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Intrinsic decoherence in the atom-field interaction
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Milburn has recently proposed [Phys. Rev. A 44, 5401 (1991)] a variation of the Schrédinger equation
which models decoherence as the system evolves through intrinsic mechanisms beyond conventional
quantum mechanics rather than dissipative interaction with an environment. In this paper we give an
exact solution of this equation and apply it to the Jaynes-Cummings model of atom-field interaction with
nontrivial dynamics. We show that the intrinsic decoherence is responsible for deterioration of quantum
coherence effects in this model, such as revivals of the atomic inversion. We discuss the applicability of

the Milburn equation.

PACS number(s): 42.50.—p, 32.80.—t, 03.65.Bz

I. INTRODUCTION

The relation between macroscopic (i.e., mainly classi-
cal) and microscopic (quantum) phenomena is one of the
most discussed problems in quantum mechanics. To be
more specific, the problem is, “Why on the macroscopic
level we do not observe quantum coherences which
emerge as a direct consequence of quantum interference
between quantum amplitudes?”” One possible answer (the
Copenhagen interpretation of quantum mechanics [1], see
also Refs. [2,3]) is based on an assumption that there ex-
ists a classical measurement apparatus which during the
measurement process simply destroys quantum coher-
ences by projecting quantum states onto the pointer basis.
Even though this explanation is quite convincing, the as-
sumption of a classical apparatus makes quantum
mechanics internally inconsistent. The other approach to
solve the “micro-macro” antagonism has been advocated
by Leggett [4], Zurek [3,5], and others (see Refs. [1-3]).
This alternative approach is based on the observation
that all quantum-mechanical systems are embedded in
large systems (i.e., into systems with many degrees of
freedom, which are called reservoirs). The interaction of
the quantum system with a reservoir means that quantum
coherences spread over many reservoir degrees of free-
dom, so that these coherences effectively decay [4,5]. It is
quite important to note that, generally speaking, quan-
tum coherences decay much faster than the dissipation
rate of the energy of the quantum system.

Recently there have been several proposals to solve the
decoherence problem by modifying the Schrédinger
equation in such a way that the quantum coherences are
automatically “destroyed” as the quantum system
evolves, which means that at the macroscopic level the
system behaves “classically.” This intrinsic decoherence
approach has recently been studied in frameworks of
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several models [6]. In particular, Milburn [7] has pro-
posed a simple modification of standard quantum
mechanics based on an assumption that on sufficiently
short time steps the system does not evolve continuously
under unitary evolution but rather in a stochastic se-
quence of identical unitary transformations. This as-
sumption leads (see below) to a modification of the
Schrédinger equation which contains a term responsible
for the decay of quantum coherence in the energy eigen-
state basis, without the intervention of a reservoir and
therefore without the usual energy dissipation associated
with normal decay. The decay is entirely of phase depen-
dence only (akin to the dephasing decay of coherences
produced by impact-theory collisions or by fluctuations
in the phase of a laser in laser spectroscopy). Milburn’s
analysis considers only the free evolution of a given
(prepared) quantum system. In what follows we consider
a dynamical evolution: we study the interaction of two
subsystems and the coherences which establish them-
selves as a consequence of the interaction and their “in-
trinsic decoherence.”

It is generally accepted that all nonclassical effects in
quantum optics emerge as a consequence of quantum in-
terference between components of superposition states of
light, i.e., nonclassical effects have their origin in quan-
tum coherence. Therefore the decay of quantum coher-
ences results in the deterioration of nonclassical effects.
In those situations when it is difficult to observe directly
nonclassical behavior of the light field it is convenient to
study the dynamics of other quantum systems coupled to
the light field under consideration. The best-known ex-
ample of this coupling is an interaction between a two-
level atom and the single-mode cavity field in a lossless
one-atom micromaser [8]. In the micromaser, the atoms
are used as an active medium as well as the “measure-
ment” apparatus, and are very sensitive to quantum
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coherences of the cavity field. The simplified version of
the atom-field interaction can be described in the frame-
work of the Jaynes-Cummings model (JCM) when only
one two-level atom interacts with the single-mode cavity
field in a lossless cavity. The dynamics of the JCM is
governed by the Hamiltonian which in the dipole and the
rotating-wave approximations takes the form [8]:

A=tog@'a+1)+40 0, +Ma'6_+a6,), (1.1)
F 2

where @ and @' are the annihilation and the creation
operators of photons of the field mode and &, and & are
the atomic spin-flip operators. In this paper we will as-
sume exact resonance between the field (wy) and the
atomic (o ,) frequencies (i.e. wp=w 4=w); A is the real
coupling constant.

