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We present a @ function of a state of a quantum—mechahical system in a finite-dimensional

Hilbert space.

This discrete @ function is defined with the help of the Woédkiewicz concept of

propensities, i.e., we define the @ function as a discrete convolution of two Wigner functions based
on Wootters’s formalism, one of the state itself and one of the filter state. The discrete ¢ function
. takes nonnegative values in all “points™ of the discrete phase space and is normalized and it is
possible to reconstruct from it the density operator of the state under consideration. We analyze

Q-function graphs for several states of interest.

PACS number(s): 42.50.Dv, 03.65.Bz, 05.30.Ch

I. INTRODUCTION

Phase-space methods have recently been widely used
in quantum mechanics and in quantum optics. Within
the framework of the phase-space formalism, a state of a
quantum-mechanical system can be completely described
with the help of quasiprobability density distributions.
In classical mechanics dynamical variables can be mea-
sured to arbitrary accuracy. This, in principle, permits a
precise measurement of conjugated variables such as the

position and momentum. Consequently, a joint proba-

bility density distribution can be constructed that de-
scribes a classical system. On the other hand, in quan-
tum mechanics two conjugated observables (operators)
do not commute, which results in the fact that they can-
not be measured simultaneously with infinite precision,
i.e., there is always a fundamental limit with which a
“point” of the quantum-mechanical phase space can be
determined. Among other consequences of the fact that
two conjugated observables do not commute is the lack
of a unique rule by means of which quantum and clas-
sical variables can be associated. Therefore a number
of (quasi)probability density distributions in quantum-
mechanical phase space can be defined. To be more
specific, depending on the operator ordering, various
(quasi)probability density distributions can be defined,
of which the best known are the Wigner function [1],
the Husimi (Q) function [2], and the Glauber-Sudarshan

(P) function {3], reflecting the symmetric (Weyl), anti-

normal, and normal ordering of operators in the corre-
sponding characteristic functions [4]. The Wigner func-
tion plays an exceptional role among all quasiprobability
density distributions. First, it generates proper marginal
distributions for individual phase-space variables. Sec-
ond, under the action of linear canonical transformations,
the Wigner function behaves exactly in the same way as
the classical probability density distributions [5]. The
Wigner function contains complete information about the
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state of the system, i.e., it carries the same information as
the density operator or the corresponding wave function.
From the Wigner function one can evaluate all (symmet-
rically ordered) moments of the system operators. On
the other hand, the inverse is also valid. It means that
from the knowledge of the complete set of moments of
system operators, the Wigner function (as well as the
density operator) can be determined uniquely [6].

The @ function also plays a very important role in
quantum mechanics. In particular, from an operational
point of view it can be associated with a simultane-
ous measurement of two conjugated observables over the
quantum-mechanical state described by a given Wigner
function. To describe a process of a simultaneous mea-
surement of two noncommuting observables Wédkiewicz_
[7] has proposed a formalism based on an opera.tlonal
probability density distribution that explicitly takes into
account the action of the measurement device modeled
as a “filter” (quantum ruler). A particular choice of
the state of the ruler samples a specific type of accessi-
ble information concerning the system, i.e., information
about the system is biased by the filtering process. The
quantum-mechanical noise induced by filtering formally
results in smoothing of the original Wigner function of
the measured state [2,8], so that the operational probabil-
ity density distribution can be expressed as a convolution
of the original Wigner function and the Wigner function
of the filter state [7]. In particular, if the filter is con-
sidered to be in a vacuum state, then the corresponding
operational probability density dxstrlbutlons is equal to
the Husimi (Q) function [2].

