Sy = -2 f d*B Qu(8)1n Qg (). (6.3)

According to Wehrl this entropy represents a classical
analogue of the von Neumann entropy which in terms of
the @ function can be written as
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k
Su=~"2 [ &6 Qu(6)Puns(0), (6.4)
where Py, 5(0) is the phase-space probability density dis-
tribution (the so-called P function or Glauber-Sudarshan
diagonal coherent state quasiprobability) corresponding
to the Fourier transform of the normally ordered char-

acteristic function C’I(: 23(77) of the operator Inp which is
defined as : -

Cinp(n) = Tr [exp(na’) exp(—n*a)Inp],  (6.52)

and
1. 2 * *
Pinp(B) = ~ /d 7 Cia s(n) exp[Bn* — B*n).  (6.5Db)

We have to stress here that for nonclassical states, the P
functions in general are tempered distributions. It can be
shown that the “classical” approximation due to Wehrl
[28] consists of the substitution of the function Py, 5(3) by
the logarithm of the @ function of the state p = |¥)(¥|,
ie., .

Pin5(8) = In Qe (B)- (6.6)
From our previous discussion it clearly follows that the
entropy introduced by Wehrl may have a rather attrac-
tive physical interpretation in terms of the operational
phase-space probability density distributions. This in-
terpretation is seen to have nothing to do with classical
approximations and is based purely on the postulates of
quantum theory. For this reason we prefer to call the
sampling entropy (6.3) expressed through the Q func-
tions as the Wehrl entropy.

There are at least two experimental schemes with the
help of which the @ functions of single-mode light fields
have been measured [15,16] (see also [17,18]). More
generally, the direct experimental reconstruction of the
operational phase-space probability density distribution
Py3(g,p) is feasible in the experimental setup used by
Noh, Fougéres, and Mandel [16]. In this eight-port device
consisting of four beam splitters the signal state which is
going to be measured is launched into one port of the
first beam splitter while the filter state is launched into
the unused port of this beam splitter. The essence of this
setup is that a simultaneous (phase-space) measurement;
of two noncommuting observables can be performed and
that the corresponding operational phase-space proba-
bility distribution can be reconstructed (i.e., the EUR
can be experimentally verified) from the measurement of
two independent quadrature distributions at the output
of two different beam splitters.

Because the @ function can be experimentally mea-
sured it is important to understand whether, in principle,
it is possible to reconstruct the Wigner function (i.e., the
complete information about the measured state per se)
from the @ function. As follows from our previous discus-
sion, the Wigner function contains complete information
about the quantum-mechanical system, in the sense that
(at least in principle) the density operator j of the sys-
tem can be found through the knowledge of the Wigner
function, : : :

p= 7% /dznf?_l(n)/dzﬁexp(ﬁ*n—én*)Ww(€)~
(6.7)

As we already know, the @ function can be expressed
through the Wigner function as
2
Qu(B) = 2 [Peexp(-2p— M Wale). (69

On the other hand, there does not exist a direct inverse
transformation (deconvolution) of the form

Wa(©) = - [ 26F(8.0Qu(0) (6.9)
from which the Wigner function of the quantum-
mechanical system can be reconstructed from the @Q func-
tion [i.e., there does not exist a function F(f3, £) such that
Eq. (6.9) is valid for an arbitrary quantum-mechanical
state]. Nevertheless it is possible to reconstruct uniquely
the Wigner function from the knowledge of the @ func-
tion. To do so we first have to perform a Fourier trans-
form inverse to that described by Eq. {6.2c) from which
we obtain the characteristic function C’\(I,a) (n) of the anti-
normally ordered moments of bosonic operators. From
here we obtain the characteristic function of the sym-
metrically ordered moments C‘(I,W) (1) using the relation

8V () = e 12c{ (). (6.10)
The Wigner function then can be obtained as the Fourier
transform of the characteristic function C'\(I,W) (n) [see
Eq. (2.9)]. With the help of the above prescription one
can derive the formula that relates the Wigner function
and the Q function

_1e
8 8¢?