It is well known that the quantum coherences which
are built up during the interaction with the atom
significantly affect the dynamics of the atom [10]. In par-
ticular, because of these coherences one can observe col-
lapses and revivals of the atomic inversion [11]. The
relevant coherences in the Jaynes-Cummings model are
such that at the half-revival time a macroscopic superpo-
sition of coherent states is established to good approxi-
mation. It is the coherent recombination of the com-
ponents of this superposition at the revival time which is
responsible for the restoration of oscillations in the inver-
sion. So any intrinsic decoherence will not only reduce
the superposition to a statistical mixture, it will also elim-
inate the revival consequent upon the survival of the su-
perposition. In this paper we will study the Jaynes-
Cummings system governed by the Milburn equation and
we will show how the intrinsic decoherence modifies the
time evolution of the atomic inversion.

The paper is organized as follows: In Sec. II we give a
brief description of Milburn’s model. In Sec. III we
present the exact solution of the Milburn equation with
the Jaynes-Cummings Hamiltonian. In Sec. IV we ana-
lyze our solution and discuss some consequences of the
results obtained.

II, MILBURN’S MODEL

In standard quantum mechanics the dynamics of a con-
servative system described by the density operator j
is governed by the evolution operator O
=exp(—itﬁ /#), where H is the corresponding Hamil-
tonian. The change in the state of the quantum system in
a time interval (#,¢+7) is given by the unitary transfor-
mation '

ple+n=0(rpn)0(r)

=exp —%frﬁ pltlexp ) 2.1)

Zft

which is valid for arbitrarily large or small values of 7.
Milburn has replaced the above paradigm with three new
postulates:

(1) For sufficiently short time steps the system does not
evolve continuously under the unitary transformation
(2.1) but rather it changes stochastically. The probability

that the state of the system is changed is p(7), reflecting
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quantum jumps in the state of the system.

(2) Given that the state of the system is undergoing
some changes, then the density operator is changed ac-
cording to the relation

Lona

—Lonfr P

plt +1)=exp Z pltlexp ) (2.2)

where 6(r) is some function of 7. In standard quantum
mechanics we have p(7)=1 and 6(7)=r. In the general-
ized model proposed by Milburn we only require that
p({r)—1 and 6(r)—r for values of 7 which are
sufficiently large.

(3) In Milburn’s model it is postulated that

lim6(7)=6, . (2.3)
7—0
This last postulate effectively introduces a minimum time
step in the Universe [12]. The inverse of this time step is
equal to the mean frequency of the unitary step,
y=1/8,.

The rate of change of p(¢) in Milburn’s model is given
by the equation (for details see the original paper by Mil-
burn [7])

i
P A |pt)exp

#ﬁ]_ﬁt)l’

(2.4)

d o
dt,’o‘(t)—’y {exp

which is equivalent to the assumption that on a very
short time scale the probability that the system evolves is
p(r)=y7. Equation (2.4) is the proposed generalized
equation which alters the Schrédinger dynamics. In the
limit ¢ — oo (i.e., when the fundamental time step goes to
zero) Eq. (2.4) reduces to the ordinary von Neumann
equation for the density operator. The stochastic element
introduced by the effective jumps in Eq. (2.3) is responsi-
ble for the appearence of an “arrow of time” in the evolu-
tion.

Expanding Eq. (2.4) to first order in ¥ ™!, Milburn ob-
tained the following dynamical equation:

d i ~ 1
Al e m LR

As shown by Milburn [7], the first-order correction in Eq.
(2.5) leads to diagonalization of the density operator in
the energy eigenstate basis. Moreover, this term induces
diffusion in variables that do not commute with the Ham-
iltonian. However, all constants of motion commute
with the Hamiltonian and thus remain unaffected. In the
Jaynes-Cummings model this will cause the excitation
number (and hence the energy) to be preserved while the
revivals which depend on coherences are dephased. In
the following section we present the exact solution of Eq.
(2.5) with the Jaynes-Cummings Hamiltonian (1.1).

(2.5)

II1. EXACT SOLUTION OF THE MILBURN
EQUATION FOR THE JCM

We express the solution for the density operator p(t) of
the Milburn equation (2.5) applied to the Hamiltonian

(1.1) in terms of three superoperators J, S, and L :
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ﬁ(t)=e'?ze§te£tﬁ(0) ,

where p(0) is the density operator of the initial atom-field
system. We assume that initially the field is prepared in
the coherent state |a) :

la) =explad’—a'2)|0)

an

- 102
S exp(—|af /2)‘/,1—!