Recently, due attention has been paid to the investi-
gation of quantum systems in finite-dimensional Hilbert
spaces (FDHS’S) These quantum systems can be asso-
ciated with spin systems or with angular momentum, or
recently they have been widely used for an introduction
of the Hermitian phase operator into quantum mechan-
ics [9]. States of quantum-mechanical systems in FDHS’s
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can be described by N-dimensional vectors (pure states)
or by corresponding density operators (which are equal
to N x N matrices). At this point a natural question
arises: Is it possible to apply a phase-space formalism for
a description of quantum-mechanical states in FDHS’s?
The pioneering work in this direction has been done by
Wootters [10] and by Galetti and de Toledo Piza [11].
These authors have introduced the Wigner function on
discrete phase spaces that are associated with states in
FDHS’s. Vaccaro and Pegg [12] have applied Wootters’s
approach (see below) and they have introduced a Wigner
function for number and phase within the framework of
the Pegg-Barnett formalism (see also [13]).

The purpose of the present paper is to generalize
Wootters’'s formalism and to introduce other discrete
phase-space (quasi)probability distributions associated
with quantum-mechanical states in FDHS’s. In partic-
ular, we introduce the @ function corresponding to the
Wigner function in the discrete phase space. We utilize
recent results by BuZek, Keitel, and Knight [14], who
have shown that the Wédkiewicz propensities can be de-
fined also for states in the FDHS’s.

The paper is organized as follows. In Sec. II we sum-
marize the basic properties of FDHS quantum mechan-
ics, including the phase-space treatment. Section III is
devoted to general properties of propensities associated
with states in the FDHS’s. Finally, in Sec. IV we ana-
lyze properties of discrete @ functions. We also present
graphs of Q functions for various states of interest.

II. QUANTUM MECHANICS
IN THE FINITE-DIMENSIONAL HILBERT
SPACE

Let the N-dimensional Hilbert space be spanned by N
orthogonal normalized vectors |u) and equivalently by
N vectors |v1}, k,{ = 0,...,N — 1, where both bases are
connected by the discrete Fourier transform

1 = 2
jug) = \/——J_V—_- Z exp (——il—v—kl> [v),

o = j_zexp( 2k M)

It can be assumed that these bases are sets of eigenvectors
of noncommuting operators U and V:

U|u;,) = k|ug), Vlvz) = lv). (2)
For instance, we can assume that the operators U and
V are related to a discrete position and momentum of a
particle on a ring with a finite number of equidistant sites.
Alternatively, U and V can be associated with a photon
number and phase in the Pegg-Barnett formalism. The
squared absolute values of the scalar product of eigenkets
(2) do not depend on the indices k,l:

[(urlon)[* = 1/N, ®3)

which means that pairs (k,!) form a discrete phase space

T. OPATRNY, V. BUZEK, J. BAJER, AND G. DROBNY 52

[i.e., pairs (k,!) represent “points” of the discrete phase
space] on which Wigner function can be defined [10].
Next we introduce operators that rotate (cyclic permute)
the basis vectors [11]:

Ru(n)lue) = Ry(m)|v) = [vrrm), 4)

where the sums of indices are taken mod IV (this summa-
tion rule is considered throughout the paper). It is seen
that the operators R, (n) and R, (m) can be expressed as
powers of the operators R, (1) and R, (1), respectively,

Ru(n) B (m)
In the U basis these operators can be expressed as

(ur|Bu(n)|u1) = Sxtn,t,

(un| B (m) 1) = Bz exp (i?jgmz) : ()

]uk+n)1

= Rz, = R (5)

Moreover, these operators fulfill Weyl’s commutation re-
lation [15-17]

Ru(m)Ro(m) = exp (i%{,‘-mn) RmBr); (@)

although they do not commute, they form a representa-
tion of an Abelian group in a ray space. We can dis-
place a state in arbitrary order using Ry(n)R,(m) or
R,(m)Ry(n); the resulting state will be the same: the
corresponding kets will differ only by an unessential mul-
tiplicative factor. We see that the product R, (n)R,(m)
acts as a displacement operator in the phase space (k,!)
[14].