1 82

We(€) = exp [——8'@ ] Qu(§), (6.11)

where £ = &, + i€;. This one-to-one correspondence be-
tween the Wigner and the @ functions reflects the fact
that when an ideal operational phase-space measurement
with a quantum ruler in a coherent state is performed
then the information about the measured state |¥) can
be completely reconstructed. In other words, using the
transformation (6.11) one can extract unbiased informa-
tion about the state |¥) from the data that contain noise
due to the quantum-mechanical measurement.

In this paper, we have discussed only situations when
the source of the uncertainty in Pgs(gq,p) has exclusively
a quantum-mechanical origin. Remaining in the frame-
work of the phase-space formalism we can quite natu-
rally include in our discussion additional sources (even
classical) of noise. To do so we utilize the procedure of a
phase-space coarse graining. The main idea of the coarse-
graining procedure is based on an assumption that under
the influence of stochastic noise a point in the phase space
cannot be localized precisely: a probabilistic description
has to be introduced with the help of which a probabil-
ity to find the point in a region Q of the phase space is
given. Using this description, a new phase-space proba-
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bility density distribution Pgs(g,p) is defined as

_ 1
Pys(g,p) = ﬁLPW¢(9+Q',P+P')G(Q',P')d¢1' dp',
| (6.12a)

where the weight (coarsening) function G(¢’,p’), which
is normalized to unity as

Y
27rh/;alq dp' G(¢',p') =1, (6.12b)

contains information about additional sources of stochas-
tic fluctuations. In particular, we show in Appendix C
that using the coarse-graining procedure it is possible to
describe the decay of a quantum-mechanical harmonic
oscillator into a phase-sensitive environment (a squeezed
reservoir). In this way we are able to evaluate the sam-
pling entropy of the decaying quantum-mechanical state
|¥) which is measured by the quantum ruler in the state
|®) and thus obtain a realistic estimation of the uncer-
tainty for our particular measurement.

Finally, we note that Leonhardt and Paul [44] have re-
cently analyzed the problem of a reconstruction of the
Wigner function from experimental data when detectors
with efficiency smaller than unity are used. It has been
shown that in this case a complete reconstruction of
the Wigner function of the measured state is impossi-
ble because noise due to the imperfect measurement irre-
versibly deteriorates the information about the measured
state.

VII. CONCLUSION

We have shown how operational phase-space distribu-
tion functions can be used to describe the effect of spe-
cific measurement schemes, and have shown that differ-
ent choices of the states of the quantum ruler give rise
to different sampling entropies. These lead to the idea of
operational variances and operational uncertainty rela-
tions, as well as to entropic uncertainty relations. In this
process, we reveal the true operational significance of the
Wehr! entropy as a specific kind of sampling entropy that
employs coherent states as quantum-ruler states. The
Wehrl entropy generates an information-theoretic mea-
sure of the size of the intrinsic state fluctuations [45]. As
coherent states are the most robust in dissipative envi-
ronments [43], this suggests the utility of the Wehrl en-
tropy in characterizing the decoherence process and the
nature of the decoherent histories approach to quantum
mechanics (e.g., [46]). We will address this problem else-
where.

In the following paper, we will utilize the concept of
sampling entropies (in particular, the Wehrl entropy) to
analyze the decay of quantum coherences between coher-
ent components of pure quantum-mechanical superposi-
tion states.
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APPENDIX A:
SOME PROPERTIES OF Pyg(n;, ¢;)®

Let us consider states |¥) and |®) which in the phase-
state basis read

[®) =" Co(k)|br) (A1)
k=0
and
|2) = Ca(k)|dw)- (A2)

"Using Wootter’s definition [see Eq. (4.12)] of the Wigner

function of a harmonic oscillator in a finite-dimensional
Hilbert space we can write the Wigner functions of the
state |¥) and |®) as

1 . .
8+1;Ca(1+p)0=.(1 p)

Wa(n:, ¢;)®) =

x exp[—2ipn; A], ==¥,9. (A3)

In the derivation of Eq. (A3) we have used the definition
of a periodic Kronecker

8ka = | Pgaexp[ip(k - DA], (A4)
which has the following properties:
Okt = Okt (s+1) = Ok (s41) - (A5)