In)

=3 Qln),

n=0 ]

and the atom was prepared in its excited state |e ), so
that

pO)=|a){a|lele){e|.

The superoperators are defined through their action on
the density operator (in what follows we assume units
such that #i=1):

(3.3)

fﬁ%ﬁﬁﬁ , (3.4)
Sp=—i(Ap—pH) , (3.5)
and
M_L 2A 2
£p 2 (R%p+pAY) . (3.6)

In a two-dimensional atomic basis the Jaynes-Cummingsﬂ
Hamiltonian (1.1) can be expressed as a sum of diagonal
(A,) and off-diagonal terms (£ )
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[W(1)) =exp(—€B, +;)|ae "), (3.14)

and €=t /2y.
If we notice that the powers of the off-diagonal opera-
tor B can be written as

[20A(A +1)372]% 0

pk= 0 [20AR32T% | * (3.15a)
prk+1= 0 Va
[kaﬁ\s/zlzkﬂa,f o |
vV
 (3.15b)
then we can write the operator e =<8 in the form
e A
e £,(2) vV
I AT AN L G190
vV
where
.?,,(t)=cosh k—ta-)-(lr\z-{-l)yzl R
T 4 (3.17
¥, (£)=sinh 7‘;—“’(?1+1)3/2] .

A=A,+8,, [A,8;]=0, = (3.7) Analogously, we can ‘write the operator e A in the
o : - -two-dimensional atomic basis as
where
f_o|@tD ol o fooa S
0= o a) Hi=hat o) (3.8) e | GO VaE+I 1)
where we have assumed exact resonance between the field —nt S n(t) 6" - 1) ’ .
and atomic transition frequencies. Similarly, the square Va+1
of the Jaynes-Cummings Hamiltonian can be expressed as
a sum of diagonal and off-diagonal terms: with the operators C,(¢) and S, (¢) defined as
A*=4+8, [4,8]=0, B9 &n=cosVAa+1Ar, §,(0=sinVA+IA.  (3.19)
with R Combining expressions (3.16) and (3.18) we find that
B +1 0 0. an -
1= g |- B=wrl oy . 610 Put)
" o e R, vVi+1 5.20)
where ot Pty R, |’ ’
B,=o®A*+A\% . 3.11) Va+1
Taking into account the initial condition (3.3) we can  wjth
write down the following expression:
s e R,(0=C,(0%,(+i8,(1),(¢) (3.21a)
eSelip0)=¢ " g=eBglt —eBo 1! =5 (1) | (3.12)
and
h
where S ¥olole e _ P()==C, (NP, ()—i8,(R, (1) . (3.21b)
pi(t)= (1)) (¥(¢)|@ el, (3.13) ,
b1 | le Using Eq. (3.20) we can find an explicit expression for the
with o rators f

- operators py(¢) given in Eq. (3.12):
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PAO= gy (W, (0] 1Wy(6) ) (W (2)] (3.22)
where the state vectors |W,(z)) are defined as
W ())Y=R, ()W), [W0))=a'P (1)|w(r)), (3.23)

with the state vector |W(¢)) given by Eq. (3.14).
Finally, we have to evaluate the action of the operator
% on the “density” operator (1), i.e.,

ﬁ(t) e-?t/\( )

Taking into account the definition of the superoperator 7,
we can rewrite Eq. (3.24) in the form

(3.24)

)= 2 —}‘—”’lﬁ"g(: f*. (3.25)

Equation (3.25) describes the exact solution of the Mil-
burn equation (2.5) with the Jaynes-Cummings Hamil-
tonian (1.1). Using this solution we can evaluate the ex-
plicit expression for the time evolution of the atomic in-
version W(t)=Tr[p(¢)63] and the expression for the
photon number distribution at time &  P,(#)
={n|Trp(t)|n ). For the functions W(t) and P,(t) we
find

00

W(t)= 2 Q, |%exp[ —2(n+ 1A% /y ] cos (2V'n+1At)
) (3.26)
and
(t)=|Q,,|2lc,%(t)exp[—z(n+1)x2t/y]
n 1—exp[ —2(n+ 1)A% /y] ]
! L
+|Qn-1I2{SZ- (t)exp[—2nA%t /7]
+ 1““9[—22”7‘2’/ vl ] 3.27)

where the probability amplitudes Q, are given by Eq.
(3.2) and the functions C,(¢) and S, (¢) are defined by Eq.
(3.19). We see that both Eqgs. (3.26) and (3.27) in the limit
v — oo reduce to the well-known expressions for the
atomic inversion and the photon number distribution in
the standard Jaynes-Cummings model governed by the
von Neumann equation [9,11].