It is interesting to compare these displacements with
the displacement operator D(q, p) in the continuous (g, p)
phase space,

N i, . R
D(q,p) = exp (;l(pq - qp)) : (8)
Because the commutator of § and $ is a ¢ number, we

can use the Baker-Hausdorff identity and write the D
operator in forms

~ _ _z_ R .Pq
D(g,p) = exp (hpq) exp ( hqp) exp ( 2s
R pg vy
= exp ( ﬁqp) exp (hpq) exp ( zzh) (9)

The R operators in the discrete phase space can also be
expressed in an exponential form

ﬁu(n) = exp (—i%’rnf’) ,

T (10)

a 2 A

R,(m) = exp (i—EmU) .
A “displacement” in the discrete phase space can be
described in a very close analogy with a continuous
displacement in the (g,p) phase space as described by
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Eq. (9), i.e.,

2T s 2 A LT
exp (z—]—v—mU) exp (—zﬁnV) exp (zﬁmn)

2T o 21 - iy
= exp (—zJ—V—nV) exp (z—ﬁmU) exp (—-zﬁmn) .
(11)

We note here that the dimension N of the Hilbert space
plays a role similar to the Planck constant 2w/ [10].

Unfortunately, the commutator [/, V] is not a ¢ num-
ber, so we cannot write the displacement in a symmetric
form such as (8); the symmetrically constructed opera-

tors DEY™) (m, n)

D™ (m,n) = exp (igj—g(mﬁ - nf/)) , (12)
do not form the required group representation. ]

Now following Wootters [10], we introduce the Wigner-
function formalism for quantum-mechanical systems in
the FDHS. The W function in a phase-space point (k,1)
is proportional to the mean value of a Hermitian phase-
space point operator A(k,l), which can be written in the
U representation

(1n| Ak, )|t} = B2k rts €XP (izﬁﬂ-l(r - s)) (13)

for a prime number N > 3. A different expression is valid
for N = 2 and also for composite numbers IV, where we
should work with direct products of the Hilbert subspaces
(for details see [10,11]). The W function now reads

W (k1) = (1/N)A®K, D) = Tr [pAGR,D]. (19)
This function is real, but it can take negative values.
Nevertheless, sums of its values over “lines,” i.e., sets of
points (k,!) for which (ak + bl + ¢) modN = 0 holds, are
always non-negative and can be understood as marginal
probabilities that can be obtained as a result of a mea-
surement. It is worth stressing the importance of calcula-
tions with mod N: the phase space is then topologically
identical to a set of points on a torus; the lines are points
of closed toroidal spirales. Inverting the expression (14),
we obtain the density operator

p=> W(k,DA(,I), (15)
ke,l

which means that density operator and the W function
represent equivalent descriptions of the quantum system
state in the FDHS. An important property of W func-
tions is that an overlap of two states (squared modulus of
scalar product in the pure states case) can be expressed
as the overlap of corresponding W functions

Tr (pp') = N D W(k,)W'(k,1).
k,d

(16)

From Eq. (16) we again see the analogy between NV in
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the discrete case and 2nf in the continuous case: roughly
speaking an area A of continuous phase space contains
A/(2nR) orthogonal states; similarly if A means the num-
ber of phase-space points in the discrete case, then A
contains A/N orthogonal states [10].

III. PROPENSITIES AND THE Q FUNCTION
IN THE FDHS: GENERAL PROPERTIES

According to Wédkiewicz {7], propensity means the
tendency (or probability) of a measured object to take up
certain states prescribed by a measuring device. Let the
measuring device — the so-called quantum ruler—be in a
pure state |$). The quantum-ruler state can be “shifted”
by an action of some generalized displacement operator
D(g), where g is an element of a group G. If the measured
system is in a pure state |¥), then its probability to be
in the ruler state shifted by g (i.e., the propensity) is

Pa.2(g) = (Z1D(g)|2)[*, (17)

ﬁhereés if the system is in a mixed state described by
the density operator p, the propensity is