Wootter’s Wigner function (A3) is normalized to unity,
i.e.,

Z WE(ni’ ¢j)(s) = 11

i,J

(A6)

and has the property of the usual Wigner function that
after performing a summation over number (phase) vari-
ables we obtain from Wy (n;,®;)(®) the phase (number)
distribution of the state |¥),

2 Wa(ni ) = [(TIg;)|" = P(¢s);  (ATa)

=0
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zww(nt,@)“’ = |<\I4n=>| = P(m)

(A7b)
=0 R

Now we evaluate an explicit expression for the propen-
sity Pya(n:,$;)*). If we insert Wigner functions given
by Eq. (A3) into the definition (4.15) we obtain

ﬁi Z ZC$(J'+1+P)

k,l=0 p=0 .
XCyg(j + 1 — p) exp[—2ipn; i A]
8
x> C3(l+r)Cs(l—r)
r=0
X exp[—2irngA).

Pgg(n;, ¢j)(’) =

(A8)

Using the definition of the periodic Kronecker § we can
rewrite Eq. (A8) as

P@Q(nu(ﬁg)( ) =

Z Cy( +1+p)Ce(G+1-p)
x eXP[—2zzmz- 1C:(1 — p)Ca(l + p).
(A9)

s+1

In Eq. (A9) we can rearrange the summation over [ and
p using a linear substitution I+ p=c¢and | —p = b, so
that we obtain

Pys(ni, ¢;)) = ch(wa)c@(a)exp{ ian; Al

3+1

x Z Cy(j + b)C3(b) exp[ibn; A], (A10)
b=0

or, alternatively,

Pys(n;, ;)@

s 2

Cy(j +1)Cs(l) exp[—iln;A}| > 0.

(A11)

From Eq. (A11) it directly follows that the propen-
sity Pq,q,(n,-,qu)(') is a non-negative function. Equa-
tion (A11) can still be rewritten in a simpler form. To do

S0, we use expressions for the amplitudes C} (7 + 1) and
Ca(l) [see Eq. (A1)]

Cy(G+1) = (Tlpj+),  Ca(l) = (#1]2)-

In the finite-dimensional Hilbert space we can introduce
“rotation” (translation) operator R4 () such that

|$5+2) = Ra(dr)les) = Bal(di)|d),

i.e., the operator R4 (¢;) rotates the phase state |¢;) by

(A12)

(A13)

V. BUZEK, C. H. KEITEL, AND P. L. KNIGHT 51

an “angle” ¢; = IA (in what follows we will assume that
¢o in the definition of the phase ¢; is equal to zero).
Taking into account periodic properties of the rotation
operator we can find it in an explicit form (see [47]),

Ra(¢;) = explig;n], (Al4)
so that the propensity (A1l) can be rewritten as
Pyg(ni,¢;)®

2

Z(‘I’|¢3+l)(¢l|‘1’) exp[—iln; A} , (Alba)

=0

or
Pys(ni, ¢;))

2

= = [(@IRa(45) {Z 61)(h exp[—un,-A]} 1)

(A15b)

If we take into account the expression for the phase state
|¢:) in the Fock basis [see Eq. (4.14)] then we can find
the following relation:

s s—1
> I¢i)(dul exp[—ilA] = 3 |k + 1) (k| + [0)(s]
=0 k=0
= exp[—id), (A16)

where ¢ is the Hermitian phase operator as defined by
Pegg and Barnett [37],

¢ = Z #ild;) (ol (A17)

Taking into account the definition (A16) we can rewrite
the propensity Pq,@(n,,rbj)(‘) as [48]
P\I"b(nu ¢J)(‘) =

I<\I'IRn(¢J)R*(m)|<I>>| (A18)

where the operator ﬁ qg(n,-) describes “rotations” (trans-
lations) in the periodic finite-dimensional Fock basis and

has the following form:

f?};(n;) = exp[—inith]. (A19)

The action of the operator ﬁ;(n,) on Fock states is as
follows:

Inesa) = R‘;(ni)lnz) = f%},(nt)lni)- (A20)