It is well known that the revivals of the atomic inver-
sion [9-11] as well as the oscillations in the photon num-
ber distribution [13] arise as a consequence of quantum
interference in phase space. In other words, these non-
classical effects have their origin in quantum coherences
established during the interaction between the atom and
the cavity field. From our solution (3.26) it follows that
the additional term in the evolution, Eq. (2.5), which des-
troys quantum coherences, leads to the appearance of
“decay” factors exp [—2(n+1)A%t/y] in Eq. (3.26),
which are responsible for the destruction of revivals of
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the atomic inversion. In other words, with the decrease
of the parameter y, i.e., with a more rapid suppression of
quantum coherences, we can observe rapid deterioration
of revivals of the atomic inversion. In Fig. 1 we plot the
time evolution of the atomic inversion for three values of
the parameter A?/y. From these figures it follows that
the larger is the “fundamental” time step (i.e., the smaller
is the parameter y), the more pronounced is the suppres-
sion of the first revival. These figures illustrate the decay
of quantum coherences due to the very specific time evo-
lIution described by Eq. (2.5), i.e., due to the intrinsic
decoherence. Of course the system remains conservative,
so there is no dissipation of energy and the inversion “re-
laxes” to a zero value appropriate to an equal mixture of
upper and lower levels. It is interesting to compare this
dephasing with the effects of genuine dissipation to an
external reservoir, either due to field damping or spon-
taneous emission decay [14]. Obviously in this case the
energy of the atom-field system is not a constant of
motion. Such external dissipation affects both coherences

10 20 30 40 50 60 70 80 90 100

(b)

-0.5 A

-1.0

0 10 20 30 40 50 60 70 80 90 100

1.0

(c)

....................

0 10 20 30 40 50 60 70 B0 90 100
t

FIG. 1. Time evolution of the atomic inversion W(¢) of the
atom initially prepared in the excited state interacting with the
coherent field |a) (|a|*=25) for various values of the parame-
ter A2/y: () A2/y=10"%, (b) A2/y =103, and (c) A*/y=1072
{We have set A=1; the quantities ¢ and W are dimensionless.)
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and energy, both of which decay. Nevertheless, the de-
cay of quantum coherences is much faster than the ener-
gy decay [14]: even normal dissipation wipes out coher-
ences in the Jaynes-Cummings model (and hence revivals)
well before any visible effect is made on the energy (i.e.,
on the value of the inversion in the collapse region).

From Eq. (3.27) it follows that the intrinsic decoher-
ence leads to a suppression of oscillations in the photon
number distribution. In the standard Jaynes-Cummings
model these oscillations appear as a consequence of quan-
tum coherences which are dynamically established during
the atom-field interaction. If the dynamics of the atom-
field system is governed by the Milburn equation (2.5)
then the intrinsic decoherence suppresses quantum coher-
ences and the oscillations in the photon number distribu-
tion. Moreover, the field at one-half of the revival time,
1=ty 2=q7i'"?/\ (where Ai=|a|?) is not in a pure
quantum-mechanical superposition state [10], but in a
statistical mixture state.

IV. ANALYSIS AND CONCLUSIONS

We have found the exact solution of the Milburn equa-
tion (2.5) for the Jaynes-Cummings Hamiltonian (1.1).
We have shown that intrinsic decoherence in the atom-
field interaction is responsible for deterioration of quan-
tum effects, such as the revival of the atomic inversion.

To obtain a more clear understanding of the nature of
the Milburn equation we have to stress here that the re-
vivals of the atomic inversion depend on the establish-
ment of quantum coherences in the energy (Fock) basis of
the cavity field (i.e., the revivals depend on the off-
diagonal terms of the density operator in the Fock basis).

The Milburn equation describes perfectly well the decay

of the off-diagonal terms in the Fock basis and therefore
describes well the suppression of quantum effects which
are related to the existence of the off-diagonal terms of
the density operator in the Fock basis, such as squeezing
(see below). On the other hand, there are nonclassical
effects such as sub-Poissonian photon statistics which
have their origin in quantum interference (i.e., they de-
pend on the existence of quantum coherences) [15] but
which do not depend on the off-diagonal terms in the
Fock basis. These effects (which can depend on quantum
coherences in the coherent-state basis) are not suppressed
by the Fock-basis intrinsic decoherence as described by
Milburn. On the other hand, these nonclassical effects
are very sensitive to the influence of dissipative processes
[15] which generally destroy quantum coherences.