Ps.,(a) = Tr [5D(s) 2)(21D* (9)] -

In our case of finite-dimensional Hilbert space, the con-
sidered group G will be formed by discrete transla-
tions on a torus: if g; = (n1,m1) and g2 = (na,ms)
are elements of G, then their group product is gig2 =
[(n1 + n2)modN, (my + mz)modN]. The corresponding
displacement operator is then given by (7) or (11): we
see that the displacement is not a representation of the
group G in the studied Hilbert space; nevertheless, it is
representation of this group in the ray space, which en-
ables us to define the propensity uniquely. For a pure
state |¥) we can write the propensity in a form (see [14])

Py 5(n,m) = [(¥|Ru(n) Ry (m)|®)|*. (19)

In the case of a statistical mixture described by the den-
sity operator p the corresponding propensity reads

Py, (n,m) = Tr [pRu(n) Reo(m)|BY@I R, (—m) Ru(—1)] -

(20)

It has been show in [14] that if W,(r, s) is the W function

of the quantum-mechanical system and Ws(r,s) is the

Wigner function of the quantum ruler, the corresponding
propensity can be written as the discrete convolution

Ps ,(n,m) = Z Wo(r,s)Wa(r —n,s —m). (21)

8

(18)

A. Q function in discrete phase space

In an analogy with a continuous (g,p) phase space
when the @ function is defined as propensity of the state
to be in the vacuum state, we will define the discrete @
function as the propensity (21)

Q(n,m) = Pg,p(n, m),

(22)
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with the quantum ruler being in a vacuum state. The
problem is how to define a vacuum state corresponding
to a FDHS and how to describe this state in the corre-
sponding discrete phase space (i.e., determine the Wigner
fanction of this vacuum state).

In Sec. IV we will address the problem how to find a
proper (ruler) vacuum state. We will discuss properties of
discrete @ functions related to various ruler states. Here
we will analyze some general features of this function.

If we assume that the ruler state |®) is chosen (i.e.,
the vacuum state is specified), then the Q function has
the following properties: (i) it is uniquely defined, (ii)
it is non-negative, (iii) it is normalized to N (see the

Appendix)
3 Q(n,m) =N,

and (iv) for properly chosen ruler states |®) information
about a system state can be completely reconstructed
from the corresponding @ function. Here properly cho-
sen means that the discrete Fourier transform of the ruler
state Wigner function Ws(k,!) has no zero values. The
proof is essentially the same as the proof that the Fourier
transform of a convolution is a product of Fourier trans-
forms. To be more specific, we can write the Fourier
transform of the @ function in the form

(23)

O(k,1) = -IN- 37 Q(n,m) exp (zi—:;-(kn + lm)) (24)

and using Eq. (21) we will write the Q functlon as the
overlap of the W functions

Qk,l) = % ZWp(r, 8) ZW@(r -n,8—m)
X exp (zzﬁﬂ(kn + lm))
= %z Wp(r, 8) exp (igjg(rk + sl))

X Z W (t,p) exp (—1,—- (tk + pl)) (25)
t,p
Since the W function is always real, the last sum can be

written as the complex conjugate of the Fourier trans-
formed Wy, i.e., NWg(k,!). Thus

Qk,1) = NW,(k, ) W3 (k,1). - (26)

Inverting this equation we arrive at the reconstruction
formula

k,l 27
Wo(n,m) = Nz Z W?: P 3) exp (—tTV—(kn + lm)) ,

(27)
which can always be done if the denominators are

nonzero. It is worth noting that there exist ruler states
for which Wy has zero elements. An example is any state
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lug}; its W function is

L5, (28)

Wut (n? m) = N i

and the Fourier transform of this W function is

- 27

W (k1) = 3810 exp (i—ﬁkt) , (29)
which has only N nonzero elements. It is clear that for
such a ruler state the @ function reduces to the prob-
ability distribution of the observable U, i.e., @(n,m) =
P(U =n), which does not contain full information about
the state. Nevertheless, for a properly chosen ruler state
the formula (27) together with (15) enables us to recon-
struct the density matrix from the measured propensities
Q(n,m).