Theipropensity Pgg(n;, ;) in the discrete (n,d)-
phase space given by Eq. (A18) has a very similar form
to the propensity Pys(q,p) in the continuous (g, p)-phase

space [see Eq. (3.2b)]. To see this we rewrite the displace-
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ment operator ﬁ(q, p) = exp[i(ptj—qf)] (in this appendix
we use units such that & = 1) as a product of two trans-
lation (“rotation”) operators R4(p) and Rs(q),

D(q,p) = By(p) R} (q) ™12, (A21a)
where
Rylp) =¥, Rl(q) = e %P, (A21b)

With the help of the definition (A21) we can rewrite the
propensity Pys(q, p) given by Eq. (3.2b) in the form very
similar to Eq. (A18) for the propensity Pys(ni,¢;)(*),

Pya(a,p) = |(U|R4(p) B (q)10)].

The similarity between Eqs. (A18) and (A22) is trans-
parent. Simultaneously we have to stress the difference
between the two expressions. The right-hand side of
Eq. (A22) is invariant under a transposition of the two

(A22)

translation operators ﬁé(p) and ﬁ;(q) This property

of the propensity Pgg(g,p) is intrinsically related to the
fact that the commutator of the two generators ¢ and p
is equal to a ¢ number. Therefore, we have

[(Z124(p) B(0)12)|” = |(TIRY(a) Ra(p)|®)]”
= [(@|D(g,p)|®)|*-

On the other hand, the commutator of two operators 7
and ¢ is not a ¢ number and, therefore, -

(@1 R () B (ne) @) # |(2|R] (n:) Ra ()12
# [(@ID(ns, g B (A24)

The “displacement” operator f)(ng,gbj) in Eq. (A24) can
be defined in an analogy with the operator D(g,p),

D(ni, ¢;) = expli(¢;f — nid)]-

The amblgmty in the definition of the propensity
Pys(n;, gbj)(‘) in the (n, ¢)-phase space has its origin in
‘Wootter’s nonunique definition of the Wigner function in
the discrete phase space [48].

Let us consider that the state [¥) is a phase state |¢as)
and the filter state |®) is a phase state |¢o). The Wigner
functions of these states read

(A23)

(A25)

1
Wy (i, ¢;)®) = s 10
1
W (ni, ¢;)) = PR (A26)
and the corresponding propensity has the form
1
Pya(ni, ¢;)1) = penE LIS (A27a)
The corresponding marginal propensities are
)~ 1 (o) —
Pyg(n)'® = Py Pye(¢;)" =6;m- (A27D)

Using expression (A27) we can evaluate the sampling en-

2591

tropy S"(I,"(I’,d’) (s) and the corresponding marginal entropies
S\(p"q),(s) and S‘(I,@(s) [given by Eqs. (4.16) and (4.18), re-
spectively],

5552 (s)

= S\(I,nq),(s) =kpln(s + 1), S‘(I,dfi),(s) =0.

(A28)

From Eq. (A28) it follows that the phase space |¢pas) is
an intelligent state with respect to the given operational
phase-space measurement. But unlike the eigenstate of
the position operator (see Sec. VD) the phase space is
not a mim’mum uncertainty state. Moreover, the lower
bound on the sampling entropy S ("’d’)(s) is logarithmi-
cally diverging with the increase of the dimension s of
the Hilbert space.

APPENDIX B:
TRANSFORMATION PROPERTIES
OF THE SAMPLING ENTROPY

Let us assume that the filter state is in a pure Gaus-
sian state |®) characterized by the Wigner function (5.8).
Then there exists a unitary transformation U such that

|6=0) =

where |3) is a coherent state.