From the above it seems that the application of the
Milburn equation is of interest in those cases when we are
interested in the observation of nonclassical effects which
emerge as a consequence of the existence of off-diagonal
terms of the field-density operator in the Fock basis. To
illustrate this statement we briefly analyze the time evolu-
tion of a harmonic oscillator (a single mode of the quan-
tized electromagnetic field) with the Hamiltonian
A=0 Tﬁ-{-%) governed by the Milburn equation (2.5).
In this case the exact solution for the matrix elements of
the density operator in the Fock basis is [7]
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PtV =P (0exp | —ita(n —m)—iwz(n —m)| .

4.1

Let us assume the initial state of the harmonic oscillator
is a quantum-mechanical superposition of two coherent
states with the same amplitude but with a phase
difference equal to 7. Quantum interference between
these two component states can lead to various nonclassi-
cal effects. For instance, in the case of the even coherent
state |a ), (we assume a to be real):

e}, =4} Xa) +|=a)), A7'=21+exp(—2a")],
4.2)

one can observe quadrature squeezing, i.e., the reduction
of fluctuations of quadrature operators @; and @,, which

_are defined as

it T, —iot
alz‘-'—“_ae +a"e —, 82"‘_‘

aeiwt__afe—iml
2 ' "

2 (4.3)

“The dégree of the reduction (squeezing) of the quadrature

fluctuations can be measured by two parameters S;:

S, =4[{(A8;)*)—1] . 4.4)

The state is said to be quadrature squeezed if S| or S, is
less than zero. For the even coherent state we find [15],
for t =0,

2 A ey — 2y
S, = 4a >0, §,= 4or“exp( 2(; )
1+exp(—2a®) 1+exp(—2a*)

<0,

(4.5)

which means that this state is quadrature squeezed. The
reduction of quadrature fluctuations results as a conse-
quence of the quantum interference between component
states |a) and |—a). Formally this effect is related to
the existence of off-diagonal terms in the density matrix.
Due to the dynamics described by the Milburn equation
the initial even coherent state of the harmonic oscillator
is transformed at time tw?/(2y)>>1 into a state for
which

Sl =S =2(12 1~exg( —Zaz)
2

0, (4.6)
1+exp(—2a?)

which means that the suppression of quantum coherences
leads to deterioration of squeezing.

On the other hand, the quantum interference between
two coherent states |a@) and |—a) which constitute the
odd coherent state |a ) :

laYo=A4y(|a)—|—a)), 45'=2[1—exp(—207)],
@.7)

leads to appearance of the sub-Poissonian photon statis-
tics (i.e., to the reduction of quantum fluctuations of the
mean photon number) [15]. The degree of the sub-
Poissonian photon statistics is measured by the Mandel Q
parameter:



((AR®)—(#)
(#) ’

which in the case of the sub-Poissonian state is less than
zero. For the odd coherent state we find that

Q= (4.8)

_ —dalexp(—2a?)
1—exp(—4a?)

Q y - (4.9)

from which it follows that the odd coherent state is a
nonclassical state with reduced fluctuations in the mean
photon number. This nonclassical effect has its origin in
the quantum interference. Although this quantum effect
has its origin in quantum coherences, nevertheless it is
not deteriorated during the time evolution of the harmon-
ic oscillator governed by the Milburn equation, that is,
the Mandel Q parameter is constant during the evolution.
The Milburn dynamics does not affect diagonal terms in
the Fock basis and consequently does not change the
photon number distribution of the harmonic oscillator.
We can conclude that the intrinsic decoherence as de-
scribed by Milburn is rather selective. It leads to
deterioration of only those nonclassical effects which
have their origin in the existence of off-diagonal terms in
the Fock basis. Finally, we draw attention to the fact
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that both quadrature squeezing as well as sub-Poissonian
photon statistics can be destroyed very rapidly under the
influence of normal dissipative processes [15], which in
general lead to destruction of quantum coherences in the
coherent-state basis as well as in the Fock basis. Never-
theless, as shown by Zurek et al. [16], coherent states
form a more robust pointer basis when environmental
dissipation is included than the Fock basis. Consequent-
ly, one can expect that the intrinsic decoherence process
in the Fock basis as described by Milburn should be al-
tered by the intrinsic decoherence process in the
coherent-state basis.
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