IV. ANALYSIS OF PARTICULAR Q FUNCTIONS

Now we are in a position to choose a particular ruler
state and to construct from it the discrete Q functions
for various states. We think that the following require-
ments on the ruler state are reasonable: (i) it should be in
some sense centered at the phase space point (0, 0); (ii) it
should be “symmetrical” with regard to the quantities U
and V), i.e., its wave function should have a similar form
in both representations (perhaps up to scalings); and (iii)
it should be in some sense a minimum uncertainty state,
which means that in the phase space it should be rep-
resented by a peak that is as narrow as possible. These
requirements follow the properties of the continuous @
function and its quantum ruler, the vacuum state. The
narrowness of the ruler is useful also for the state recon-
struction: a narrow Wigner function has a broad Fourier
transform; therefore it has smaller values present in the
denominator of (27), which would increase the measure-
ment errors of Q(n,m).

Now we should be more precise in specifying the un-
certainty that has to be minimized; we will devote a few
words to this problem. Usually one considers uncertainty
as the square root of wariance, i.e., for an observable X
its uncertainty is AX = (X — (X))2)*/%. Nevertheless,
in the case of angular or phase variables (e.g., our quan-
tities U and V' with the mod N summing rule) it has
been observed that there are problems with the unique
definition of mean value and variance. To be specific, if
we shift the phase window over which the mean is calcu-
lated, these quantities change. One could of course define
them uniquely by postulating that such a phase window
is chosen for which the variance takes a minimal value,
but this step is rather artificial. Instead, another mea-
sure of phase uncertainty was suggested by Bandilla and
Paul [18] (see also [19]), the so-called dispersion. This
uncertainty measure is useful for any quantity with cir-
cular symmetry; here we will present it in the case of U.

It is always possible to find a mean value {exp (z%’,—'ﬁ'))
and write it in the goniometric form
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<exp (i%’rr}) > = Re'?, (30)

where @ is the uniquely defined (for B > 0) mean (or
central) phase [as a mean value of U we could treat
N@/(2nx)]. The dispersion of the phase is then defined
as
o2y =1-R% (31)
This quantity takes values between zero (sharp value of
the phase) and unity (uniform phase spread). It was
shown in Ref. [20] that a very intuitive measure of a phase
uncertainty Aoy is simply connected to the dispersion
Apy = arcsino, 17, (32)
which takes values between zero and w/2. These un-
certainty measures have the advantages that there is a
simple rule for the uncertainty of a sum of independent
quantities and a clear connection between the uncertainty
and probability expressed by a version of the Chebyshev
inequality. Therefore, in this paper we will work mostly
with these quantities and in searching for the ruler state
we will require a minimization of dispersions, although
other uncertainty measures are possible as well.
A state that fulfills all the requirements (i)—(iii) can

be found as the ground state of the Hamiltonian H, (see
Ref. [20])

~ [ 21 -~ 2T »
Hy = —cos (FU) — cos (WV) .

It is clear that the ground state |{®o) of the Hamiltonian
(33) fulfills properties (i) and (ii). Now let us pay atten-
tion to property (iii): If we assume that the mean phases
@y and @y in the state |Pg) are equal to zero, then the
dispersions can be written as

2
o'i,U =1- <cos (%‘Tﬁ)> s
0 2
T -~
af,,v =1- <cos (WV)> .

From our definition it follows that in the ground state
of Hy the sum of the dispersions is minimized. Conse-
quently, there cannot exist a state that would have the
same dispersions for U and V and these dispersions would
be less than those of |®¢); hence |®p) is a minimum un-
certainty state with respect to dispersions. A similar sit-
uation is in the continuous case, when the ruler state
fulfilling requirements (i)—(iii) could be defined as the
ground state of the harmonic-oscillator Hamiltonian

(33)

(34)

~

Hyye = 137 + 15° (35)

(m = i = w = 1). Here condition (iii) is considered with

respect to variances, of course. The Hamiltonian Hy has
in the U representation a simple form

2423

. 2 1 '
(uk|Ho|uz) = —5;@,1 cos (-ﬁk) -3 (5k+1,l + 6k,l+1) .
(36)