U|®), (B1)

Consequently we can

_rewrite the propensity expressed by Eq. (3.2a) as

Pys(g,p) = (¥|UUD(q,p)U|8 = 0)|.
Alternatively, we can introduce a propensity Pys(q’,p")

Py3(q',p") = (¥|D(d',)|B = 0)}?,

where ¢’ and p’ are the eigenvalues of the transformed
operators ¢/ = UGU' and p = UpU*, respectively,
and Qg(¢',p’') is the @ function of the unitary trans-
formed state |¥) = ﬁ'|‘I’) characterized by the trans-
formed Wigner function Wg(¢',p'). The integration mea-
sure under the unitary transformation U is unchanged,
ie.,

(B2)

(B3)

dgdp dq' dp
arh ~ 2@wh

(B4)
and, therefore,

kp
s = oo v 42 Pus0,0) 10 Paa (5,0

‘Ti / dp’ d¢' Qg (¢',p') InQy(¢',p') = Ss,
(B5)

where Sy is the Wehrl entropy of the state |¥).
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APPENDIX C: DESCRIPTION OF THE DECAY
OF A QUANTUM-MECHANICAL
HARMONIC OSCILLATOR
VIA COARSE GRAINING IN PHASE SPACE

In recent years, correlated (phase-sensitive) multimode
reservoirs, sometimes called “rigged reservoirs” based on
the establishment of squeezed light have been studied
extensively. These reservoirs are characterized by the
mean photon number N of a field mode of the reservoir
at the particular frequency and by the correlation be-
tween modes which are symmetrically displaced around
some carrier frequency. Correlation between modes is
described by a correlation parameter M. An ideally
squeezed reservoir is characterized by the equality M? =
N(N +1), while for a nonideally correlated reservoir we
have M? < N(N + 1). For an uncorrelated (phase-
insensitive) reservoir we put M = 0. For an uncorrelated
reservoir at zero temperature we have N = M = 0. The
dynamics of the field mode (the harmonic oscillator) cou-
pled to a squeezed reservoir is in the Born and Markov
approximation described by the Fokker-Planck equation,
which in the interaction picture can be written as

2
9Q(8, ) =7[V ” W (ﬁ*i +ﬁ£)
ot opre8 - 2 aop* as
M B M* 52
Y 5| Q6.

+ (C1)
where v is the coupling constant between the field and
the phase-sensitive reservoir. The parameters V and W
are defined as V = N + 1 and W = 1, respectively. (If
instead the environment plays the role of an amplifier,
V=NW=-1)

The solution of the Fokker-Planck equation (C1l) can
be obtained via “coarsening” of the initial @ function
of the harmonic oscillator. Phase-space coarsening is
generally associated with a measurement process with
a nonunitary effective Hamiltonian. Analogously, the at-
tenuation process can be considered as a model for a
quantum-mechanical measurement.

The main idea of the coarse-graining procedure is
based on the assumption that a point in phase space
cannot be localized precisely but a probabilistic descrip-
tion is introduced, with the help of which the probabil-
ity to find the point in a region 2 of the phase space
is computed. Instead of considering a region with sharp
boundaries, we will analyze the coarsened quasiprobabil-
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ity function defined as a convolution of the quasiproba-
bility function with a properly chosen weight function. In
particular, we will consider a Gaussian weight function

G(u,v),

1 u? v2
G(u, ’U) = m exp (—E - W) ) (02)
normalized as
1 // Gu,v)dudv =1, (C3)
w —

so that the coarsened quasiprobability function Q(3) can
be defined as

Q(ﬂraﬂi) = %f'/:w G(‘U.,'U)Q(ﬂr +u:ﬁi +U) dudv.

(Ca)

The solution Q(3',t) of the Fokker-Planck equation
{C1) can be expressed through the coarsened @ function
of the initial state as follows [49]:

QBB = 5 [ dBs5(6L - uB)

x / dg; 6(8, — 1*/23;)

X / /~°° G(x,v)Q(Br + u, B; + v) dudv,
(Cs)

where the Gaussian weight function G{u,v) (C2) is char-
acterized by the time-dependent parameters A, (¢) and
A8

1—p

AZ(t) = o 1+ N + M], (Céa)

a2 = L+ N - M),
2p

with p = exp(—~t). We note here that the two integrals
containing & functions in the expression (C5) correspond
to the classical dynamics of a point in the phase space
(i-e., the decay of the classical harmonic oscillator), while
the coarsening corresponds to added fluctuation noise.
The expression (C5) is valid for any initial state of the
harmonic oscillator.
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