Physically we can interpret this Hamiltonian as follows.
A particle moves along a ring with a finite number of
sites; the ring is placed in a uniform force field parallel
to the plane of the ring. Therefore the potential energy
is the same as that for the mathematical pendulum—
proportional to — cos(2rU/N)—and the kinetic energy
is given by the jumps between neighboring sites—in the
Hamiltonian represented by the 6x+1,; terms. The eigen-
states of such a Hamiltonian can always be calculated
(at least numerically); from them we choose that corre-
sponding to the minimum eigenvalue, our ruler state. In
Fig. 1 we can see Wigner functions of such ground states
for several dimensions N. It is seen that the W function
consists of three peaks and one anti-peak, placed against
the main (central) peak. [We have chosen the axes fo
be numbered from —(N —1)/2 to (N —1)/2 so that the
main peak is centered; recall the modulo N summation.]
From the position of the peaks we see that the marginal
distribution of n (m) is effectively nonzero only around
n = 0 (m = 0); for n,m near N/2 the contributions of
the auxiliary peaks and the antipeak cancel each other.
Increasing the dimension N to infinity, the antipeak and
the two auxiliary peaks are taken away to infinity and
we find the well known Gaussian shape of the vacuum
state. The width of the main peak increases with /N,
again we see the correspondence between N and 21r7i as
the vacuum state in the continuous case has width /%/
Note that we get very similar W functions (for N > 10
almost identical) for ruler states defined as ground states
of the Hamiltonians

Hy = (1/2)0% 4+ (1/2)V2. (37)
Such states minimize variances of U and 14 and may also
have other useful properties for a definition of the @ func-
tion. We also turn our attention to the fact that the
shape of the Wigner function under consideration is in-
variant with respect to rotations in the discrete phase
space; see Fig. 1(d), where the W function of a shifted
ruler is presented.

In Fig. 2 we plot @ functions for severa.l 1mportant
states. In particular, in Figs. 2(a) and 2(b) the @ func-
tion of the “position” or “number” states |u,) are pre-
sented: Fig. 2(a) shows the @ function of the Fock vac-
uum |ug): notice the peak in the n distribution located at
n = 0, which continues at the “opposite end” of the phase
space at n &~ N — 1; in Fig. 2(b) we can see the number
state Jus). In Fig. 2(c) the Q function of “momentum”
or “phase” states |v,,) is plotted. In Figs. 2(a)-2(c), as
well as in Fig. 3, we have chosen the axes numbering
to be from 0 to N — 1 because the discussed states are
relevant to the Pegg-Barnett model and n really corre-
sponds to a photon number (on the other hand, we can
consider this “shift” of axis parameters as another choice
of the phase-number window). The @Q function of the
quantum-ruler state [®g), i.e., the vacuum state of the
Hamiltonian (33), is shown in Fig. 2(d). This is a single-
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peaked function very similar to the @ function of the
vacuum state of the ordinary harmonic oscillator (except
the mean photon number in this case is not equal to zero,
but is equal to N/2). Under the action of the rotation
operators R, (n) and R,(m), we obtain from the vacuum
state [®¢) the state

@ () = R (1) By ()| B0). (38)

The Q function of this shifted (rotated) state has the
same shape as the Q function of the vacuum state |®p)
except it is shifted in the discrete phase space. In a sense
we can consider the state [®(m,n)) (38) as a “coher-
ent state” of a harmonic oscillator in a finite-dimensional
Hilbert space. In Figs. 2(e) and 2(f) we plot Q functions
of shifted vacuum states |®q) for different values of m and
n. In particular, the @ function in Fig. 2(e) corresponds
to the Wigner function shown in Fig. 1(d).

Recently, two different definitions of coherent states of
harmonic oscillator in finite-dimensional Hilbert spaces
have been discussed in a framework of the Pegg-Barnett
formalism. In this case the coordinate n should be
treated as the photon number and m as the index of
phase ¢,,. One definition of coherent states general-
ized to the case of the finite-dimensional Hilbert spaces
was proposed by BuZek et al. [21] and studied further
by Miranowicz et al. [22]: this definition is very similar
to the definition of coherent states in the semi-infinite-
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‘FIG. 1. Wigner functions
{14) of the quantum ruler state
[®o). (a)—{c) show the ruler
state as the ground state of the
Hamiltonian (33): (a) N = 11,
(b) N=19,and (c) N =41. In
(d) the ruler state for N = 19
is shifted by the displacement
operator Ryu(—2)R,(5).

dimensional Hilbert space
|o)y = exp(ad’ — a*a)|uo). (39)

Here the creation operator is defined as

atun) = VR £ 1jttnt1), n<N—1 (40)
and
atluy_1) = 0 (41)

and the annihilation operator 4 is its conjugate. The Q
functions of these coherent states are depicted in Figs.
3(a) and 3(b) for two values of @ = —0.5 and a = —4.4,
respectively.

Another definition of the FDHS coherent states was
proposed by Kuang et al. [23], essentially based on trun-
cating the Fock expansion of the usual coherent states.
We will call such states truncated coherent states; they
can be defined as

|@) = N exp(aa®)|uo), (42)

where A is a normalization constant and the creation
operator is the same as (40) and (41). Examples of Q
functions of the truncated coherent states are in Figs.
3(c) and 3(d) for two values of & = —0.5 and & = —4.4,
respectively. Note that for small |&| (more precisely for



|a@|? < N/2) both the coherent states (39) and the trun-
cated coherent states (42) are very similar in Figs. 3(a),
3(c) a = & = —0.5]; we can recognize the deformed shape
of the Fock vacuum from Fig. 2(a). For higher excita-
tions the unusual property (41) of the finite-dimensional
creation operator becomes apparent and both definitions
give different results. The coherent states (39) behave
quasiperiodically with increasing |a|, several times re-
turning very close to the starting vacuum state, whereas
the truncated coherent states (42) monotonically increase
their mean photon number and for |@| 3> N tend to the
number state |uy—1). In Figs. 3(b) and 3(d) we can see
the situation for a = & = —4.4; the coherent state is just
in the middle of its returning quasiperiod and is very close

a , b

<>T'l '
0.3 0.3 ",
0.2 0.2
0.1 0.1

1

11
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to an even state: we observe a typical two-peak struc-
ture of even states. More details about both approaches
to the coherent states can be found in [13], where their
number-phase Wigner functions are also presented.
Within the Pegg-Barnett formalism all physical quan-

tities are usually analyzed in the limit N — oo; therefore
it is instructive to discuss the behavior of the number-
phase @ function in this limit. The widths of our
quantum-ruler state increase with /N, which means
that the noise in photon number measurements increases
in this way, whereas the phase uncertainty behaves as
VN2r /N, i.e., it decreases with v/N. This behavior is
reasonable if we measure sufficiently strong signals, with
mean photon numbers comparable to N; the relative er-

n FIG. 2. Q-functions of sev-
eral states for N = 19: (a)
[ue) (the Fock vacuum), (b)
lus) (a Fock number state),
and (c) |vs) (a phase state),
and (d) ruler state |®). In
(e) and (f), respectively, we
plot the @ functions of the ro-
tated (displaced) vacuum states
R,(n)R,(m)|®0), which can be
considered as coherent states
of a harmonic state in the fi-
nite-dimensional Hilbert space.
In particular, in (e) we plot
the @ function of the state
R, (—2)R,(5)]®0), while in (f)
we plot the Q function of the
state R, (0)R,(8)|®o).
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a b

ror in photon number then decreases also with v N. Ex-
cept for measurement of less excited states, where the
mean photon number is much less than N, this ruler
is not too convenient: it measures the phase precisely
but the photon number imprecisely. In this case we can
change the ruler by changing the Hamiltonian: instead
of (33) we can define the ruler as the ground state of the

“tyned” Hamiltonian H, ép )

~

_ 27 27 A
Hg = —2pcos (-JVU) —2(1 — p)cos (FV> s (43)

where p is between zero and unity (for p = 1/2 we get
ro). Changing the parameter p we can “squeeze” the
ruler into the desired shape. This operation could appear
too arbitrary, but exactly the same situation is in the
case of continuous @ function: the ruler state (vacuum)
depends on the oscillator frequency w, as the Hamiltonian
(35) changes:

Hoe, » = 20%3% + 15°. (44)

Again we can choose which oscillator states should be
used for our measurements: if we need precise = (posi-
tion) measurements, we take higher w, while for precise
7 we choose smaller w.
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FIG. 3. Q functions of (a)
and (b) the coherent states
(39) and (c) and (d) the trun-
cated coherent states (42), for
N = 19. Coherent state |a):
(a) a = —0.5 and (b) @ = —4.4.
Truncated coherent state |&):
(c) @ = —0.5 and (d) & = —4.4.

V. ]f)ISC'ESSIbN AND CONCLUSION

In the present paper we have defined the Q function
of a state of a quantum-mechanical system in a finite-
dimensional Hilbert space. This discrete @ function has
been defined with the help of the Wdédkiewicz concept
of propensities, i.e., we have defined the @ function as a
discrete convolution of two Wigner functions based on
Wootters’s formalism: one of the state itself and one
of the filter state. The discrete @ function takes non-
negative values in all points of the discrete phase space,
is normalized, and it is possible to reconstruct from it the
density operator of the state under consideration. Surely,
there is a problem how to chose the vacuum state (i.e., -
the quantum-ruler state) with the help of which the Q
function is defined. One can, for instance, try to optimize
quantum-ruler states for special measurements.

Some other open problems are as follows. It would
be interesting to study the influence of noisy (nonunit
efficiency) measurements of the Q function on a recon-
struction of the density operator. It is also worth study-
ing propensities defined based on other group representa-
tions, e.g., we can define the ruler state to be one of the
“U states” |uy) and the “displacements” would transform
one line of the discrete phase space into another. Re-
construction of states from such propensities would be a
discrete analog of the tomographical method [24,25].
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APPENDIX A

In this appendix we show that the @ function is nor-
malized as shown by Eq. (23). To do so, we assume
that the system is in a pure state |¥) (the extension
to mixed states is straightforward); the scalar product

(¥|R,(n)R,(m)|@) can be expanded in the U represen-
tation as

(T|Ru(n) Ry (m)| @)

= > (Olue)(ue| Ru(n) By (m) sy (ua|B)

= Z(llllu,.)(u,-_nlﬁu(m)l"m)(ualq’)

re

= S (el exp (5 - mm) (A

where we have used (4) and (6). The @ function is then
the last expression times its complex conjugate
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Qnym) = (Tlur) (Up—n @Y (@lus—n){ue| T)
X exXp (z%r(r - t)m) (A2)

and the sum over the arguments n,m is

D Q(nym) = (W|u) Uy [ @) @ltse—n) (ue| )

r,t,n

x ; exp (i?—l{’-}(r - t)m) . (A3)
Since the last sum is equal to N, ;, we can write
3 Qmm) = N 3 (luyu. )
n,m P
(A4)

X Z(‘I’lur—n><ur—n|§> =N,

which proves Eq. (23).

Finally, we point out that we can redefine the propen-
sity Ps, ,(n,m) given by Eq. (21) in such a way that the
discrete @ function will be normalized to unity. To be
specific, if we define the convolution in Eq. (21) as

, ,P‘I”P(n’ m) = % ZWp(r, s)Ws(r —n,s —m), (A5)

then we find the normalization condition for Ps ,(n,m)
to be equal to unity. In particular, if the ruler state is
chosen to be the vacuum state as discussed above, then
the Q function obtained from Eq. (A5) is normalized as

> Q(n,m) =1. (A6)

In this case @(n, m) can be interpreted as a proper prob-
ability distribution.
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